
electronics

Article

Design of Cut Off-Frequency Fixing Filters by Error
Compensation of MAXFLAT FIR Filters

Daewon Chung , Woon Cho, Inyeob Jeong and Joonhyeon Jeon *

����������
�������

Citation: Chung, D.; Cho, W.; Jeong,

I.; Jeon, J. Design of Cut

Off-Frequency Fixing Filters by Error

Compensation of MAXFLAT FIR

Filters. Electronics 2021, 10, 553.

https://doi.org/10.3390/electronics

10050553

Academic Editor: Flavio Canavero

Received: 21 January 2021

Accepted: 24 February 2021

Published: 26 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Division of Electronics & Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea;
jung1362@dgu.edu (D.C.); chowoon177@dgu.edu (W.C.); vision@dgu.ac.kr (I.J.)
* Correspondence: memory@dgu.edu; Tel.: +82-2-2260-3545; Fax: +82-2-2285-3343

Abstract: Maximally-flat (MAXFLAT) finite impulse response (FIR) filters often face a problem of the
cutoff-frequency error due to approximation of the desired frequency response by some closed-form
solution. So far, there have been plenty of efforts to design such a filter with an arbitrarily specified
cut off-frequency, but this filter type requires extensive computation and is not MAXFLAT anymore.
Thus, a computationally efficient and effective design is needed for highly accurate filters with desired
frequency characteristics. This paper describes a new method for designing cutoff-frequency-fixing
FIR filters through the cutoff-frequency error compensation of MAXFLAT FIR filters. The proposed
method provides a closed-form Chebyshev polynomial containing a cutoff-error compensation
function, which can characterize the “cutoff-error-free” filters in terms of the degree of flatness for
a given order of filter and cut off-frequency. This method also allows a computationally efficient
and accurate formula to directly determine the degree of flatness, so that this filter type has a flat
magnitude characteristic both in the passband and the stopband. The remarkable effectiveness of
the proposed method in design efficiency and accuracy is clearly demonstrated through various
examples, indicating that the cutoff-fixing filters exhibit amplitude distortion error of less than 10−14

and no cut off-frequency error. This new approach is shown to provide significant advantages over
the previous works in design flexibility and accuracy.

Keywords: maximally flat filters; cutoff-frequency error; cutoff-frequency error compensation; linear
phase filters; digital filters; cut off-frequency fixing filters

1. Introduction

The theory, design, and application of a finite impulse response (FIR) filter with math-
ematical analysis have been widely studied [1–23]. Among them, especially, maximally-flat
(MAXFLAT) FIR filters, which are known for their design simplicity, accuracy, and high
stopband attenuation, have an important role in some applications, such as waveform trans-
mission and audio/image processing [3–14]. The basic idea for the design of MAXFLAT
FIR filters is based on the well-known closed-form transform function and is realized
due to its closed-form polynomial [7–9,15–18]. However, previous MAXFLAT FIR filter
designs involve approximation of the desired frequency response by some closed-form
polynomial, like a Hermite Interpolation [15], Miller’s conformal mapping [16], Bernstein
polynomial [10,17], Fahmy’s Integral method [18], or Krawtchouk polynomial [19], which
is then mapped to the filter function by certain transformations. The MAXFLAT FIR filter
by any closed-form polynomial does not have any independent (“free”) parameters. This
is due to the fact that the maximum possible number of zeros at z = ±1 is imposed,
which leaves no degree of freedom, and, thus, no independent parameters. Thus, there
is no direct control over the frequency response to obtain such a filter with a prescribed
specified cut off-frequency. For that reason, the magnitude response of this filter type
never passes through the desired cut off-frequency [19–22]. In order to overcome such
a difficulty, there have been many efforts for comprising independent parameters in a
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closed-form function and, then, frequency response by (modified) closed-form function is
controllable by these parameters. FIR filters using such a closed-form function including
controllable parameters are no longer MAXFLAT, and, thus, various design methods have
been published recently to obtain a best frequency response [7–14,23]. Jeon et al. have
reported a closed-form least error gain method [23] for the design of FIR filters with both
a flat magnitude and exact cut off-frequency. However, this method has the disadvan-
tage of requiring a lot of computation processing for estimating the order of flatness, so
that the error frequency function is closest to a zero gain at all frequencies [23]. It also
sometimes has the frequency response distortion by wrongly determining the order of
flatness. Huang et al. have proposed a closed-form weighted least square design to obtain
FIR filters with exact cut off-frequency. However, this method has the disadvantage of
providing non-negligible amplitude distortions of more than 4.2% by the Gibbs effect
despite allowing a large amount of computation for estimating a convolution window [7,8].
Tseng and Lee introduced a closed-form design by mapping three discrete transforms, but
there is a serious problem, such that filter cutoff-frequency error rapidly increases with
growing cut off-frequency [9]. Recently, Roy et al. have reported Chebyshev closed-form
FIR filters using a Bernstein polynomial [10]. They can reduce the filter design complexity
by using a specific threshold value, but non-negligible amplitude distortions are in the
stopband and passband. Hence, a computationally efficient design is needed for highly
accurate filters with desired frequency characteristics, i.e., magnitude response exactly
passes through prescribed, specified cutoff-frequency and is maximally flat in both the
passband and the stopband.

The objective of this paper is to present a new method for the design of cut off-
frequency fixing filters using a “cut off-error-free” polynomial function. For this pur-
pose, a frequency-response error compensation function between the desired and ac-
tual frequency responses is derived through the generalization of the three closed-form
polynomials [10,15–17] into a Chebyshev polynomial form. The proposed method pro-
vides a closed-form Chebyshev polynomial to characterize this filter type in terms of the
degree of flatness for a given order of filter and cut off-frequency. Then, the magnitude
response passes exactly through the prescribed specified cut off-frequency, and the filter
also has independent (“free”) parameters that permit direct control over the frequency
response, i.e., there is a tradeoff between the transition bandwidth and the magnitude
flatness [24]. Finally, to determine the degree of flatness, so that a (cut off-frequency fix-
ing) filter has a flat magnitude response characteristic for a given order of filter and cut
off-frequency, a computationally efficient and accurate formula is derived from the cut off
error compensation function.

This paper is organized as follows. In Section 2, we propose a closed-form error
function for the cut off-error compensation of MAXFLAT FIR filters and introduce a closed-
form Chebyshev polynomial to design cut off-frequency fixing filters. In Section 3, through
the analysis of this error compensation function, we provide an exact and direct expression
to choose a cutoff-frequency fixing FIR filter with a desired frequency response. Design
examples that demonstrate the power of the new technique are shown. Conclusions are
drawn in Section 4.

2. Closed-Form Chebyshev Polynomial for Cutoff-Frequency Fixing Filter Design

The transfer function H(z) of a symmetric linear-phase FIR filter with the impulse
response hn of order 2N is written as:

H(z) =
2N

∑
n=0

hnz−n = z−N

{
hN +

N

∑
n=1

hN−nTn(ω)

}
(1)
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where Tn(ω) is the Chebyshev polynomial of the first kind of degree n, and the independent
transformed variable w [25] is related to the digital domain by:

w =
1
2

(
z + z−1

)∣∣∣∣z=ejω = cosω (2)

confined to the interval [−1, 1]. The frequency response H
(
ejω) of the filter can be ex-

pressed as:
H
(

ejω
)
= e−jNωQ(cosω) = z−NQ(w)

∣∣∣
z=ejω

(3)

by using the zero-phase transfer function Q(w), which represents a polynomial of the real
variable w = cosω, (0 ≤ ω ≤ π). Then, the filter can be said to be lowpass and MAXFALT
if Q(cosω) has the following properties:

Q(cosω)|ω=0 = 1 (4)

∂vQ(cosω)

∂ωv

∣∣∣∣
ω=0

= 0, v = 1, 2, . . . , 2(N − K) + 1 (5)

∂vQ(cosω)

∂ωv

∣∣∣∣
ω=π

= 0, v = 0, 1, 2, . . . , 2K− 1 (6)

where N − K and K represent orders of flatness at ω = 0 and ω = π, respectively. It
is shown, based on the results of [10,15–17], that such a lowpass function can be accom-
plished by using one of the closed-form polynomials, namely, Hermite Interpolation poly-
nomial [15], Miller’s conformal mapping function [16], and Bernstein polynomial [10,17],
which are expressed, respectively, as:

PN,K(x) = (1− x)K
N−K

∑
i=0

(
K + i− 1

i

)
xi, 0 ≤ x ≤ 1 (7)

HN, K(jΩ) =
1

(1 + Ω2)
N ∑ N−K

i=0

(
N
i

)
Ω2i, 0 ≤ Ω2 ≤ 1 (8)

BN,K( f ; x) = ∑ N−K
i=0

(
N
i

)
xi(1− x)N−i, 0 ≤ x ≤ 1 (9)

where
(

A
B

)
= A!/((A− B)!B!) and cosω = 1− 2x =

(
1−Ω2

)
/
(

1 + Ω2
)

. The work

in [10,17] reported a functional equivalence between Equations (7)–(9). Kaiser [26] also
established a link between Herrmann’s polynomial Equation (7) and Fahmy’s Integral [18].
Consequently, this implies that all MAXFLAT FIR filters published so far can be expressed
as one and the same closed-form solution. By using the transformations x = (1− w)/2 and
Ω2 = (1− w)/(1 + w) on Equations (7)–(9), such a filter can be expressed by a generalized
closed-form function Qg(w) as below.

Qg(w) = PN,K(x)
∣∣∣x= 1−w

2
= Ha(jΩ)

∣∣∣Ω2= 1−w
1+w

= BN,K( f : x)
∣∣∣
x= 1−w

2

=
(

1+w
2

)K N−K
∑

i=0

(
K + i− 1

i

)(
1−w

2

)i (10)

The Chebyshev polynomial form of Equation (10) can be obtained as:

Qg(w) =

(
1 + w

2

)K
{

gN−K + 2
N−K

∑
i=1

gN−K−iTi(w)

}
(11)
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by using the Chebyshev representation equation:(
1− w

2

)i
=

1
22i

{(
2i
i

)
+ 2

i

∑
u=1

(−1)u
(

2i
i− u

)
Tu(w)

}
(12)

where interpolation coefficients gi are expressed as [23]:

gi = (−1)N−K−i
i

∑
`=0

1
22(N−K−`)

(
N − l − 1

K− 1

)
·
(

2(N − K)− 2l
i− l

)
(13)

Computation of hn
′s in Equation (1), using Equation (12), is reported in [23,27,28]. In

a similar way, by mapping Equation (11) to Equation (1), a relational formula between hn
′s

and gi
′s can be obtained as:

hn =
1

22K

{
N−K

∑
i=0

(
2K

n− i

)
gi +

N−K

∑
i=1

(
2K

n− i− (N − K)

)
gN−K−i

}
(14)

where
(

A
B

)
= 0 if A < B or B < 0. It can be seen from Equation (11) that, for a

given N, there are N possible filters (with N different cutoff points) corresponding to
K = 1 to N. Thus, to determine K suitable to a desired cutoff point of wc(−1 < wc < 1),
existing methods [15–18,20] typically use the empirical expression (Herrmann used this
term without explicitly defining the relation ([15], Equation (11))) given by Herrmann [15]
as follows:

K = N −
[

1
2

N(1− wc) + 0.5
]

(15)

where wc =
1
2
(
z−1 + z

)∣∣∣z=ejωc = cosωc for a give cutoff-frequency ωc, and [p] denotes the
integer part of p. For this reason, the classical designs naturally involve an approximate
cut off-frequency error [20,22,23]. For example, in the case of wc = 0.4 (corresponding to
ωc = 0.369π in Reference [15]), Figure 1 shows the MAXFLAT FIR filters, which are chosen
according to Equation (10) when using Equation (15). It is shown that the MAXFLAT
FIR filter has both a passband and stopband that are maximally flat, but its magnitude
response never passes through the desired cut off-frequency. Particularly, as the order of
filter becomes lower, the cut off-frequency error becomes larger.
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Figure 1. Maximally-flat (MAXFLAT) finite impulse response (FIR) filters: Qg(w) with various N for
wc = 0.4.
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One of the main difficulties for MAXFLAT FIR filter design is to express the objective
error function in a closed form [27]. This is due to the fact that the MAXFLAT FIR filter
by any closed-form polynomial does not have any design (“free”) parameters. Thus,
the objective error function has to be derived between the desired and actual variable
frequency responses [23,29,30]. Referring to an objective function used in Reference [23],
we can define a closed-form error compensation function E(w) between a cut off-frequency
fixing filter Q(w) with a desired cut off point at w = wc and the closed-form polynomial
filter Qg(w) of Equation (10).

E(w) = Q(w)−Qg(w) = 22(N−K)CK

(
1 + w

2

)K(1− w
2

)N−K
(16)

where 22(N−K) is for normalization and CK is a cut off-error compensation factor. Then, CK
can be obtained in terms of K and wc as:

CK =

1√
2
−Qg(wc)

22(N−K)
(

1+wc
2

)K( 1−wc
2

)N−K (17)

by substituting Q(wc) = 1/
√

2 into the relation of Equation (16) with w = wc. Conse-
quently, adding E(w) into Qg(w) can yield a “cutoff-error-free” filter Q(w) with a cut
off-frequency controllable by CK:

Q(w) = Qg(w) + E(w) =

(
1 + w

2

)K
{

N−K

∑
i=0

(
K + i− 1

i

)(
1− w

2

)i
+ 22(N−K)CK

(
1− w

2

)N−K
}

(18)

where Equation (18) consists of adding Equation (16) to Equation (10). More importantly,
Q(w) passes exactly through the desired cutoff point w = wc, that is, Q(w) always satisfies
the cutoff condition, Q(wc) = 1/

√
2, regardless of the values of K and N.

From Equation (18), it can be seen that E(w) is added as an extra term to the (N − K)-
th coefficient in the sum (of the second term of Qg(w) given in Equation (10)) without
increasing the order of the filter. Then, small changes δgi

′s of the interpolation coefficients
gi
′s in Equation (13) due to adding E(w) can be obtained as:

δgi = (−1)N−K−iCK

(
2(N − K)

i

)
, i = 0, 1, 2, . . . , N − K (19)

by transforming Equation (16) into Equation (11). Hence, new ĝi
′s caused by adding E(w)

to Qg(w) consist of adding Equation (19) to Equation (13).

ĝi = (−1)N−K−i

{
i

∑
`=0

1
22(N−K−`)

(
N − l − 1

K− 1

)(
2(N − K)− 2l

i− l

)
+ CK

(
2(N − K)

i

)}
(20)

As shown in Equation (18), using E(w) for the cut off-frequency error compensa-
tion of Qg(w) leads to a closed-form Chebyshev polynomial, which can characterize cut
off-frequency fixing FIR filters as a “cut off-error free” in terms of K. However, the fre-
quency response (i.e., Q(cosω)) of Equation (18) including Equation (16) no longer satisfies
Equation (5). This is due to the fact that, for a given N and wc, there are N different “cut
off-error free” filters with N different magnitudes responses caused by N different E(w)
corresponding to K = 1 to N. For this reason, if a wrong E(w) (i.e., wrong K) is chosen, it
will have a negative effect on the flatness of Q(w) even though Qg(w) is MAXFLAT. Hence,
it is necessary to select K exactly so that E(w) compensates for the cutoff error of Qg(w)
without damaging the flatness in the passband or the stopband.
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3. The Order of Flatness (K)

In this section, E(w) given in Equation (18) is analysed for building a computationally
efficient and accurate solution to determine an optimal value of K for a given N and wc.

As mentioned earlier, for the cut off-frequency error compensation of Qg(w) using
E(w) potentially leads to Q(w) with its magnitude response exactly passing through the
prescribed cutoff point w = wc. However, the wrong choice of K results in significant
magnitude-distortions due to the undesired amplitude of the E(w). Thus, to determine
K exactly, so that E(w) compensates for the cut off-frequency error of Qg(w) without
damaging the flatness, which is a simple and complete formula-based solution that has to be
built on E(w). Actually, in the case of Reference [23] using a distortion error function, they
had proposed an iteration training method (see Figure 4 in Reference [23]) of estimating
a minimum-distortion error function to determine K for a given N and wc. However,
this method has the disadvantage of requiring complicated and enormous computation
processing for obtaining a suitable one among N different distortion error functions. This
computation complexity increases rapidly with increasing N, which is the order of the filter.
In addition, it sometimes has the frequency-response distortion by wrongly determining K.
For this reason, a computationally efficient and accurate formula has to be needed for the
design of such a filter.

From Equation (18), it is seen that E(w) exhibits a “bell-curve-like” shape, which only
has one peak gain, and zero gain at w = ±1 (corresponding to ω = 0 and ω = π). Thus,
the peak and inflection points of E(w) can play important roles in identifying influential
observations in terms of K for a given N and wc. These points can be used to thoroughly
characterize the effect of E(w) on Q(w) in terms of K. If wp is the peak point of E(w), wp is
given as:

wP =
2K− N

N
, −1 < wK < 1 (21)

from ∂E(w)/∂w|w=wP = 0 and, then, the peak value E(wP) can be obtained in terms of
K as:

E(wP) = CK

(
K
N

)K(
1− K

N

)N−K
(22)

by substituting Equation (21) into Equation (16) with wp. In addition, letting w+
I and w−I

be two inflection points of E(w), from ∂2E(w)/∂2w
∣∣∣w=w±I

= 0, we can get:

w±I =
−(2N − 1)(N − 2K)±

√
N2 − 4(1− 4N)NK + 4(1− 4N)K2

2N2 , −1 < w±I < 1 (23)

where w±I (double signs in the same order) denotes w+
I and w−I , and E

(
w±I
)

can also
be obtained in terms of K by substituting Equation (23) into Equation (16) with w±I . By
substituting Equation (21) into Equation (23), w±I can be rewritten in terms of wp as:

w±I =

(
1− 1

2N

)
wP ±

1
2N

√
w2

P − 8KwP + 8K, −1 < w±I < 1 (24)

From Equation (24), it is seen that w+
I and w−I are related to wp by:

wI
+ + wI

−

2
=

(
1− 1

2N

)
wP (25)

and satisfy the inequality w−I < wP < w+
I . This means that the shape of E(w) is not

perfectly symmetric about the line w = wP and can lead to inequalities not only between
wc and inflection points (i.e., w−I , w+

I , and wp) in terms of K but also between E(wc) and
inflection gains (i.e., E

(
w−I
)
, E
(
w+

I
)
, and E

(
wp
)
). For example, in the case of wc = 0.4 and

N = 11, Figure 2 shows E(w)′s corresponding to K = 3 to 10 and the related parameters are
indicated in Table 1, where CK, wP, and w±I have been obtained according to Equations (17),
(21) and (23). Figure 3 also shows Qg(w), E(w), and Q(w) for each case of the four ranges
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described in Table 1 where the prescribed cut off point wc falls into one of the following
four ranges due to the choice of K: wc < w−I , w−I < wc < wP, wP < wc < w+

I , and
w+

I < wc. From these examples, it can be found that the undesired magnitude of E(w)
around wp causes not only overshoot in the passband of Q(w) if wc < wP (i.e., wc < w−I or
w−I < wc < wP) for a given K, but also undershoot in the stopband if w+

I < wc. However,
in these cases, Q(w) can have a relatively narrow transition bandwidth due to K.
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Figure 2. Ε(𝑤) due to increasing 𝐾 for 𝑁 = 11 and 𝑤𝑐 = 0.4 (𝜔𝑐 = 0.369𝜋). 
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Figure 2. E(w) due to increasing K for N = 11 and wc = 0.4 (ωc = 0.369π).

Table 1. Related parameters of Figures 2 and 3.

Parameters
K

3 4 5 6 7 8 9 10

CK −0.1982 −0.3355 −0.5405 −0.7333 −0.4836 1.3807 6.7866 17.5271
w−I −0.7032 −0.5507 −0.3871 −0.2135 −0.0300 0.1645 0.3731 0.6037
wP −0.4545 −0.2727 −0.0909 0.0909 0.2727 0.4545 0.6364 0.8182
w+

I −0.1645 0.0300 0.2135 0.3871 0.5507 0.7032 0.8418 0.9583
E(wc) −0.2923 −0.2886 −0.2713 −0.2147 −0.0826 0.1375 0.3944 0.5941
E
(
w−I
)

−11.7403 −2.3584 −0.6661 −0.2284 −0.0550 0.0851 0.3615 1.5264
E(wP) −20.6230 −4.0613 −1.1314 −0.3837 −0.0915 0.1403 0.5898 2.4573
E
(
w+

I
)

−12.5099 −2.4404 −0.6733 −0.2259 −0.0531 0.0799 0.3236 1.1842
wc w+

I < wc wP < wc < w+
I w−I < wc < wP wc < w−I

Example - - Figure 3a - Figure 3b - Figure 3c Figure 3d

More importantly, it is shown that Q(w) has a flat magnitude characteristic in both
the passband and the stopband when E(wP) in terms of K is negatively minimized, and,
then, wc falls in between wP and w+

I :

wP < wc < w+
I (26)

This corresponds to K = 7 in Table 1 and, as shown in Figure 3b, no overshoot
and no undershoot appear in the passband and the stopband. For the further evaluation
of this result, in the case of wc = 0.7071 (corresponding to ωc = 0.25π) and N = 28,
Figure 4a,b show E(w) in terms of K and the effect on Q(w), respectively. The related
parameters are also indicated in Table 2 where δO and δU are the peak values of overshoot
and undershoot in the passband and the stopband, respectively. It can be seen that taking
K = 23 yields the smallest negative value E(wP)|K=23 (at wP|K=23 = 0.6429) and results
in wP|K=23 and w+

I

∣∣
K=23 satisfying Equation (26) for a given wc = 0.7071. Consequently,

using K = 23 potentially leads to E(w)|K=23 yielding a cut off-frequency fixing filter with
zero overshoot and zero undershoot (i.e., δU = δO = 0). Especially, it is shown that the
filters by K = 22 and 24 have a tolerant magnitude distortion, but relatively narrower
transition band than the filter by K = 23.

From the results so far, it has been shown that K has to be chosen so that wP and w+
I of

E(w) satisfy the condition of Equation (26) for the prescribed cut off point wc. To determine



Electronics 2021, 10, 553 8 of 15

an optimal value of K under this condition, substituting wP and w+
I given by Equations (21)

and (23) into Equation (26) and simplifying the algebra, yields:

2N + (2N − 1)wc −
√

4N + (1− 4N)w2
c

4
< K <

N(1 + wc)

2
, f or integer K (27)
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Table 2. Related parameters for Figure 4.

Parameters
K

19 20 21 22 23 24 25 26

CK −718.85 −475.26 −293.62 −151.91 −41.13 37.64 80.72 90.53
w−I 0.1741 0.2500 0.3272 0.4058 0.4862 0.5687 0.6539 0.7433
wP 0.3571 0.4286 0.5000 0.5714 0.6429 0.7143 0.7857 0.8571
w+

I 0.5274 0.5918 0.6550 0.7166 0.7766 0.8344 0.8894 0.9404
E(wc) −0.2882 −0.2776 −0.2499 −0.1884 −0.0743 0.0991 0.3097 0.5061
E
(
w−I
)

−2.6494 −1.0075 −0.4267 −0.1832 −0.0510 0.0612 0.2316 0.6708
E(wP) −4.3577 −1.6531 −0.6983 −0.2990 −0.0829 0.0993 0.3738 1.0761
E
(
w+

I
)

−2.5816 −0.9755 −0.4101 −0.1746 −0.0480 0.0569 0.2106 0.5861
δo 0.0 0.0 0.0 0.0 0.0 0.0058 0.1594 0.8101
δu −3.7859 −1.1088 −0.2241 −0.0021 0.0 0.0 0.0 0.0
wc w+

I < wc wP < wc < w+
I w−I < wc < wP wc < w−I
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Hence, we can infer from Equation (27) that the empirical formula of Equation (15)
given by Hermann is a wrong expression since K in accordance with Equation (15) does
not satisfy the condition Equation (26) (i.e., wP < wc). From the fact that choosing the
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optimal value of K has to satisfy Equation (27), a new formula that is more accurate than
Equation (15) can be defined as:

K =

[
4N − (1− 4N)wc −

√
4N + (1− 4N)w2

c
4

+ 0.5

]
(28)

by averaging the upper and lower limit values of Equation (27). To verify the effectiveness
of this formula, Figure 5 shows the accuracy comparison of Equations (15) and (28) for
wc = 0.4 (ωc = 0.369π) and wc = 0.7071 (ωc = 0.25π) where the “F” symbol denotes the
optimal K chosen by negatively minimizing E(wP) under condition (27). This indicates
that Ks obtained according to Equation (28) are remarkably consistent with the optimal Ks.

Based on results so far, Figure 6 exhibits a design procedure to directly compute the
coefficients of cut off-frequency fixing filters with a desired frequency response. Table 3 and
Figure 7 show the comparison between the proposed method and existing methods [15,23]
for N = 20 and 45. From Table 3, it can be said that the proposed filters apparently are
a “cut off error free” and “flat magnitude” since δo < 10−14 can be very negligible and
ignored. On the other hand, previous filters using empirical formula of Equation (15) are
maximally flat in the passband and stopband, while there exists a filter cut off-frequency
error of 2.2% to 6.6%. In addition, it appears that the iteration training method [23] leads
to very slight cut off errors despite performing multiple computations to determine K, as
shown in Figure 4 in Reference [23]. Consequently, these examples demonstrate that the
proposed method derives accurate FIR filters with a magnitude response while allowing
direct and simple computation in designing such a filter.
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Figure 8, using Figure 6, shows cut off-frequency fixing filters for ωc = 0.369π
(wc = 0.4) and various N, and the related values are given in Table 4. Table 5 also indicates
coefficients of the cut off-frequency fixing filter for (N, K) = (20, 13), where ĝi and hn have
been obtained according to Equations (20) and (14), respectively.
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Table 3. Comparison of three design methods for (a) N = 20 and (b) N = 45.

Parameters

ωc = 0.369π (wc = 0.4) ωc = 0.25π (wc = 0.7071)
MAXFLAT
Filters of

Equation (10)
Reference [23]

Cutoff Fixing
Filters of

Equation (18)

MAXFLAT
Filters of

Equation (10)
Reference [23]

Cutoff Fixing
Filters of

Equation (18)

N = 20

ω3dB
1 0.3502π 0.3690π 0.3690π 0.2419π 0.25π 0.25π

(ωc −ω3dB)/π 2 0.0188 2.14 × 10−5 0.0 0.0081 0.0 0.0
δo

3 0.0 0.0 0.0 0.0 0.0 0.0
δu 0.0 0.0 0.0 0.0 0.0 0.0

K decision Equation (15) training
(13 iteration) Equation (28) Equation (15) training

(16 iterations) Equation (28)

accuracy/
complexity 4 low/low high/very

high high/low low/low high/very
high high/low

N = 45

ω3dB
1 0.3445π 0.3690π 0.3690π 0.2445π 0.25π 0.25π

(ωc −ω3dB)/ π 0.0245 3.14 × 10−7 0.0 0.0055 1.83 × 10−12 0.0
δo

3 0.0 0.0 3.11× 10−15 0.0 0.0 4.44 × 10−16

δu 0.0 0.0 0.0 0.0 0.0 0.0

K decision Equation (15) training
(30 iteration) Equation (28) Equation (15) training

(37 iterations) Equation (28)

accuracy/
complexity 4 low/low high/very

high high/low low/low high/very
high high/low

1 ω3dB denotes the actual cut off-frequency of the filter. 2 (ωc −ω3dB)/π indicates the cut off-frequency error of the filter. 3 δo was calculated
to sixteen decimal places. 4 this denotes K decision accuracy and computation complexity.
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𝑁 = 45 

𝜔3𝑑𝐵
 1 0.3445 0.3690 0.3690 0.2445 0.25 0.25 

(𝜔𝑐−𝜔3𝑑𝐵)/ 0.0245 3.14 × 10−7 0.0 0.0055 1.83 × 10−12 0.0 

𝛿𝑜
 3 0.0 0.0 3.11× 10−15 0.0 0.0 4.44 × 10−16 

𝛿𝑢 0.0 0.0 0.0 0.0 0.0 0.0 

K decision Equation (15) 
training 

(30 iteration) 
Equation (28) Equation (15) 

training 

(37 iterations) 
Equation (28) 

accuracy/ 

complexity 4  
low/low high/ very high  high/low  low/low high/ very high  high/low  

1 𝜔3𝑑𝐵  denotes the actual cut off-frequency of the filter. 2 (𝜔𝑐−𝜔3𝑑𝐵)/π indicates the cut off-frequency error of the filter. 
3 𝛿𝑜 was calculated to sixteen decimal places. 4 this denotes K decision accuracy and computation complexity. 
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Figure 7. Comparison of three design methods: (ωc = 0.369π) for (a) N = 20 and (b) N = 45.
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Table 4. Related parameters of Figure 8.

Parameters
N

10 14 20 28 45 63

K 6 9 13 18 30 42
CK −0.5846 −0.7311 −1.8770 −10.073 −112.62 −4055.5
wP 0.2000 0.2857 0.3000 0.2857 0.3333 0.3333
w+

I 0.5000 0.5318 0.5059 0.4618 0.4702 0.4495

Table 5. Coefficients of the cut off-frequency fixing filter for (N, K) = (20, 13).

gi hn

g0 = −1.198409231 h0 = −0.000000018 h11 = −0.003859813
g1 = 21.309955797 h1 = −0.000000147 h12 = −0.005450869

g2 = −169.484927527 h2 = −0.000000073 h13 = 0.005958058
g3 = 802.886975733 h3 = 0.000003072 h14 = 0.020963265

g4 = −2532.615452798 h4 = 0.000011169 h15 = 0.004171941
g5 = 5615.229929033 h5 = −0.000003022 h16 = −0.048651840

g6 = −8988.135420893 h6 = −0.000097254 h17 = −0.055049249
g7 = 10,505.014699770 h7 = −0.000159706 h18 = 0.078213381

h8 = 0.000280582 h19 = 0.297774354
h9 = 0.001164512 h20 = 0.408751644
h10 = 0.000355835

All coefficients were rounded off to nine decimal places.

4. Conclusions

Problems with the cut off-frequency error always arise in a MAXFLAT filter design.
This is due to the fact that the maximum possible number of zeros at z = ±1 is imposed,
which leaves no degree of freedom, and, thus, no independent parameters. In this paper, a
new method has been proposed providing a cut off-frequency error compensation function,
available to previous closed-form polynomials, for compensating for the cut off-frequency
error of MAXFLAT FIR filters. It has been shown that this error compensation function
derives a closed-form Chebyshev polynomial characterizing cut off fixing FIR filters with a
prescribed cut off-frequency and allows a computationally efficient and accurate formula
to obtain such filters with flat magnitude response characteristics for a given order of a
filter and cut off-frequency. The examples were shown to provide a complete and accurate
solution for the design of such filters. Hence, a solution to the problem encountered in the
previous methods is found.
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