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Abstract: Rotation-Invariant Face Detection (RIPD) has been widely used in practical applications;
however, the problem of the adjusting of the rotation-in-plane (RIP) angle of the human face still
remains. Recently, several methods based on neural networks have been proposed to solve the
RIP angle problem. However, these methods have various limitations, including low detecting
speed, model size, and detecting accuracy. To solve the aforementioned problems, we propose a new
network, called the Searching Architecture Calibration Network (SACN), which utilizes architecture
search, fully convolutional network (FCN) and bounding box center cluster (CC). SACN was tested
on the challenging Multi-Oriented Face Detection Data Set and Benchmark (MOFDDB) and achieved
a higher detecting accuracy and almost the same speed as existing detectors. Moreover, the average
angle error is optimized from the current 12.6◦ to 10.5◦.

Keywords: rotating face; architecture search; neural network; center cluster

1. Introduction

Face recognition [1–3] has played an important role in the field of computer vision.
Currently, most facial recognition systems are designed with a Convolutional Neural
Network (CNN) model, such as the Multitask Cascaded Convolutional Networks (MTC-
NNs) [4], Cascading networks [5–7], Fully Convolutional Networks (FCNs) [8–11], Fea-
ture Pyramid Networks (FPNs) [12,13], and Deep Convolutional Neural Networks (DC-
NNs) [14,15]. In addition to their accuracy issues, these facial detector networks can only
work on upright faces. Fortunately, Direction-Sensitivity Feature Ensemble Networks
(DFENs) [16], Angle-Sensitivity Cascaded Networks (ASCNs) [17], Rotational Regres-
sion [18], Progressive Calibration Networks (PCNs) [19], and Multi-task Progressive Cal-
ibration Networks (MTPCNs) [20] are proposed for Rotation-Invariant Face Detection
(RIPD) at different angles, as shown in Figure 1.

(a) upright (b) downright (c) left (d) right

Figure 1. The definition of facial orientation: (a) upright at 0◦; (b) downright at −180◦; (c) left at
−90◦; and (d) right at 90◦.

To solve the problem of RIPD, we propose a novel network, called Searching Architec-
ture Calibration Network (SACN), based on architecture search. SACN has three stages,
constructed by CNN, and each stage involves three tasks: face or non-face classification,
bounding box regression, and angle calibration. In the first stage, we utilize FCN to process
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multi-scale images instead of fixed-size images. In the second and third stages, we utilize
architecture search to construct the network automatically. Finally, the task of angle regres-
sion, ranging from −180◦to 180◦, can be optimized from −45◦to 45◦using our network.
The source code is available at https://github.com/Boooooram/SACN (accessed on 1
February 2021).

We summarize the contributions of this article as follows:

• We introduce architecture search to construct the network structure, which can reduce
the angle error and the size of the model.

• We propose CC instead of non-maximum suppression (NMS). CC is a cluster method
based on mean shift and can improve the accuracy of angle classification.

• Experiments were conducted on MOFDDB, which proved that the proposed approach
provides a performance improvement compared to the state-of-the-art techniques in
terms of angle error.

2. Related Work
2.1. Rotation-Invariance Face Detector
2.1.1. DFEN

DFEN utilizes a normal convolutional model to detect the rotation-invariant face from
coarse to fine. It changes the bounding box regression by introducing angle prediction
processed by a Single Shot Detector (SSD). DFEN also introduces an angle module to
the network to extract the face angle features. Although their method achieves excellent
accuracy in face detection, the detecting speed is not satisfactory due to the size of the SSD,
which is almost 100 Megabytes.

2.1.2. ASCN

ASCN is a joint framework that consists of RIPD and face alignment, which can predict
bounding boxes, face landmarks, and RIP angles simultaneously through a cascaded
network. ASCN also introduces an innovative pose-equitable loss to improve the detecting accuracy.

2.1.3. Rotational Regression

Rotational regression detects the angle of the human face by training the neural
network with a regression angle. This method requires a particularly complex network to
ensure that the detecting angle does not suffer from too large a deviation, leading to the
training network being a time-consuming process. The network can ensure that the angle
of regression will not be greatly different. If the angle of regression is not correct, it will
cause a large deviated range. In this case, the prediction of the RIP angle may affect the
error prediction of the face, so as to improve the recall rate of the facial detector.

2.1.4. PCN

PCN offers an improvement of the rotation regression algorithm. By training the
three-stage progressive calibration network, the angles of the three stages are detected, and
the position of the face is located by the bounding box regression method; finally, these
three angles are added to obtain the regression angle of the face. The PCN network uses
three small networks to ensure the detecting speed. The PCN predicts the angle step by
step, thus ensuring that the multi-stage edge regression errors are limited. However, due
to the limitation of the network structure of the PCN, the accuracy of the training is not
high. Furthermore, the input size needs to be fixed because of the full connection layer,
which leads to a low detecting speed.

2.1.5. MTPCN

MTPCN offers an improvement on PCN. It introduces the explicit geometric structure
representation into PCN to reserve the important information for precise calibration. Thus,
MTPCN performs almost the same way as PCN.

https://github.com/Boooooram/SACN
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2.2. Architecture Search

Differentiable ARchiTecture Search (DARTS) [21] is a framework for searching the
network architecture on a small dataset and then transferring the learned architecture to
the target dataset. Most of the existing models based on CNN are manually predetermined.
However, DARTS introduces two types of convolutional blocks, which make it easier to
build the architecture. The first one is the Normal Block, which returns a feature map of the
same dimension. The second is the Reduction Block, which returns a feature map where
the feature map height and width are reduced by a factor of two. The structure of these
two blocks are searched by the Recurrent Neural Network (RNN) controller within the
search space. In the search space, the block takes two states, hi and hi−1, as inputs, which
are the outputs of previous blocks or the input data. The controller RNN will construct the
structure of the other convolutional block according to these two states. The structures of
each block are grouped into five blocks, where each block has five searching steps evaluated
by five distinct SoftMax classifiers. The searching step is defined as follows:

1. Select a state from hi and hi−1 or from the set of states created by previous blocks.
2. Select a second hidden state from the same options as in Step 1.
3. Select an operation from the operation set to process the state selected in Step 1.
4. Select an operation from the operation set to process the state selected in Step 2.
5. Select a method from element-wise summation, element-wise multiplication or

element-wise concatenation to combine the outputs of Steps 3 and 4 to create a
new state.

In Steps 3 and 4, some common operations are listed as follows:

1 × 3 then 3 × 1 conva) 1 × 5 then 5 × 1 convb)

1 × 7 then 7 × 1 convc) 3 × 3 dilated convd)

5 × 5 dilated conve) 7 × 7 dilated convf)

3 × 3 average poolingg) 5 × 5 average poolingh)

7 × 7 average poolingi) 3 × 3 max poolingj)

5 × 5 max poolingk) 7 × 7 max poolingl)

3 × 3 depth-sep convm) 5 × 5 depth-sep convn)

7 × 7 depth-sep convo) 1 × 1 convolutionp)

3 × 3 convolutionq) skip connectr)

In Step 5, all the unused states in the current block are concatenated to create the final
output of the current block.

3. Searching Architecture Calibration Network
3.1. Motivation of this Approach

Since the detecting accuracy of current facial detectors is generally improved by
manually adjusting the model structure, it seems possible to improve the angle prediction
problem by using an appropriate network structure. Inspired by Liu et al. [21], a new
structure can be learned in continuous space, which solves the problem of adjusting the
precision of the RIP angle.

To enhance the model structure, we assumed that the non-maximum suppression [22]
mainly concentrates on the maximum confidence score region, which may lead to the
suppression of other information around the bounding box. Although NMS seems to be
superior to other suppressing methods, such as mean shift clusters [23] in upright face
detection, as shown in Figure 1a, this ignores the information of the surrounding box angle,
which results in the inferior performance of rotating face detection compared to cluster
detection. To detect RIP errors more accurately, a new method, called CC, is proposed.
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3.2. Hypothesis of Center Cluster

Experimentally, a phenomenon was accidentally discovered, as shown in Figure 2a.
When using NMS, the edge of the rotation type was always at risk of being misclassified,
as shown in Figure 2c, which increased the error of the face detector. According to the
abstracted principle of Figure 2b, it is concluded that the NMS is too sensitive to the position
of the maximum confidence interval, which may increase the risk of misclassification.
Therefore, the idea of modifying angle classification by using the angle information of the
surrounding bounding box is proposed, which is called CC, as shown in Figure 2d.

Figure 2. (a) Phenomenon of misclassification under a boundary where the blue line represents the
upright orientation predicted by the detector and the red point represents the center of the bounding
box. (b) The red point on the border represents the true orientation of the face. (c) The surrounding
bounding boxes’ information is ignored when using non-maximum suppression (NMS) method. (d)
The surrounding bounding boxes’ information, captured by CC.

3.3. Overall Processing

As shown in Figure 3, the SACN detector is implemented as follows: images of
different scales are passed through the SACN three-stage detector, and the first stage of
the detector is intuitively utilized to generate sliding windows through an image pyramid
method and deconvolution operation. While detecting the bounding boxes, the detector
will generate face candidate regions and obtain the predicted angle. Then, CC was proposed
to calibrate the obtained angle. Some low and high overlap bounding boxes were removed
by CC. By reducing the angle error in the cluster and the number of bounding boxes,
detecting time can be saved, and the angle error can be calibrated to suppress the bounding
boxes in each stage. The final calibrated angle can be obtained through the different
calibrations of each stage of the network.

3.4. Center Cluster Calibration

First, due to the high similarity of human faces, we assumed that the proportion
of human faces in each image is almost the same. Then, for the center point of each
character, the idea proposed by NMS is removing the bounding boxes with inaccurate
detection. However, the classification information contains an angle error. In fact, this
angle information is also valuable to the detector. On this basis, a cluster method based
on mean shift is designed, as shown in Figure 4a. The distance between the center points
in the experiment was defined as waverage × θ, where waverage is the average width of the
current cluster, θ is the width controller, and the waverage is defined as:

waverage =
∑N

1 wi
n

(1)
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Figure 3. The Searching Architecture Calibration Network (SACN) process.

Figure 4. The process of CC, where the red dot represents the center of the bounding box, the blue
line represents the true direction predicted by the detector, and the green line represents the error
direction predicted by the detector: (a) the cluster method at the center of the bounding box; (b)
the first stage of the network in order to correct all the angles of the output of the first stage by
accumulating the most detected angles in the cluster; (c) the second stage of the network; and (d) the
third stage of the display network, where the angle of the final prediction is calibrated by finding the
most reliable position of the detector.

For the first and second stages, the bounding boxes obtained at each stage are clustered
and calibrated. The mean shift method is adopted and the parameter bandwidth is waverage× θ.
For the bandwidth of each stage, the average width of the cluster side length is obtained, as
shown in (1). Then, the angle values of the first and second stages are set, and the maximum
value of the category calibrates the angle within the cluster. The formula is defined as:

rigcluster = max
i

count(rigclusteri
) (2)
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where rigclusteri
represents the ith predicted rig in the cluster and count is the function that

computes the summation of the number of classified rig angles—for example, maxcount([0◦,
180◦, 0◦, 0◦, 0◦]) is 0◦.

3.5. SACN in First Stage

For each image of any size, FCN has three goals: face and non-face classification,
bounding box regression, and angular calibration classification. The formula is defined as:

[ f , t, g] = Head1(x) (3)

where Head1 is the first stage output detector composed of the first stage of the minimal
convolutional network; f is the confidence score, indicating whether the face is or is not
included; t is a one-dimensional vector, including the regression value of each bounding
box, such as the coordinate of left-top point and the width of the bounding box; and g is
the classified value of the RIP angle of the face.

The main purpose of the first parameter f is to distinguish the cross-entropy loss
function of the face and non-face through the following formula:

Lcls = y f log f + (1− y f ) log(1− f ) (4)

where y f equals 1 if facial information is considered to be included; otherwise, it equals 0.
The main task of the second parameter t is to find the regression formula of the

bounding boxes as follows:
Lreg(t, t∗) = S(t, t∗) (5)

where t and t∗ represent the regression value of the prediction and the ground truth,
respectively, and S represents the Smooth L1 loss in faster-RCNN [24]. Furthermore, t
contains three parameters: 

tw = w∗/w

ta =
(a∗+0.5w∗−a−0.5w)

w∗

tb = (b∗+0.5w∗−b−0.5w)
w

(6)

where a and b are the coordinates of the top left corner of the facial image and w is the width
of the facial image. a and a∗ represent the prediction and the ground truth, respectively;
likewise, b and b∗ represent the prediction and the ground truth, respectively. For the
classification of the last correction angle, the binary solutions of 0–1 are obtained by the
cross entropy loss function.

Langle = yg × log g +
(
1− yg

)
× log(1− g) (7)

where yg equals 0 if it is upright; otherwise, it is downright. Finally, the following cascade
loss function for convex optimization is used:

min
Head1

L = Lcls + λreg × Lreg + λangle × Langle (8)

where λreg and λangle are weight factors used to balance each loss function. In the experi-
ment, λreg equals 0.8 and λangle equals 1. The loss function is minimized by optimizing the
parameters of Head1. Finally, the calibrated angle of the first stage is classified according to
the threshold value:

θ1 =

{
0◦, g ≥ 0.5
−180◦, g < 0.5

(9)

Finally, the RIP angle will be changed from [−180◦, 180◦] to [−90◦, 90◦]. Bounding boxes
with an Intersection over Union (IoU) greater than 0.7 are positive examples. Those with an
IoU between 0.4 and 0.7 are suspicious examples. Those with an IoU less than 0.4 are negative
examples. To reduce the cost of the edge of the classification error, examples are used for the
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training network within the ranges of [−180◦, −115◦] ∪ [115◦, 180◦] and [−45◦, 45◦], which
represents facing down and facing up.

3.6. SACN in Second Stage

Inspired by Liu et al. [21], four nodes are set in the continuous relaxation space, and
then the operation between each node is learned separately. A value for each operation is
set and, finally, the connection for the operation is selected by changing the value. After
that, an RNN controller, such as that used in [25], is used to optimize the dual optimization
problem. On this basis, a bivariate optimization strategy is proposed to optimize both
model precision and architecture precision. A conventional type of block structure is
designed to handle information of the same size, and a reduced type is designed to reduce
the size to half of its original size, which reduces redundant information. The results are
shown in Figure 5.
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(b) Reduction Block

Figure 5. The normal and reduction block learned by SACN in the second stage.

Finally, architecture search is applied for constructing the network and the parameters
of the model are relearned. As such, the second stage of SACN is similar to the first stage.
The second stage also performs three tasks at the same time, including the face and non-face
tasks, bounding box regression, and the classification of angle correction. The formula is
defined as follows:

[ f , t, g] = Head2(x) (10)

where Head2 is the detector of the second stage, structured by architecture search. x
represents the image through the first stage of cutting and correction, f represents the facial
confidence score, t represents the regression of the boundary box, and g represents the
confidence score of angular classification.

Based on the first stage, the angle that has been fixed by the second stage can be
divided into [−90◦, −45◦], [−45◦, 45◦], and [45◦, 90◦]. The SoftMax function used to
classify the above angle is defined as follows:

id = argmaxgi, θ2 =


−90◦, id = 0

0◦, id = 1
90◦, id = 2

(11)
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where id equals the ith index of the predicted max angular confidence score and θ2 equals
the second refined RIP angle.

In the boundary of the training, to avoid the misclassification problem, the angle range
reduction degrees [−90◦,−60◦], [−30◦, 30◦], and [60◦, 90◦] and the three angles correspond
to the three values of 0, 1, and 2, respectively.

3.7. SACN in Third Stage

Similar to the second stage, architecture search is also carried out in the third stage,
and the structure of the third stage is shown in Figure 6.
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(b) Reduction Block

Figure 6. The normal and reduction block learned by SACN in third stage.

Additionally, a cascade of three tasks is carried out, including facial prediction, the
regression of the bounding box, and the calculation of the regression value of the third angle.

[ f , t, θ3] = Head3(x) (12)

where f is the facial classification function, t is a one-dimensional vector which is used to
regress the bounding boxes, and θ3 is the angular regression, which ranges [−45◦, 45◦]. Head3
is the detector of the third-stage output. x represents the face that was clipped and calibrated
by the second stage.

An example of SACN is shown in Figure 7, and the final RIP angle is defined as follows:

θRIP = θ1 + θ2 + θ3 (13)

Figure 7. The final rotated angle is calculated by the sum of three stages.

4. Experiments

In the following sections, the implementation details of SACN are introduced. Then,
some experiments that were conducted on the challenging datasets of wide rotating faces,
named multi-oriented FDDB [26], are described. The results of these experiments prove that
our method has a better performance in terms of accuracy than most state-of-the-art methods.

4.1. Implementation Details

The designed network structure is shown in Figure 8. In the first two stages of
our SACN, we only need to conduct some coarse calibrations, such as calibrations from
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downright to upright, and from left or right to upright. Furthermore, we can easily obtain
the coarse angle calibrations by combining the calibration task with the classification task
and the bounding regression task. In the third stage of SACN, we attempt to directly
regress the precise RIP angles of face candidates instead of coarse orientations due to the
fact that the RIP angle has been reduced to a small range in previous stages. We apply
FCN in the first stage to process the multi-scale inputs. In the second and third stages, we
replace traditional CNN with a Normal Block and a Reduction Block.

Figure 8. The structure of the SACN, Conv, BN, ReLU, global pooling mean convolution layer, Batch
Normalization, ReLU activation layer, and global pooling layer, respectively. (k,k,s) indicates that the
kernel size is k× k and the stride is s. Reduction and Normal operations were learned by SACN, as
shown in Figures 5 and 6.

We utilized the stochastic gradient descent method (SGD) and backpropagation
method in the training stage. We also set the maximum number of iterations to 105.
The learning rate was adjusted according to the number of iterations. The initial learning
rate was 0.025, the weight attenuation rate was 3 × 10−4, and the momentum was 0.9.
To prevent a gradient explosion, five gradient cutters were set. All variables start with a
Gaussian distribution of 0.001 to accelerate convergence.

4.2. Benchmark Datasets

The FDDB dataset contains 5171 labeled faces. However, most faces in FDDB are
upright. To better evaluate the performance of models on rotation invariance, we rotated
these images by −180◦, 90◦, and −900◦, so as to form a multi-oriented version of FDDB.
We renamed the initial FDDB as FDDB-up in this work, and we renamed the others
as FDDB-left, FDDB-right, and FDDB-down, according to their rotated angles. Several
state-of-the-art methods and our methods were evaluated on MOFDDB.

4.3. Evaluation Results
4.3.1. Results of Rotation Calibration

As shown in Figure 9b, the accuracy of SACN is 97%, which is improved from 96%
with PCN. Although the average angular error of the third stage was reduced from 8◦for
PCN to 4.5◦, as shown in Figure 9c, the average error is still quite high, because the
regression of the angle is complex. After applying CC, we found that the detected error of
the SACN is narrow, as shown in Figure 9a.

4.3.2. Accuracy Comparison

As mentioned above, SACN aims to achieve accurate rotating-invariant face detection
in a short amount of time. Several models were evaluated using 640 × 480 images and 40
× 40 minimum face images. The recall rate of 100 false positives on multi-oriented FDDB
is shown in Table 1. Compared with other methods, SACN reduces the average angular
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error and has almost the same detecting speed and recall rate. The results of Faster R-CNN,
Cascade CNN, PCN, and SACN are shown in Figure 10.

Figure 9. (a) The frequency of the angular detection error with CC and NMS; (b) the training accuracy
and validation accuracy of SACN, converging at 97% with 500 epochs; and (c) the regressive average
angular error, which is predicted by the third stage, converging at 4.5◦with 500 epochs.

(a) Faster R-CNN (b) Cascade CNN

(c) PCN (d) SACN

Figure 10. The detecting results of Faster R-CNN, Cascade CNN, PCN, and SACN.
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Table 1. Performance comparisons with other methods.

Method
Recall Rate at 100 FP on FDDB

Angle Error
Detecting Speed

Model Size
Up Down Left Right Average CPU GPU

Rotation Router 85.4 84.7 84.6 84.5 84.8 16.3◦ 12 FPS 15 FPS 2.5 M
Cascade CNN 84.9 84.2 84.7 85.7 84.9 15.3◦ 31 FPS 67 FPS 4.2 M
Faster R-CNN 84.2 82.5 81.9 82.1 82.7 18.2◦ 1 FPS 20 FPS 350 M

PCN 87.9 87.3 86.8 87.4 87.5 12.6◦ 29 FPS 63 FPS 4.2 M
SACN (ours) 88.2 87.2 87.2 87.1 87.8 10.5◦ 27 FPS 60 FPS 4 M

4.3.3. Problems and Limitations

As shown in Figure 9a, the error of CC with 180◦is higher than NMS, which may
decrease the performance of detection on the dataset FDDB-down. We believe that the
structure of the first stage of SACN and the parameter bandwidth of CC are responsible for
this result.

Furthermore, we found that the detecting speed of SACN is not satisfied. We think
that the reason that the detecting speed is lower than PCN is because PCN is implemented
in Caffe (c++), while SACN is implemented in Pytorch (Python). The difference in speed
largely comes from c++ and Python.

Finally, we found that our dataset was not balanced in terms of race, which is a key
point for face detection, as mentioned in [27,28]. The authors of [28] constructed a balanced
race dataset, including White, Black, Indian, East Asian, Southeast Asian, Middle East, and
Latino faces. However, the RIP angles are not labeled in this dataset.

4.3.4. Ablation Experiment

We set the width controller θ as different values in the ablation experiment, as shown
in Table 2. We found that the model performed better when θ equaled 0.2. When θ equaled
0.1, there would be too many clusters because the search radius was too small. The number
of cluster affected the classification of angle according to (2) as well as the performance of
the model. When θ equaled 0.3, there would be few clusters because the search radius was
large enough. There would even be only one cluster when θ was too large, which might
lead to CC not working well if there were too many wrong predictions.

Table 2. Ablation experiment on the width controller of bandwidth.

Method
Recall Rate at 100 FP on FDDB

Angle Error
Up Down Left Right Average

SACN (θ = 0.1) 87.8 87.1 86.8 86.5 87.1 11.6◦

SACN (θ = 0.2) 88.2 87.2 87.2 87.1 87.8 10.5◦

SACN (θ = 0.3) 87.5 86.8 87.1 86.5 87.0 12.2◦

5. Conclusions and Future Works

In this paper, we propose a novel rotation-invariant face detector (SACN). It mainly
consists of three stages. In the first stage, the network is constructed by FCN. In the
next two stages, the networks are constructed by architecture search based on controller
RNN. Furthermore, in the first two stages, the rotation angles and bounding boxes are
optimized jointly. After that, the task of RIP angle regression, ranging from −180◦to 180◦,
can be optimized from −45◦to 45◦. In the third stage, we directly regress the precise RIP
angles of face candidates. In addition, we replace non-maximum suppression with a novel
suppression method, named CC, which is a cluster method based on mean shift because
CC can improve the accuracy of angle classification. As evaluated on public datasets of
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multi-oriented FDDB, SACN outperforms several state-of-the-art methods in terms of the
accuracy of the RIP angle, while maintaining a real-time performance.

In the future, we plan to extend our work in the following aspects: (1) construct a
race-balanced dataset with labels for RIP angles; (2) optimize the model in terms of accuracy
and detection speed; and (3) compare our method with other state-of-the-art methods on
this dataset.
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The following abbreviations are used in this manuscript:

RIPD Rotation-Invariant Face Detection
RIP rotation-in-plane
FCN fully convolutional network
CC center cluster
CNN convolution neural network
MTCNN Multitask Cascaded Convolutional Networks
FPN Feature Pyramid Network
DCNN Deep Convolutional Neural Network
DFEN Direction-Sensitivity Features Ensemble Network
MTPCN Multi-task Progressive Calibration Networks
ASCN Angle-Sensitivity Cascaded Networks
PCN Progressive Calibration Networks
SSD Single Shot Detector
NIN network in network
RNN Recurrent Neural Network
NMS non-maximum suppression
SACN searching architecture calibration network
RL reinforcement learning
FDDB Face Detection Data Set and Benchmark
IoU Intersection over Union
SGD stochastic gradient descent
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