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Abstract: This paper presents a 20-channel coincidence counting unit (CCU) using a low-end field-
programmable gate array (FPGA). The architecture of the CCU can be configured arbitrarily to
measure from twofold to twentyfold coincidence counts thanks to a multifold controllable archi-
tecture, which can be easily manipulated by a graphical user interface (GUI) program. In addition,
it provides up to 20 of each input signal count simultaneously. The experimental results show
twentyfold coincidence counts with the resolution occurring in a less than 0.5 ns coincidence win-
dow. This CCU has appropriate characteristics for various quantum optics experiments using
multi-photon qubits.

Keywords: coincidence counting unit; coincidence measurement; FPGA

1. Introduction

A coincidence counting unit (CCU) is a module that can count the coincidences of two
or more electrical inputs. CCUs are widely used in experiments on quantum optics [1–10],
quantum communication [11–15], and the measurement of radioactive isotopes, among
other applications [16]. Due to the advancement of techniques in all fields, there is in-
creasing demand for CCU devices with more functions. Specifically, the experiments that
use multiple photons for quantum computing require a CCU which can detect multifold
coincidences with a large number of input channels [17,18]. Moreover, basic experiments
for revealing the correlation of entangled photons need a lot of multifold coincidence
outputs and single input signals from the photon detectors simultaneously. Therefore, the
development of a low-cost, high-performance CCU with a large number of input channels
which can detect multifold coincidences is more important for recent experiments utilizing
multiple photons.

Historically, analog CCUs, called time-to-amplitude converters (TACs), have been
used for radiation metrology to exactly measure the activity of a sample [19]. However,
the channel capacity of TACs was difficult to expand since the analog circuits for the input
were complex and bulky. To overcome this issue, time-to-digital converters (TDCs) were
proposed for the multi-photon experiments [20–24]. These components precisely measured
the timing differences between the start and stop signals, which was especially beneficial
for radar and positron emission tomography. However, for multifold coincidences, it
needed post-processing, because it could only measure twofold coincidences. Meanwhile,
a CCU with digital circuits can address this issue, and it has additional features such as a
small chip size, scalable characteristics, a high detection rate, and a low cost. The CCUs
utilizing emitter-coupled logic (ECL) [25] and transistor–transistor logic (TTL) [26,27] were
reported. Furthermore, those IC chip implementations can be realized using a single
field-programmable gate array (FPGA) [28–34]. The CCU based on an FPGA has a lot of
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advantages. The input signals can be simultaneously processed with a parallel operation.
In addition, a programmable feature ensures flexibility via changing configurations for
adapting to the specific experiment. The coincidence time window, which is a range of coin-
cidence detection, can be easily controlled by reprogramming the FPGA or reconfiguring its
architecture. It is useful for specific experiments evaluating the quantum correlation from
photons to atoms. The coincidence time window also has valuable characteristics, those
being few-ns [28–30,33] and sub-ns [31,32]. In multi-photon experiments, the small coinci-
dence time window has the benefit of noise reduction due to utilizing a lot of detectors,
and the sub-ns resolution of the coincidence time window satisfies quantum optics experi-
ments which consider jitters from the single-photon detectors. Although an FPGA-based
CCU cannot achieve the high resolution of the coincidence window compared with the
analog one, its superior characteristics make it a prevalent type of CCU architecture these
days. With those advantages and powerful functions, the CCU was applied, especially for
various quantum experiments, including our group’s research [7–10,14,15]. A 48 channel
CCU using an FPGA was developed for multi-photon experiments with up to sixfold
coincidence measurement [32]. It showed that quantum experiments using multi-photon
entanglement or multiple degrees of freedom of a single photon needed a CCU that had
many inputs and outputs for multifold coincidence measurements.

In this paper, we present a CCU that can detect up to twentyfold coincidences using
a low-cost FPGA. It simultaneously provides 20 input signal counts and 20 coincidence
counts. Compared with our previous version [31], this upgrades not only the number of
inputs and outputs, but also the flexibility for adapting to various experiments through
efforts focused on architecture optimization for equivalent delays of the signal critical
path, the input signal’s pulse shaping, and so on. In addition, the CCU can arbitrarily
configure its architecture to measure the coincidences of every combination of 20 inputs
using multiplexers (MUXs). This reconfiguration is easily controllable and can be set at the
moment when the user starts to operate it by using a graphical user interface (GUI). The
count accumulation time for single inputs and coincidences can be expanded to the user’s
needs by improving the storage methods. Moreover, the user-friendly GUI displays all the
input and output counts. We developed a CCU using an FPGA and other peripherals, such
as ports and a communication chip, which can be chip-sized for portable devices.

The remainder of this paper is organized as follows. Section 2 explains the CCU
architecture in detail. In Section 3, we discuss the experimental details and their results. In
particular, the characteristics of a reconfigurable architecture and the coincidence window
are discussed in detail. Section 4 summarizes and concludes our work.

2. Materials and Methods

Figure 1 shows the overall architecture of the CCU. The input signals are manipulated
for counting the coincidences of inputs with the functional blocks, such as the internal
delay, pulse reshaping, coincidence signal generator, and counter. The internal delay
block, composed of delay buffers and an MUX, allows the user to adjust the delays of
electronic input signals. This is a convenient function that users can apply for various
experimental setups that need different detection timings. The input signals can be delayed
by approximately 0.7 ns per step and are maximally delayed up to 100 ns. The pulse-
reshaping block consists of a JK-flip flop (JK-FF), buffers, an EX-OR gate, and a MUX,
as shown in Figure 2a. The pulse-reshaping block is essential for coincidence counting
because it controls the coincidence time window using a pulse-reshaping technique, which
is described in Figure 2b–d for three cases. In Figure 2b, we describe the general operation
of the pulse-reshaping block. Comparing 1 (input) and 4 (output), it is easy to figure out
that the input pulse width is shortened. The signals of 2 and 3 are the output signal of
the JK-FF and the delayed signal by the buffers, respectively. With the EX-OR operation
using those signals, the input pulse is reshaped for a small coincidence time window. Our
pulse-reshaping block is also affordable for increasing the coincidence time window by
making the input pulse width wider (see Figure 2c). However, if the input pulse repetition
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rate is faster than the delay time of the buffer, an unintentional output can be generated,
as described in Figure 2d. Therefore, the maximum delay time of the buffer should be
determined by considering the maximum input repetition rate. The coincidence time
window can be controllable by modifying the pulse-reshaping steps from 2 to 30, which
is the number of buffers the signal passes through. The coincidences are detected by an
AND gate with a reshaped pulse of the inputs at the coincidence signal generator block.
The amount of overlapping reshaped pulses produces coincidence signals. The counter
block simply counts 20 single channels and 20 coincidence signals simultaneously. After a
user-defined time for data accumulation, the processor block collects 40 counts of data and
transfers them to a personal computer (PC) through a USB port.
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Figure 1. Overall architecture of the coincidence counting unit (CCU). All the required functional blocks are implemented
in a low-end field-programmable gate array (FPGA). The processor controls all the functional blocks and transfers data
to a personal computer via a USB connection. All the parameters can be controlled with the graphical user interface
(GUI) software.
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Figure 2. (a) Schematic of the pulse-reshaping block and timing diagram for (b) shortening the pulse width, (c) widening
the pulse width, and (d) a malfunction case.
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If the number of inputs is just expanded, the performance of each input channel may
be severely different. Therefore, for supporting a 20 channel and multifold CCU with
each channel’s identical high performance, we made considerable efforts to implement
two significant blocks. The first was a pulse-reshaping block. In Figure 2a, the red lines
are the critical path of the CCU for reshaping the pulse width of the input signal. Each
input channel has a pulse reshaping block, such that there are as many critical paths of the
pulse-reshaping blocks as the number of inputs. The placement of the buffers in the pulse
r-shaping blocks is different; consequently, the critical paths of each input are different. For
this reason, the reshaped input pulse can have varying pulse widths for different inputs.
In order to overcome this undesirable characteristic, we used a logic lock region, which is
the function of the FPGA programming tool. With this function, we can place the buffers
at the designated region in the FPGA and minimize the difference between buffer delays.
All functional blocks of the CCU were locked, and their placements were optimized in the
FPGA. As a result, the statistical differences of the signal delays were minimized.

Second, to generate the coincidence signal of arbitrarily selected inputs among the 20
inputs, we developed the coincidence signal generator shown in Figure 3. Using a 20 input
AND gate and 20 MUXs, users can arbitrarily select inputs to generate its coincidence signal.
For identical performance as an arbitrary configuration, we designed and synthesized the
critical path lines carefully. When the user chooses to disable the input, the VCC (high level)
is fed in as an input signal of the AND gate instead of the original input signal by using a
select input of the MUX. Furthermore, 20 sets of the coincidence signal generator block,
consisting of an AND gate and 20 MUXs, generate 20 coincidence signals simultaneously.
Each input channel is connected with 20 MUXs of each coincidence signal generator block
separately for duplicating the input signals. The duplicated input pulses are distributed
among 20 AND gates for generating 20 independent coincidence outputs. Therefore, users
can arbitrarily select the combination of inputs for 20 coincidence outputs independently.
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Figure 3. Schematic of the coincidence signal generator. It consists of 20 input AND gates and
multiplexers (MUXs). Each AND gate generates a coincidence signal, and the MUXs determine the
combination of inputs for the coincidence output.

Moreover, the GUI program and hardware of the CCU were developed to easily
control the configuration of the 20 coincidence outputs. Compared with the previous
version, massive system parameters have to be handled due to the 20 inputs and outputs.



Electronics 2021, 10, 569 5 of 11

The parameters of the GUI program are transferred to the functional blocks in an FPGA
through a USB connection, as shown in Figure 4. The parameters of the input delay and
coincidence time window, which are transferred to the internal delay and pulse-reshaping
block, respectively, are controllable in real time with numeric up-down controllers. The
parameters of the 20 input combination for coincidence signal generation is controllable
with 20 check boxes. Certainly, there are 20 groups of 20 check boxes in the GUI for
counting 20 coincidences simultaneously. The accumulation time for the signal count is
also adjustable using a numeric up-down controller. The accumulated counts—20 single
input counts and 20 coincidences—are concurrently displayed in the textbox. Furthermore,
all the data can be stacked up in the GUI program for the user’s needs, which further
depends on the computing power of the user.
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Figure 4. GUI program of the CCU.

The overall architecture of the CCU was implemented in an FPGA with 17,476 logic
elements (LEs), which is 78% of the usage of a Cyclone4 FPGA chip (EP4CE22F17C6N)
from Intel FPGAs, according to a Quartus II compilation report. The rest of the LEs could
be used for debugging and additional delay for the electronic input signals. The detailed
information of the resource utilization for the CCU is stated in Table 1. All components
of the CCU were packaged in a module at a size of 240 × 175 × 50 mm3. In Figure 5,
20 input ports and a USB port for data transmission are placed at front and back sides,
respectively, of the packaged box. For experiments demanding more than 20 inputs, the
function of the CCU could be made affordable by exchanging the upper version of an
FPGA. In fact, 20 channels of the CCU consumed only 10% of the LEs with the Stratix
family FPGA. Additionally, the CCU could be developed with an Artix, Kintex, or Virtex
family FPGA from different vendors because it only used less than 20,000 conventional
logic elements and not special elements.

Table 1. Utilization of FPGA resources (EP4CE22F17C6N).

Resource Utilization/Available

Total logic elements 17,476/22,320 (78%)
Registers 4101/22,320 (18%)

Pins 27/154 (18%)
Memory 279,552/608,256 (46%)

PLL 1/4 (25%)
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3. Experiments

To evaluate the 20 channel CCU, we conducted experiments for recognizing four
specific features. First, we investigated the range of acceptable input frequencies. To
observe the performance, we simultaneously put two synchronized TTL pulses at the input
ports of the CCU with a 3 ns coincidence time window. Figure 6 shows the average counting
rates as a function of the input frequency. Due to the synchronized input pulses, the
coincidence count rates were the same as the single input count rates. The measured single
count and the coincidence count rates were equal to the input frequency until the input
frequency reached close to 400 MHz. However, as the input frequency exceeded 400 MHz,
the coincidence counting rates grew abnormal compared with the input frequency. Above
600 MHz, the coincidence count was almost zero because the amplitude of the coincidence
signal became smaller than the acquisition level of the FPGA.
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Second, we analyzed the size of the coincidence time window. We generated two
synchronized TTL pulse sequences and ensured that one of the pulse sequences could be
delayed to accurately measure the coincidence time window. We then put those pulse
sequences into each input channel of the CCU. While changing the timing between two
pulse sequences, we plotted the ratio of the coincidence (see Figure 7a). We previously noted
that the pulse-reshaping block determined the coincidence time window according to the
pulse reshaping steps. In Figure 7a, we used pulse reshaping steps of 2, 6, and 10, for which
the coincidence time windows were 0.46 ns, 1.73 ns, and 3.05 ns, respectively. Furthermore,
we estimated the coincidence time windows more precisely with accidental coincidence
counts [35]. When asynchronous random Gaussian pulses are fed into two input channels,
we can calculate the coincidence time window TC using the following equation:

TC = RAB/(RA · RB) (1)

where RA, RB, and RAB are single counts of channels A and B and their accidental coinci-
dence counts, respectively. Figure 7b shows the experimental results (dots) and the fitting
data (lines). The coincidence windows with pulse reshaping steps of 2, 6, and 10 were set to
0.3 ns, 1.3 ns, and 2.8 ns, respectively. There were some negligible errors of the coincidence
time window with the experimental results of Figure 7a,b, which resulted due to different
shapes of the input pulses. We used a square wave for the experiment shown in Figure 7a,
but Gaussian pulses were applied as inputs for the experiment shown in Figure 7b.
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Figure 7. (a) Coincidence probability versus the time interval between two input pulses with three
coincidence time windows (TC). (b) Accidental coincidence counting rates of the different coincidence
time windows versus the average input count rates.

Third, to verify the 20 coincidence outputs, we arbitrary generated four pulses
for inputs of the CCU using a function generator. The four input pulses are depicted
in Figure 8a. The frequencies of the input pulses were 10 MHz, 5 MHz, 10 MHz, and
10 MHz with pulse widths of 10 ns, 10 ns, 50 ns, and 25 ns, respectively. The input
pulses were synchronized with each other. Figure 8b shows that the single counts for the
four input pulses were accurately displayed in the GUI program. Obviously, the other
single counts were all zero. To detect the coincidences for those inputs, as mentioned
before, we could select a 20 input combination for coincidence signal generation using
the check boxes. As selected in the configuration setting check boxes, 20 coincidence
outputs were counted and shown in the GUI program. Because output text boxes 1–4
of the coincidence count were selected as a single channel, they became around 10 M
or 5 M counts, respectively. Two and threefold coincidences were measured in the
5–16 output text boxes, which are not shown at all in the figure. Additionally, fourfold
coincidences were measured in output text boxes 17, 18, 19, and 20. All single and
coincidence counts were displayed correctly, which means that the 20 outputs of the
CCU were operating properly.
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Finally, we performed a test to confirm the twentyfold coincidence counting. We
used an FPGA and a pulse generator for generating 19 synchronized signals and one
timing-controlled signal, respectively. All signals were connected to the inputs of the
CCU and reshaped with 3 steps at the pulse-reshaping block. By enabling all the inputs
of the AND gate in the coincidence signal generator block, twentyfold coincidence
signals were accumulated. We adjusted the signal timing of one input using a pulse
generator with a high resolution of 10 ps while holding the 19 synchronized input pulses.
We investigated all the channels and noticed that each channel had different coincidence
time windows due to different placement of the buffers in the pulse-reshaping blocks.
As expected, the buffer delays were minimized with the logic lock function. Despite
this consideration, in Figure 9, the coincidence probabilities of the channels have dis-
tributions ranging from 1.5 ns to 2.4 ns. The experimental results for each channel are
depicted as different colors. It is possible to correct this using additional hardware such
as delay chips instead of the buffers in an FPGA. However, a delay chip consumes a lot
of current and requires additional efforts to match the features of the inputs, such as
electrical noise and the path length of the peripheral circuits.
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4. Discussion

We summarized the performance of our CCU with related works in Table 2. The TTL
circuit-based CCU has 4 channels and can measure coincidences using all inputs with
a relatively coarse coincidence resolution [27]. The FPGA-based CCUs have a relatively
large number of input channels, but only a small number of inputs can be measurable for
the coincidence [22,32,33]. The TDC-based work is also compared, which has two inputs
and can obtain high resolutions of only twofold coincidences [24]. Comparing related
works, the proposed CCU offers a maximum twentyfold coincidence measurement with a
reasonable coincidence window and a high counting rate. With this CCU, we expect that
multi-qubit experiments for quantum computing can be supported, and the correlation of
the qubits is more easily detected and revealed. Moreover, the CCU can be built in chip
scale for housing a portable device at a relatively lower cost.

Table 2. Performance comparison of CCUs.

CCU1 [27] CCU2 [22] CCU3 [32] CCU4 [33] TDC [24] This Work

Number of channels 4 32 48 8 2 20
Measurable

coincidence folds 4 8 6 8 2 20

Minimum coincidence time window 12 ns 0.39 ns 0.3 ns 10 ns 15.6 ps 0.46 ns
Maximum

counting rate 84 MHz 80 MHz 96 MHz 50 MHz 50 MHz 400 MHz

5. Conclusions

We proposed a 20 channel CCU using a low-end FPGA. It has 20 inputs and 40 outputs
for measuring up to twentyfold coincidences. The experimental results show that the
measurement of a twentyfold coincidence was performed well, with less than 0.5 ns for
the coincidence window. Since all the required functions are implemented in the FPGA,
one can easily manipulate and arbitrarily configure the CCU for specific experiments using
the GUI. With the consideration of the architectures for multifold coincidence, our CCU is
ready to be employed in quantum experiments that utilize multi-qubit states.

Author Contributions: Conceptualization, B.K.P. and Y.-S.K.; methodology, B.K.P.; software, B.K.P.;
validation, Y.-W.C., S.M. and S.-W.H.; formal analysis, B.K.P.; investigation, Y.-S.K. and Y.-W.C.;
resources, S.M. and S.-W.H.; data curation, B.K.P.; writing—original draft preparation, B.K.P.; writing—
review and editing, S.-W.H.; visualization, S.-W.H.; supervision, S.-W.H.; project administration,
S.-W.H.; funding acquisition, S.-W.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Korea Institute of Science and Technology, grant num-
ber 2E30620; the National Research Foundation of Korea, grant numbers 2019M3E4A107866011,
2019M3E4A1079777, and 2019R1A2C2006381; and the Institute for Information and Communications
Technology Promotion, grant numbers 2020-0-00947 and 2020-0-00972.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kwon, O.; Cho, Y.-W.; Kim, Y.-H. Single-mode coupling efficiencies of type-II spontaneous parametric down-conversion: Collinear,

noncollinear, and beamlike phase matching. Phys. Rev. A 2008, 78, 053825. [CrossRef]
2. Kwon, O.; Ra, Y.-S.; Kim, Y.-H. Observing photonic de Broglie waves without the maximally-path-entangled| N, 0〉+| 0, N〉 state.

Phys. Rev. A 2010, 81, 063801. [CrossRef]
3. Kim, Y.-S.; Kwon, O.; Lee, S.M.; Lee, J.-C.; Kim, H.; Choi, S.-K.; Park, H.S.; Kim, Y.-H. Observation of Young’s double-slit

interference with the three-photon N00N state. Opt. Express 2011, 19, 24957–24966. [CrossRef]
4. Pan, J.-W.; Chen, Z.-B.; Lu, C.-Y.; Weinfurter, H.; Zeilinger, A.; Żukowski, M. Multiphoton entanglement and interferometry. Rev.
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