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Abstract: Parametric fault diagnosis of analog very high-frequency circuits consisting of a distributed
parameter transmission line (DPTL) terminated at both ends by lumped one-ports is considered in
this paper. The one-ports may include linear passive and active components. The DPTL is a uniform
two-conductor line immersed in a homogenous medium, specified by the per-unit-length (p-u-l)
parameters. The proposed method encompasses all aspects of parametric fault diagnosis: detection
of the faulty area, location of the fault inside this area, and estimation of its value. It is assumed
that only one fault can occur in the circuit. The diagnostic method is based on a measurement test
arranged in the AC state. Different approaches are proposed depending on whether the faulty is
DPTL or one of the one-ports. An iterative method is modified to solve various systems of nonlinear
equations that arise in the course of the diagnostic process. The diagnostic method can be extended
to a broader class of circuits containing several transmission lines. Three numerical examples reveal
that the proposed diagnostic method is fast and gives quite accurate findings.

Keywords: analog electronic circuits; distribution and lumped parameters; fault diagnosis; paramet-
ric faults; transmission line

1. Introduction

Accurate and fast fault diagnosis of analog circuits, including fault detection, location,
and estimation of its value, is an important task in electrical engineering. A huge effort
has been made by engineers and researches, over the last few decades, to develop various
methods, algorithms, and techniques for testing and diagnosing analog electronic circuits.
As a result, many accurate findings have been obtained and reported. Numerous fault
diagnosis methods were described in [1–4]. Nevertheless, some issues in this field remain
open, and there is a growing need for their solving.

The various types of faults that may occur in electronic circuits can be divided into
local and global defects, as well as parametric (soft) and hard (catastrophic) faults. Local
defects concern random regional disturbances within a circuit, whereas global defects
concern disturbances that effect entire regions. A fault is said to be parametric if the
circuit parameter deviates from the tolerance range, but does not produce any topological
changes. Hard faults are shorts and opens. The real short is simulated by a low resistor,
whereas the real open is simulated by a high resistor. In Integrated Circuits (ICs), they
are classified as spot defects. Important questions of the fault diagnosis are testability
analysis and test point selection [5–9]. The parametric fault diagnosis problem has attracted
a great deal of attention both in linear circuits [10–13] and nonlinear circuits [14–17].
Catastrophic fault diagnosis of bipolar and Complementary Metal Oxide Semiconductor
(CMOS) circuits was considered in [18]. Some research studies concentrate on self-testing
methods [19]. Numerous works describe artificial intelligence method applications to fault
diagnosis [20–22].

Traditionally, the research works dealing with fault diagnosis of analog electronic
circuits are limited to lumped devices. However, the distribution systems that process
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high-speed signals play an important role in electronic engineering. Some very high-
frequency circuits include distributed parameter transmission lines (DPTLs) [23] terminated
by lumped passive or active devices. A method for diagnosing short and open faults in the
circuits’ transmission lines was developed in [24]. However, the problem of parametric
fault diagnosis of this class of circuits is a gap that should be filled.

In this paper, we consider linear analog circuits of very high frequency consisting of
cascade-connected Blocks A, B, and C, as shown in Figure 1. Block A includes a uniform
two-conductor DPTL immersed in a homogenous medium. It has the length d and is
specified by the per-unit-length (p-u-l) parameters [23]. Blocks B and C are lumped one-
ports, which may contain linear resistors, inductors, capacitors, controlled sources, and
independent AC sources. Our goal is to develop a method for parametric fault diagnosis of
this class of circuits. The scope of the diagnosis and the main assumptions are as follows.

IC IB I(0) I(d)

V(0) V(d)

A 

B C 

 
Figure 1. Linear circuit including a distributed parameter transmission line (DPTL) terminated by
lumped one-ports.

Assume that only one block, A, B, or C, can be faulty. A parametric fault of the
DPTL in Block A, considered in this paper, can be caused by, e.g., the change of geometric
dimensions (e.g., the distance between the conductors and their radii), a change of a relative
dielectric constant, or a change of electrical resistivity. Thus, the defect occurs along the
entire line and has a global nature. It influences the p-u-l parameters of the line. The
deviations of these parameters from the nominal values evaluate the fault, and all of them
should be determined in the course of the diagnostic process. In Block B or C, only one
element may be faulty. Diagnosis of these blocks includes the location of the faulty element
and the estimation of its value.

This paper is organized as follows. The basic methodology of the proposed approach
is described in Section 2. Section 3 presents an iterative method utilized by the diagnostic
method. Three examples and a discussion of the obtained results are demonstrated in
Section 4. Section 5 concludes the paper.

2. Parametric Fault Diagnosis Method

To diagnose a circuit belonging to the class defined in Section 1, a measurement test is
arranged in the AC state. The phasors V(0) and V(d) of the input and output voltages of
the DPTL are measured at one frequency while running the test.

2.1. Detection of the Faulty Block

The preliminary step of fault diagnosis is to detect the faulty block or to state that
the circuit is fault-free. For this purpose, each of the blocks with nominal parameters is
considered separately. In the cases of Blocks B and C, the currents IB and IC are determined
by the analysis of the blocks driven by the voltage sources V(0) and V(d), respectively.
The obtained phasors of these currents are denoted by ĨB and ĨC. Since V(0) and V(d) have
been measured in the real circuit, which can be faulty, ĨB or ĨC is the actual current in the
circuit if the corresponding Block B or C is fault-free. Next, we consider Block A including
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the DPTL driven at the left end by V(0) and at the right end by V(d). The line is described
by the system of equations:

V(0)− (coshγ d)V(d)− ZC(sinhγd) I(d) = 0

I(0)− 1
ZC

(sinhγd)V(d)− (coshγ d) I(d) = 0
(1)

where γ =
√
(r + jωl) (g + jωc), with Re γ ≥ 0, Im γ > 0, is the propagation constant,

ZC =
√

r+jωl
g+jωc , with Re ZC ≥ 0, is the characteristic impedance, and the p-u-l parameters,

r, l, g, c have nominal values. We solve (1) for I(0) and I(d) and denote the solutions by
Ĩ(0) and Ĩ(d). They are the actual currents in the circuit if the DPTL is fault-free.

The fault detection and identification of the faulty block is based on Table 1, where
I(0), I(d), IB, and IC denote the actual currents in the circuit. The table is created on the
assumption, made in Section 1, that only one block, A, B, or C, can be faulty.

Table 1. Results leading to a set of rules for detecting a faulty block.

Faulty Block Fault-Free Blocks Equalities of the Actual and
Calculated Currents

Inequalities of the Actual
and Calculated Currents

Relationships between the
Calculated Currents

no A, B, C I(0) = Ĩ(0), I(d) = Ĩ(d)
IB = ĨB, IC = ĨC

no ĨB = − Ĩ(0)
ĨC = Ĩ(d)

A B, C IB = ĨB, IC = ĨC
I(0) 6= Ĩ(0)
I(d) 6= Ĩ(d)

ĨB 6= − Ĩ(0)
ĨC 6= Ĩ(d)

B A, C I(0) = Ĩ(0), I(d) = Ĩ(d)
IC = ĨC

IB 6= ĨB
ĨB 6= − Ĩ(0)
ĨC = Ĩ(d)

C A, B I(0) = Ĩ(0), I(d) = Ĩ(d)
IB = ĨB

IC 6= ĨC
ĨB = − Ĩ(0)
ĨC 6= Ĩ(d)

The results presented in Table 1 can be summarized as follows.
If ĨB = − Ĩ(0), ĨC = Ĩ(d), then the circuit is fault-free.
If ĨB 6= − Ĩ(0), ĨC 6= Ĩ(d), then Block A is faulty.
If ĨB 6= − Ĩ(0), ĨC = Ĩ(d), then Block B is faulty.
If ĨB = − Ĩ(0), ĨC 6= Ĩ(d), then Block C is faulty.

2.2. Diagnosis of the Faulty Block A

If Block A has been detected as faulty ( ĨB 6= − Ĩ(0), ĨC 6= Ĩ(d)), we find its actual p-u-l
parameters using the two-step procedure.

2.2.1. Step 1

Let us substitute I(0) = − ĨB, I(d) = ĨC and the measurement voltages V(0), V(d)
in (1) and express γ and ZC in the rectangular form: γ = α + jβ, ZC = RC + jXC. As
a result, we obtain a system of two nonlinear complex equations in four real unknown
variables: α, β, RC, XC. This system has the form g(x) = 0, where x = [α β RC XC]

T,
g(x) = [g1(x) g2(x)]

T, and T denotes transposition. It is solved using the iterative method
described in Section 3, where two iteration Formulas (8) and (9) are presented. In the
discussed case, each of them consists of four individual real linear equations in four
unknown real variables. If (8) generates the sequence that is not convergent, the modified
iteration Formula (9) is applied.
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2.2.2. Step 2

Having α, β, RC, and XC, the p-u-l parameters of the DPTL are determined as follows.
On the basis of equations γ = α + jβ and γ =

√
(r + jωl)(g + jωc), we write:

γ2 = α2 − β2 + j2αβ

γ2 =
(
rg−ω2lc

)
+ j (ωlg + ωrc) .

(2)

Hence, we arrive at two real equations with four real variables r, l, g, and c:

rg−ω2lc− α2 + β2 = 0

ωlg + ωrc− 2αβ = 0 .
(3)

Similarly, using ZC = RC + jXC and ZC =
√

r+jωl
g+jωc gives the equality:

R2
C − X2

C + j2RCXC =
r + jωl
g + jωc

(4)

leading to two other real equations in four real variables r, l, g, and c:

r−
(

R2
C − X2

C
)

g + 2ωcRCXC = 0

ωl −ωc
(

R2
C − X2

C
)
− 2gRCXC = 0 .

(5)

In the systems of Equations (3) and (5), the unknown variables are the p-u-l parameters,
r, l, g, and c. Since they have orders that differ significantly one from the other, we scale
them using the factors s1 = 1, s2 = 10−4, s3 = 10−7, and s4 = 10−11. Combining (3) and (5)
and substituting r = s1x1, g = s2x2, l = s3x3, and c = s4x4 yield:

s1s2x1x2 −ω2s3s4x3x4 − α2 + β2 = 0

ωs2s3x2x3 + ωs1s4x1x4 − 2αβ = 0

s1x1 −
(

R2
C − X2

C
)
s2x2 + 2ωRCXCs4x4 = 0

ωs3x3 + ω
(

R2
C − X2

C
)
s4x4 − 2RCXCs2x2 = 0 .

(6)

Let us denote (6) by g(x) = 0, where g(x) = [g1(x) . . . g4(x)]
T, x = [x1 . . . x4]

T and
solve it using the iterative method described in Section 3. Since g(x) is a real function, D(x)
is a real 4× 4 matrix and B

(
x(k)

)
= D

(
x(k)

)
. We apply the iteration formula (8), which in

this case represents a system of four real linear equations in four unknown real variables.
If the generated sequence does not converge, the modified iteration formula (9) is used.

2.3. Diagnosis of the Faulty Block B

If the preliminary step of the diagnosis states that Block B is faulty ( ĨB 6= − Ĩ(0),
ĨC = Ĩ(d)), then, according to the assumption made in Section 1, one of the elements of
this block is faulty. We wish to locate this element and estimate its value. For this purpose,
we consider Block B driven by the current source I = − Ĩ(0), as shown in Figure 2.

Since the input voltage V is equal to the measured voltage V(0), both I and V are
given. Let us describe the circuit depicted in Figure 2 using the node method, leading to
a system of N complex equations. Because V is one of the node voltages, the number of
unknown variables is N − 1. We present them in rectangular form obtaining 2N − 2 real
variables. Let us increase the number of variables to 2N − 1 by adding one of the circuit
parameters considered as potentially faulty. As a result, we obtain a system of N complex
equations in 2N − 1 real variables, which can be presented in the compact form g(x) = 0.
To solve them, we apply the method described in Section 3 where n = N, m = 2N − 1
and B

(
x(k)

)
is a 2N × (2N − 1) matrix. The iteration Formula (8) consists of 2N − 1 real

equations in 2N− 1 real unknown variables. They include 2N− 2 real and imaginary parts
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of the node voltage phasors and one unknown parameter, whereas the other parameters
have nominal values. If the method based on the iteration Formula (8) does not converge,
the modified Formula (9) is used. We repeat this approach for each of the parameters in
Block B considered as potentially faulty. Every time, the solution includes one unknown
parameter and 2N − 2 redundant real variables. When the chosen parameter is faulty, we
obtain the correct result. Otherwise, the method can give non-realistic solutions or not be
convergent. Sometimes, the method may find a virtual solution.

I V 

B 

 
Figure 2. Circuit used for fault diagnosis of Block B.

Note 1. If Block B contains elements not acceptable by the node method, the modified node
method is applied.

Note 2. Diagnosis of Block C is carried out analogously.

3. Solving a System of Nonlinear Algebraic Equations
3.1. Standard Method

Let us consider a system of n nonlinear complex equations in m unknown real variables
presented in a compact form:

g(x) = 0 (7)

where x = [x1 · · · xm]
T, g(x) = [g1(x) · · · gn(x)]

T, 2n ≥ m. To solve this equation, the
iterative method developed in [24] can be used. This iteration formula:

BT
(

x(k)
)

B
(

x(k)
) (

x(k+1) − x(k)
)
= b

(
x(k)

)
(8)

represents a system of m real individual linear equations in m real unknowns x(k+1)
1 , . . .,

x(k+1)
m at k = 0, 1, 2, . . ., where k is the index of iteration:

B
(

x(k)
)
=

 Re D
(

x(k)
)

Im D
(

x(k)
)  ,

b
(

x(k)
)
= −BT

(
x(k)

) Re g
(

x(k)
)

Im g
(

x(k)
) 

where:

D
(

x(k)
)
=


∂g1

∂x1

(
x(k)

)
· · · ∂g1

∂xm

(
x(k)

)
· · · · · · · · · · · · · · · · · · · · ·
∂gn

∂x1

(
x(k)

)
· · · ∂gn

∂xm

(
x(k)

)
.

Matrix B
(

x(k)
)

has order 2n×m; matrix D
(

x(k)
)

has order n×m; and b
(

x(k)
)

is an

m× 1 vector. As a consequence, BT
(

x(k)
)

B
(

x(k)
)

is a real square matrix of order m×m. If
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the iteration process specified by (8) converges, it is terminated when max
1≤ i≤m

∣∣∣x(k+1)
i −x(k)i

∣∣∣∣∣∣x(k)i

∣∣∣ <

εx and max
1≤ i ≤n

∣∣∣ gi

(
x(k+1)

) ∣∣∣ < ε f , where εx and ε f are convergence tolerances, and x(k+1)

is considered as an approximate solution. If the method does not meet the convergence
tolerances in a preset maximum number of iterations Mit, it fails.

3.2. Modified Method

The difficulty of solving (7) arises if the standard method does not converge. In such a
case, we modify it as described in the sequel.

The m× m matrix BT
(

x(k)
)

B
(

x(k)
)

is symmetrical for each k = 0, 1, . . ., because[
BT
(

x(k)
)

B
(

x(k)
)]T

= BT
(

x(k)
)

B
(

x(k)
)

and positive semidefinite because for any real

m × 1 vector y: yT
[
BT
(

x(k)
)

B
(

x(k)
)]

y =
[
B
(

x(k)
)

y
]T

B
(

x(k)
)

y ≥ 0. Thus, its deter-

minant is greater than or equal to zero. When det
[
BT
(

x(k)
)

B
(

x(k)
)]

= 0, the iterative
method fails. Even if the determinant is close to zero, the method may not converge. To get
rid of this drawback, we propose a new iteration formula as follows:[

BT
(

x(k)
)

B
(

x(k)
)
+ ξ e−µ k1

](
x(k+1) − x(k)

)
= b

(
x(k)

)
(9)

where ξ and µ are positive constants selected based on numerical experiments. Since
ξ e−µ k1 is a diagonal matrix with identical positive elements ξ e−µ k on the main diagonal,
the matrix

[
BT
(

x(k)
)

B
(

x(k)
)
+ ξ e−µk1

]
is positive definite for all k = 1, 2, . . ., because

for any real m× 1 vector y 6= 0:

yT
[
BT
(

x(k)
)

B
(

x(k)
)
+ ξ e−µ k1

]
y =

[
B
(

x(k)
)

y
]T

B
(

x(k)
)

y + ξ e−µ kyTy > 0.

Then, its determinant is greater than zero, and Equation (9) can be uniquely solved
at any iteration. As k increases, the diagonal elements of the matrix ξ e−µ k1 decrease and
tend to zero for large values of k. As a consequence, Equation (9) approaches Equation (8).

4. Illustrative Examples

The diagnostic method proposed in Sections 2 and 3 was implemented in the MATLAB
environment, and the calculations were performed on a PC with an Intel Core i7-6700
processor. To show the efficiency of the method, three numerical examples are presented.
Whenever the iterative method described in Section 3 is employed, the nominal values of
the fault-free variables are chosen to form the initial guess.

4.1. Example 1

Figure 3 shows a basic wideband impedance-matched line driver, configured to drive
a coaxial cable RG59 and 75 load. It includes the current-feedback operational amplifier,
two-conductor DPTL, and lumped elements. The model OPA 695 used in the simulations
is depicted in Figure 4. For this model, very good compatibility of the frequency responses
in the frequency range 100 Hz–200 MHz and the time responses was achieved compared to
the full model available in the IsSPICE software.

The nominal values of the lumped elements existing in the circuit and in the OPA
695 model are indicated in Figures 3 and 4, whereas the nominal p-u-l parameters of the
DPTL are as follows: r = 1.6442 Ω

/
m, g = 2.0050× 10−4 S

/
m, l = 3.6978× 10−7 H

/
m,

c = 6.7608× 10−11 F
/

m, and the length d of the line is 1 m. The amplitude of the voltage
source E is 2 V, and the phase is 0◦, f = 100 MHz. The accuracy of the measurements of
the voltage amplitudes is 0.1 mV and of the phase 0.01◦. The convergence tolerances and
constants are: εx = 1× 10−6, ε f = 1× 10−5, Mit = 100, ξ = 10−5, µ = 1.
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In the circuit of Figure 3, we diagnosed 5 faults of Block A, 17 faults of Block B, and 3
faults of Block C. In all these cases, the procedure for detecting the faulty block, described
in Section 2.1, gave the correct outcomes.

E 

RB3 

RB1

511 Ω 
511 Ω RB2 

RB9 

RB4 

75 Ω 
RC1 

75 Ω 

75 Ω

75 Ω

OPA 695

CB1

C 

B 

A 

5 pF 

 
Figure 3. Circuit containing a wideband impedance-matched line driver and a DPTL terminated by
a resistor.

CZ 

IX 

RZ 

VY RY 

Ro 

OPA 695

VZ RX 

YV1α ZV3αXI2α

 Ω30=XR    MΩ10=YR  kΩ80=ZR  fF510=ZC  Ω7o =R

 S3011 /=α    12 =α   S713 /=α    

Figure 4. Model OPA 695.

The findings of the diagnoses of five faults of Block A are placed in Table 2. Every
time, all the p-u-l parameters of the line are calculated. The relative error:

εr =

∣∣∣xactual − xcalculated
∣∣∣

xactual 100% (10)

of the 20 parameter values presented in this table is as follows. In 15 cases (75%), εr < 1%;
in three cases (15%), 1% < εr < 3%; in two cases, (10%), 10% < εr < 18%. To obtain the
results summarized in Table 2, the iterative method, based on the iteration Formula (8),
was used. The number of iterations for finding α, β, RC, and XC (Step 1) ranges from six to
22 and for finding the p-u-l parameters (Step 2) is four in all the cases.

Tables 3–6 present 17 cases of the faults of Block B caused by 5 faults of the resistor
RB1 (Table 3), 4 faults of the resistor RB2 (Table 4), 4 faults of the resistor RB3 (Table 5), and
4 faults of the capacitor CB1 (Table 6).

The outcomes summarized in Table 3 are quite accurate; εr does not exceed 0.7%. To
diagnose Faults 1 and 2, the proposed iteration Formula (9) was used because the sequences
generated by the iteration Formula (8) were not convergent. In the case of Fault 4, the
method finds correctly the faulty resistor RB1 = 89.7956 Ω, inserted in the table, and
a virtual fault RB3 = 421.7773 Ω. The number of iterations needed to determine each
parameter value presented in the table varies from five to 13, and the CPU time does not
exceed 0.33 s.
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Table 2. Results of the diagnosis of faulty Block A including the DPTL.

r(Ω/m) l(H/m) × 107 g(S/m) × 104 c(F/m) × 1011

Nominal values 1.6442 3.6978 2.0050 6.7608

1. Actual values 1.2609 3.3834 2.1914 9.3596
Values given by the method 1.2666 3.3826 2.1778 9.3618
2. Actual values 2.1091 4.2640 1.7388 6.6447
Values given by the method 2.0922 4.2627 1.7736 6.6468
3. Actual values 1.5199 3.5146 2.1095 7.4292
Values given by the method 1.3391 3.5165 2.4826 7.4252
4. Actual values 1.3485 3.2786 2.2614 8.4725
Values given by the method 1.3578 3.2787 2.2524 8.4721
5. Actual values 1.4035 3.3834 2.1914 9.3596
Values given by the method 1.4251 3.3833 2.1303 9.3601

Table 3. Results of the diagnosis of faulty Block B for different values of the defective resistor RB1
whose nominal value is 75 Ω.

Number of the Fault 1 2 3 4 5

Actual value of RB1 in Ω 1 15 55 90 250
Value of RB1 in Ω given by the
method 1.0057 14.9997 54.9346 89.7956 248.3287

The findings inserted in Table 4 are very accurate; εr is smaller than 0.18%. The number
of iterations ranges from five to eight, and the CPU time does not exceed 0.32 s.

Table 4. Results of the diagnosis of faulty Block B for different values of the defective resistor RB2
whose nominal value is 511 Ω.

Number of the Fault 1 2 3 4

Actual value of RB2 in Ω 300 450 670 1500
Value of RB2 in Ω given by the method 300.1964 450.8073 669.5704 1499.6

The relative error εr of the resistor values posted in Table 5 is less than 0.7%; the
number of iterations varies from five to six; and the CPU time does not exceed 0.36 s. In the
cases of Faults 2 and 3 placed in this table, the method gives the correct faulty resistors and
virtual ones. The virtual fault is RB1 = 93.8013 Ω in Case 2 and RB1 = 60.6634 Ω in Case
3. However, if the accuracy of the measurement in the diagnostic test course is increased
(0.01 mV for the amplitude and 0.001◦ for the phase), the method provides only the correct
findings. Unfortunately, it is difficult to ensure such high accuracy in real conditions.

Table 5. Results of the diagnosis of faulty Block B for different values of the defective resistor RB3
whose nominal value is 511 Ω.

Number of the Fault 1 2 3 4

Actual value of RB3 in Ω 250 400 620 1000
Value of RB3 in Ω given by the method 251.5692 400.1235 618.0379 1000.9

The relative error εr of the outcomes placed in Table 6 is less than 2.8%; the number of
iterations ranges from 4–6; and the CPU time does not exceed 0.063 s.
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Table 6. Results of the diagnosis of faulty Block B for different values of the defective capacitor CB1
whose nominal value is 5 pF.

Number of the Fault 1 2 3 4

Actual value of CB1 in pF 1 4 6 50
Value of CB1 in pF given by the
method 1.0227 4.0245 6.0290 49.9900

Table 7 contains the results of the diagnosis of the faulty Block C. They were obtained
performing 4–5 iterations and are burdened with very small relative error, εr < 0.2%. The
CPU time does not exceed 0.095 s.

Table 7. Results of the diagnosis of faulty Block C for different values of the defective resistor RC1
whose nominal value is 75 Ω.

Number of the Fault 1 2 3

Actual value of RC1 in Ω 55 85 100
Value of RC1 in Ω given by the method 54.9579 85.0143 99.7647

4.2. Example 2

Let us consider the circuit, including the 150 MHz elliptical low-pass filter and the
DPTL terminated by a resistor, shown in Figure 5. The nominal values of the lumped
elements are indicated in the figure, whereas the nominal p-u-l parameters of the DPTL
are as follows: r = 1.3054 Ω

/
m, g = 2.8681 × 10−4 S

/
m, l = 2.5851 × 10−7 H

/
m,

c = 9.6710× 10−11 F
/

m, and the length d of the line is 0.7 m. The amplitude of the voltage
source E is 5 V, and the phase is 0◦, f = 100 MHz. The accuracy of the measurements of
the voltage amplitudes is 0.1 mV and of the phase 0.01◦. The convergence tolerances and
constants are: εx = 1× 10−6, ε f = 1× 10−5, Mit = 100, ξ = 10−5, and µ = 1.

E 

LB2RB1 

37.5 nH10 nH 

LB1 

CB3 

12 pF 

RC1 

9 pF 

50 Ω
50 Ω 

CB1 

C 

B

A 

8.5 pF

CB2

12.9 pF

CB4

18 pF

CB5

 
Figure 5. Circuit including the 150 MHz elliptical low-pass filter and the DPTL terminated by
a resistor.

We performed 39 diagnoses including 4 faults of Block A, 30 faults of Block B, and
5 faults of Block C. In all cases, the procedure for detecting the faulty block, described in
Section 2.1, gave the correct results.

The outcomes of the diagnoses of four faults of Block A are summarized in Table 8. In
11 cases (68.7%), the relative error εr of the results provided by the method was less than
1%; in the remaining five cases (31.3%) it is greater than 1%, but smaller than 2.2%. The
number of iterations for finding α, β, RC, and XC (Step 1) ranges from five to six and for
finding the p-u-l parameters (Step 2) from four to five.
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Table 8. Results of the diagnosis of faulty Block A including the DPTL.

r(Ω/m) l(H/m) × 107 g(S/m) × 104 c(F/m) × 1011

Nominal values 1.3054 2.5851 2.8681 9.6710

1. Actual values 1.2649 3.0252 2.4508 9.7331
Values given by the method 1.2518 3.0251 2.5047 9.7338
2. Actual values 1.2612 2.9270 2.5331 8.5413
Values given by the method 1.2698 2.9273 2.5043 8.5409
3. Actual values 1.2975 1.9332 3.8354 18.680
Values given by the method 1.3036 1.9329 3.7608 18.684
4. Actual values 1.0686 1.9524 3.7975 16.220
Values given by the method 1.0751 1.9525 3.7483 16.218

In Block B, all the elements can be diagnosed except CB1 and CB2, because the
sensitivities of the voltage of this block with respect to these elements are very small.
Consequently, for realistic measurement accuracy, variations of these elements have a very
small influence on the voltage. All the other elements of this block, RB1, CB3, CB4, CB5,
LB1, and LB2, were diagnosed. Tables 9–14 present 30 cases of the faults including five
faults of the resistor RB1 and five faults of each of the capacitors CB3, CB4, and CB5 and
the inductors LB1 and LB2.

The outcomes placed in Table 9 are very accurate, and εr < 0.01%. The number of
iterations ranges from four to six, and the CPU time of each of the diagnoses does not
exceed 0.1 s. To diagnose Fault 1, the proposed iteration Formula (9) was used because the
sequence generated by the iteration Formula (8) was not convergent.

Table 9. Results of the diagnosis of faulty Block B for different values of the defective resistor RB1
whose nominal value is 50 Ω.

Number of the Fault 1 2 3 4 5

Actual value of RB1 in Ω 10 30 65 75 150
Value of RB1 in Ω given by the method 10.0005 29.9986 64.9948 75.0044 150.0111

The findings presented in Tables 10 and 11 are very accurate (εr < 0.08%); the number
of iterations varies from four to five, and CPU time does not exceed 0.21 s.

Table 10. Results of the diagnosis of faulty Block B for different values of the defective capacitor CB3
whose nominal value is 9 pF.

Number of the Fault 1 2 3 4 5

Actual value of CB3 in pF 1 5 11.7 15 50
Value of CB3 in pF given by the method 1.0002 5.0024 11.701 14.997 50.001

Table 11. Results of the diagnosis of faulty Block B for different values of the defective capacitor CB4
whose nominal value is 12.9 pF.

Number of the Fault 1 2 3 4 5

Actual value of CB4 in pF 3.9 8 9 18 50
Value of CB4 in pF given by the method 3.8969 7.9999 8.9992 18.001 49.998

The maximum relative error of the results included in Table 12 is εr < 0.33%, and the
number of iterations in all the cases is two. The CPU time is 0.16 s.
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Table 12. Results of the diagnosis of faulty Block B for different values of the defective capacitor CB5
whose nominal value is 18 pF.

Number of the Fault 1 2 3 4 5

Actual value of CB5 in pF 1 10 12.6 22 50
Value of CB5 in pF given by the method 0.9967 10.002 12.602 22.002 49.999

The outcomes summarized in Tables 13 and 14 are very accurate; εr < 0.04%. The
number of iterations ranges from four to 14. The CPU time is 0.16 s.

Table 13. Results of the diagnosis of faulty Block B for different values of the defective inductor LB1
whose nominal value is 10 nH.

Number of the Fault 1 2 3 4 5

Actual value of LB1 in nH 5 7 15 25 50
Value of LB1 in nH given by the method Fail 7.002 14.996 24.996 50.003

Table 14. Results of the diagnosis of faulty Block B for different values of the defective inductor LB2
whose nominal value is 37.5 nH.

Number of the Fault 1 2 3 4 5

Actual value of LB2 in nH 5 26.3 32 47 80
Value of LB2 in nH given by the method 5.002 26.294 32.001 47.003 79.999

The relative error εr of the resistor values inserted in Table 15 is less than 0.02%. The
number of iterations varies from five to nine. The CPU time is 0.19 s. To diagnose Fault
1, the proposed iteration formula (9) was used because the sequence generated by the
iteration formula (8) was not convergent.

Table 15. Results of the diagnosis of faulty Block C for different values of the defective resistor RC1
whose nominal value is 50 Ω.

Number of the Fault 1 2 3 4 5

Actual value of RC1 in Ω 5 35 65 75 100
Value of RC1 in Ω given by the method 5.0006 34.999 64.995 74.989 99.999

4.3. Example 3

Figure 6 shows the circuit including three DPTLs, A1, A2, and A3, having the p-
u-l parameters: r = 1.6442 Ω

/
m, g = 2.0050 × 10−4 S

/
m, l = 3.6978 × 10−7 H

/
m,

c = 6.7608 × 10−11 F
/

m. The lengths of the lines are d1 = 0.7 m, d2 = 0.5 m, and
d3 = 0.4 m. The nominal values of the lumped elements are indicated in the figure; the
amplitude of the voltage source E1 equals 5 V; and the phase is 0◦. The other parameters
are as in Example 2.

The circuit of Figure 6 has a more complex structure than that shown in Figure 1. It
consists of three blocks, A1, A2, and A3, containing DPTLs and four blocks, B, C, D, and
K, including lumped elements. Similarly, as in Section 1, we assume that only one block
can be faulty and only one element of the lumped block can be defective. In the blocks
containing DPTLs, all the p-u-l parameters may deviate from nominal values due to a fault,
and all of them must be diagnosed. The diagnostic test of the circuit requires the input
and output voltages of each DPTL. The fault detection rule presented in Section 2.1 for
three-block circuits can be directly extended to the circuit of Figure 6. In particular, the
three-port Block K is faulty if Ĩ(1)K 6= Ĩ(1)(d1) , Ĩ(2)K 6= Ĩ(2)(0) , and Ĩ(3)K 6= Ĩ(3)(0).
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Figure 6. Circuit including three distributed parameter transmission lines.

In the circuit of Figure 6, we diagnosed three faults of each of Blocks A1, A2, A3, B, C,
and D and nine faults of Block K. In all these cases, the procedure for detecting a faulty
block gave correct outcomes.

The findings of the diagnoses of six faults of Blocks A1, A2, and A3 (24 parameters)
are placed in Table 16. In 18 cases (75%), εr < 1%, and in six cases (25%), 1% < εr < 4%.
The number of iterations in Step 1 ranges from 4–7 and in Step 2 from 4–5.

Tables 17 and 18 present the results of the diagnoses of two faults in each of Blocks
B, C, and D and six faults in Block K. To diagnose Block K, which is a three-port circuit,
an obvious modification of the procedure described in Section 2.3 is needed. The results
are very accurate; the number of iterations ranges from 5–15; and the CPU time does not
exceed 0.4 s. In three cases, corresponding to RB1 = 30 Ω, RK1 = 10 Ω, and RK3 = 2 Ω,
the iteration formula (9) was used because the iteration sequences generated by formula (8)
were not convergent.

Table 16. Results of the diagnosis of faulty Blocks A1, A2, and A3 including DPTLs.

r
(
Ω
/

m
)

l
(
H
/

m
)
×107 g

(
S
/

m
)
×104 c

(
F
/

m
)
×1011

Nominal values 1.6442 3.6978 2.0050 6.7608

1. Actual values 1.8767 3.5150 2.1100 7.4290

Line
Values given by
the method 1.8762 3.5150 2.1165 7.4289

A1 2. Actual values 1.4444 3.0397 2.4391 7.4035
Values given by
the method 1.4526 3.0395 2.4259 7.4931

1. Actual values 1.3485 3.2790 2.2610 8.4720

Line
Values given by
the method 1.3647 3.2788 2.1980 8.4728

A2 2. Actual values 1.9518 3.2190 2.3030 1.0010
Values given by
the method 1.9371 3.2186 2.3660 1.0010

1. Actual values 0.9852 3.5120 2.1110 6.4860

Line
Values given by
the method 1.0042 3.5119 2.0973 6.4859

A3 2. Actual values 1.8235 3.2190 2.3030 1.1220
Values given by
the method 1.8493 3.2210 2.2196 1.1211
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Table 17. Results of the diagnosis of faulty Blocks B, C, and D for different values of the defective
resistors RB1, RC1, and RD1.

Actual Value in Ω Value, in Ω, Given by the Method

RB1 30 29.999
55 55.000

RC1 45 45.001
100 100.001

RD1 50 49.999
150 150.011

Table 18. Results of the diagnosis of faulty Block K for different values of the defective resistors RK1,
RK2, and RK3.

Actual Value in Ω Value, in Ω, Given by the Method

RK1 10 10.000
75 74.997

RK2 10 10.004
50 50.005

RK3 2 2.002
90 90.006

5. Conclusions

Parametric fault diagnosis of analog circuits of very high frequency consisting of
a distributed parameter transmission line, as well as lumped linear passive and active
elements has not been discussed in the literature till now. This paper deals with the problem
and proposes a method that covers all aspects of the fault diagnosis. First, the faulty area
is determined, and then, the faulty component inside this area is located and its value
estimated. There are three areas in the circuit, called blocks, including the DPTL (Block A)
and two lumped circuits terminating the line (Blocks B and C). It is assumed that only one
block may be faulty and only one component of the faulty Block B or C can be defective.
The blocks may include IC devices if they can be represented by realistic linear models.
The example is the operational amplifier circuit designed so that the operational amplifiers
operate in the linear regions. In the DPTL, all the p-u-l parameters can deviate from their
nominal values, leading to the fault of the line. This concept can be directly extended to
the circuits, including more than one DPTL and more than three blocks, as illustrated in
Example 3.

The proposed diagnostic method employs voltage measurements from two terminals
of the DPTL, and no current measurements are required. It takes full advantage of the
measured amplitude and phase at one frequency only. Numerical examples reveal that
the method successfully determines the faulty block and the faulty element inside this
block. The obtained values of the faulty elements are quite accurate. The iterative method
utilized by the diagnostic method is effective, fast, and does not require great computing
power. The proposed iteration Formula (9) is useful when the standard Formula (8) fails.
In the numerical examples where such a situation occurred, it helps to find the solution.
The method is limited to single fault diagnosis, which occurs most frequently in analog
circuits. The temperature changes of the parameters are neglected because the temperature
coefficients of resistance and capacitance of the elements used in the circuits of very high
frequency have low values.

A drawback of the proposed diagnostic method is that, sometimes, it gives the actual
fault accompanied by a virtual one. In 2.2% of the diagnosed cases, the method failed.
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