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Abstract: Our daily life services are quickly becoming smarter with intelligence and information
through artificial intelligence (AI) and Big Data technologies. Parking services are one of the most
frequently used in our daily life-cycle. This parking application could be classified into several
features according to demands and properties, such as parking capacity balancing on a city-level
view, parking fee maximization for achieving the service provider demand, empty parking spot
notification within a parking lot, etc. This paper concentrates on parking space detection and alert
to users. Most smart services rely on smart mobile derives of users such as smartphones and
smartwatches. The proposed novel mechanism for smart parking is based on a smart device to gather
mobile sensing data such as users’ activity and position data. Acquired mobile data are analyzed via
machine learning technologies to provide dedicated parking services per user. Based on real testbed
setups on campus and the proof-of-concept implementation, the proposed localization can achieve
accuracy of a parking spot scale (2m-second guess 95%); moreover, it shows a much lower service
operation period of 6.8 times (34s) than the legacy approach (230s).

Keywords: smart parking; Internet of Things; Bluetooth Low Energy; status sensing; proximity
detection; anlaytics

1. Introduction

Nowadays, a wide range of smart systems are delivered as a result of the growth of
mobile networks, sensor networks, and the ubiquity of computing and cloud computing [1].
Smart systems for everyday demands such as parking, transporting and working have
been sustainedly developed to achieve higher system performance and efficiency [2–7].
However, such smartness for systems has led to the failure to address the experience of end
users since they have missed user situation and intent to deliver smart services [8,9]. For
instance, the current smart parking systems follow a steep learning curve, which requires
drivers to have an average computer literacy before they get familiar with the operating
environment of the smart parking application. Even this system is not well matched with
users’ personal demand and intent. Apparently, both the unfriendliness operation and
misunderstanding of user demands have severely affected drivers’ experiences both before
and after parking.

There is a diverse variety of car parks present in urban environments, such as on-
street parking lots, parking buildings, and underground parking garages. In a car park,
Global Positioning System (GPS) and WiFi signal strength based localization are commonly
employed for parking position detection of vehicles [2–14]. GPS is usually used to in-
dicate the position of a parking lot due to its large error scale and restriction in indoor
environments [15]. On the other hand, WiFi-based technologies such as WiFi fingerprint or
trilateration can offer meter-scale localization, but they are not precise and flexible enough
for vehicle position detection. If a car park is an outdoor parking lot, they do not effectively
meet requirements since signals are usually lower in outdoor environments. Moreover,
WiFi is an expensive technology considering the number of access points required for a big
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parking lot or multi-layered parking building. According to a state-of-the-art research [14],
the accuracy of WiFi fingerprint with one access point per 100 m2 is 8.5 m in an indoor place.
This means that WiFi-based techniques cannot achieve the approximately two meter-scale
localization required to distinguish each parking spot at indoor/outdoor locations.

Apple Inc. introduced iBeacon in 2013, and Google launched Eddystone in 2015,
which are Bluetooth low energy (BLE)-based beaconing systems. The beacons of such
systems are battery-functioned small devices that broadcast IDs to proximity periodically.
Up-to-date research has proposed more accurate localization or indoor position-based
applications [14,16]. Meanwhile, smart mobile devices have become popular for sensing
user behaviours and actions via embedded sensors on mobile devices such as GPS, ac-
celerometer, gyroscope and compass sensors [15–19]. This sensing can help to elucidate
the user situation. However, existing studies for BLE-beacon-based localization do not
report parking spot scale accuracy (i.e., to about 5 m [14]). Such user sensing technologies
could not support the smart parking application, which has more comprehensive processes
and scenarios since they have been designed for single-action scenarios to limit applying
sensed and signal data.

This paper proposes a novel smart parking system to breakthrough such restrictions of
previous studies in terms of positioning accuracy and user understanding, named the user-
Dedicated PARKing system (D-PARK). This newly proposed system extends the previous
work [10] that involved a smart parking mechanism with localization with static radio
channel setup and simplified user detection. D-PARK consists of three layers: (1) high-
resolution localization with dynamic channel data as a real-world setup, (2) comprehensive
user and vehicle status sensing, (3) user intent analysis relied on a concatenated denoising
autoencoder to improve user detection accuracy. D-PARK is developed with BLE-beacon
based IoT infrastructure, smart mobile devices with sensors and mobile applications and
cloud systems. The signals of BLE beacons are analyzed and processed for high-resolution
localization against different scanning intervals. All sensor and signal data derived by
smart mobile devices such as GPS, beacon, WiFi, accelerometer, gyroscope, and illumination
are investigated to determine their feasibility and applicability for users and vehicles’ status
sensing in parking scenarios. Based on such investigation and status sensing, D-PARK
could provide user intent detection for accomplishing the ultimate goal of this paper,
i.e., high-level user experiences in parking places. In this paper, the proof-of-concept
over a real testbed at the outdoor on-street parking lot on the campus is implemented.
All experiment results are conducted through real testbed and implementation. Figure 1
illustrates architectural overviews and core layers of D-PARK.

Networking InfrastructureBLE Beacons Smart Mobile Device & User Cloud System
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Figure 1. D-PARK architecture overview and testbed of outdoor parking lot.
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The rest of this paper is structured as follows: Section 2 explains related work; Section 3
presents high-resolution localization; Section 4 addresses user/vehicle status sensing and
user intent detection with data analysis data from mobile devices and shows the results of
the evaluation; and Section 5 concludes the paper and provides future work.

2. Related Works

The previous studies on smart parking systems have mainly dealt with available
parking space search and parking fee reduction among multiple parking lots. For these
purpose, the SPARK scheme [2] proposes a parking scheme for large parking lots through
vehicular communication. SPARK provides the drivers with a real-time parking navigation
service and friendly parking information dissemination. In addition, another system [3] is
based on intelligent resource allocation, reservation, and pricing. The proposed system
solves the current parking problems by offering guaranteed parking reservations with the
lowest possible cost and searching time for drivers and the highest revenue and resource
utilization for parking managers. The other system [4], named iPaker, is proposed for smart
parking for an urban environment. iPaker assigns and reserves an optimal parking space
based on the driver’s cost function, which combines proximity to destination and parking
cost. In [5], C. Tang et al. provides an available parking lot information service in a citywide
area by the vehicular ad hoc networking (VANET) and fog computing technologies. In
addition, [6] introduces the on-street parking place search technology based on sonar and a
camera embedded on a vehicle that has GPS devices and cellular communication channels.

Indoor positioning is a mature research field [11–14,16]. The focus is on positioning
through pattern-matching the current signal detection to a previously surveyed map of sig-
nal strengths. Today, the most common technology used in indoor places is WiFi [14]. WiFi
positioning is tightly integrated into many mobile platforms, providing urban localization
on the scale of about 10 m. WiFi signal pattern matching, or fingerprinting, is the de-facto
localization technique for indoor positioning on user devices today. Other candidates for
radio fingerprinting are cellular and Bluetooth signals. Cellular sources are typically too
sparsely distributed to provide good indoor fingerprints, and most notably, they require
very lengthy scan times. The recent introduction of the Bluetooth 4.0 specification has
potentially addressed these problems via Bluetooth Low Energy (BLE). The recent work
for indoor BLE beacon fingerprinting [14] shows an accuracy to about 5 m.

Recent smart interactive systems are commonly based on notification by BLE adver-
tising to smart mobile devices such as smartphones and tablets. When a user receives a
notification in terms of availability of interaction, i.e., smart mobile devices receive a BLE
advertising message, the user can recognize this smart method. A smart home applica-
tion is built with BLE beacons for interactive services and energy saving [16]. Interactive
digital signage is exploited to increase the effectiveness of advertising [20]. For the edu-
tainment sector such as museums, galleries, exhibition halls, and classrooms, smart mobile
devices–beacon interactive features can enhance the users’ learning experiences [21].

In consequence, the existing smart parking systems are mainly based on the high
utilization of parking spots over multiple parking lot environments. The accuracy of
locating cars is merely a car park level or parking zone scale, based on GPS or WiFi, in
common. However, D-PARK provides an empty parking spot notification rather than
achieving high utilization, while also obtaining the position in high-resolution by BLE
rather than by GPS or WiFi.

3. D-PARK: Dedicated Smart Parking System

Urban public spaces are being progressively fitted with Internet of Things (IoT) de-
vices composed of ambient sensors, actuators and beacons running Bluetooth Low Energy
(BLE) that help to offer continuous observability and interactivity from/to physical en-
vironments. Each beacon device constantly broadcasts its unique identifiers to nearby
smart mobile devices to perform creative interactions between a mobile application and an
associated cloud system for users in close proximity. So, the clustering of such paradigms



Electronics 2021, 10, 541 4 of 14

(i.e., BLE beacon-based IoT infrastructures, smart mobiles and cloud computing) is clearly
a compelling and timely research issue. Figure 1 shows this joined architecture for smart
applications. Here, the BLE beacon infrastructure is deployed at indoor place as well as
outdoor place to support user positioning for parking services. This smart parking is
based on the smart mobile device of users who are the drivers in a parking lot. Such user
location and user status are analyzed in the cloud to provide parking spot notifications,
easy checkout, and building entrance/parking place information. Figure 1 also presents
the testbed of proposed parking famework, named D-PARK. Then, based on this systemic
infrastructure, D-PARK is primarily operated as mobile applications and a system cloud.
In mobile applications, D-PARK has three key functionalities as follows:

1. High-resolution localization through signal processing of BLE beacons with machine
a learning technology with dynamic scanning interval;

2. User and vehicle status sensing via on data processing of all sensor and signal data of
a smart mobile device with machine learning;

3. User intent detection based on the status sensing and inter-operation with a
cloud system.

In addition, in the cloud, there are four main functionalities such as smart space
environmental and deployed equipment manager, user and content managers for parking
and its relevant services, and push notification manager.

3.1. High-Resolution Location Estimation

In order to empower a smart parking system with capabilities to make recommenda-
tion and analytics based on occupancy rate, localization of the user/vehicle plays a pivotal
role. However, to enable this vision, construction of reliable and scalable infrastructure and
the corresponding localization method is vital. In this section, a high-resolution proximity
estimation system, a novel localization method that utilized BLE beacon infrastructure, is
introduced. Commonly, BLE beacons are not suitable for fine-grained localization appli-
cations due to its severe fading effects. Consequently, BLE beacons were mainly used for
applications that require proximity detection, where each beacon was mapped to a single
physical location to provide contextual/locational information. However, proximity-based
infrastructure is quite expensive due to the number of beacons required. The proposed
system attempts to improve the existing proximity-based infrastructure, by compromising
accuracy for its deployment cost.

3.1.1. Difference of Scanning Interval

To conduct this experiment, a testbed of the BLE beacon infrastructure was constructed,
as shown in the figure. The testbed was composed of 10 BLE beacons, configured at an
advertising interval of 800 ms and a transmission power of 0 dBm. To collect training data,
the received signal strengths of BLE beacons at each of the parking spots were recorded
for 1 min. Raw data were constructed with the following elements: time of reception is
ms, mac address of BLE beacon, RSSI value, parking spot where the signal was received.
Raw data consisted of 1425 training examples. Therefore, raw data are a 4× N matrix,
where N is the number of training examples.

Raw data are conditioned and pre-processed for the training process. Firstly, raw
data are separated into feature and output matrices. Both of these matrices are converted
into sparse matrices of dimension d× N and k× N, respectively, where d is the number
of features or RSSI values of each beacon, and k is the number of classes or parking spot
locations. During the pre-processing stage, raw data are averaged over a given scanning
interval to create a new feature matrix of the same dimensions. Once the matrices are
conditioned and pre-processed, they are divided into training and validation set with a
ratio of 4:1.
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Logistic regression was used to predict the current location of the user, under the
assumption that the user has just parked. Softmax function was used to estimate the
probability that the user was at a certain location i, given the feature vector, x:

P̂(Ci|x) =
exp (wT

i x + wi0)

∑i
j=1 exp (wT

j x + wj0)
, (1)

where Ci is the class i, x is the feature vector, wj is the weight for jth class, and wj0 is
the constant term for the given weight. The cross-entropy function was used as the cost
function:

E(w|x) = − 1
m

m

∑
l=1

k

∑
i=1

r(l)i log P̂(Ci|x(l)). (2)

To train this system, the gradient descent algorithm was employed, and the corre-
sponding updated equation was derived for the weights based on the cross-entropy func-
tion:

∆wj = η ∑
l
(r(l)j − y(l)j )xl ,

∆wj0 = η ∑
l
(r(l)j − y(l)j ),

(3)

where ∆wj0 is the update rule for the constant terms, ∆wj0 is the update rule for features in

training vectors, η is the update rate, y(l)j is the predicted class, and r(l)j is the actual class.
To investigate the effect of the scanning interval on the accuracy of the system, the

system was trained multiple times with different values of scanning interval ranging from
1000 ms to 30,000 ms. Figure 2 shows the accuracy of the system tested on the validation
sets 10 times. It can be seen that at scanning interval of 10 s, the accuracy of first guess is
85%, second guess, 95%, and third guess, nearly 100%. As expected, a positive correlation
between the scanning interval and accuracy can be observed. However, it is interesting to
note that these values converge at some point when the scanning interval is too long.
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Figure 2. Accuracy of the system plotted against scanning interval.

3.1.2. Concatenated Denoising Autoencoder

Urban public spaces are being progressively fitted with Internet of Things (IoT) devices
composed of ambient sensors, actuators and beacons running Bluetooth Low Energy (BLE)
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that help to offer continuous observability and interactivity from/to physical environments.
Each beacon device constantly broadcasts its unique identifiers to nearby smart mobile
devices to perform creative interactions between mobile applications and an associated
cloud system for users in close proximity. So, the clustering of such paradigms (i.e.,
BLE beacon based IoT infrastructures, smart mobiles and cloud computing) is clearly a
compelling and timely research issue.

D-PARK detects the user’s location in the parking lot using a mobile device and
analyzes whether the user is inside or outside the vehicle (user status). As shown in
Figure 3, this system consists of three elements: BLE beacon, mobile devices, and edge
server. BLE beacons send the broadcast signal and the mobile devices collect the BLE
beacon signals, which are used to estimate the user’s location. The edge server analyzes
the user’s location. The system models are detailed as follows.

sykim77kr@gmail.com7

Denoising Autoencoder – Denoising (2/2)

Smartphone

Collect 
BLE Signal 

out of the Car
(noisy data)

Collect 
BLE Signal
in the Car

(noisy data)

Denoising 
Autoencoder

Collect 
BLE Signal 

out of the Car
(denoised data)

Collect 
BLE Signal
in the Car

(denoised data)

Figure 3. Concatenated Denoising Autoencoder Framework.

In mobile devices, the sensor data and radio signal strength indicators (RSSIs) of BLE
beacons are collected. RSSI of BLE beacons are collected both in and out of the vehicle. The
mobile device sends the sensor data and RSSIs to the edge server.

The edge server estimates the user’s location and state by using sensor data and
RSSIs, which are collected by the user’s mobile device. In the other words, the edge server
trains the deep learning model with these data. We use and compare the train Multi-layer
Perceptron (MLP), 1D Convolutional Neural Network (1D-CNN), and Support Vector
Machine (SVM) models [22]. The process of estimation in the edge server is as follows.

1. The raw data from inside the vehicle pass denoising autoencoder.
2. The denoised data are grouped and the averages are calculated.
3. The averaged data pass converting autoencoder and become the data with the form

of the data from outside.
4. The deep learning model estimates user’s location from converted data.
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The RSSI data contain a lot of noise, which obstructs the exact estimation of the user’s
location. We remove the noise by using a denoising auto encoder, which results in Figure 4.
The inputs of the denoising autoencoder are raw (noisy) data and the noice is thereby
mitigated from the raw data. In the training process, we use the input and the result
data. The input data are raw RSSIs of BLE beacon and the result data are RSSIs, which
mitigated noise by using the measured value. The values are calculated as mean and
standard deviation of the data with the same label. By doing so, the data that are far from
the mean can be modified to make them closer to the mean.

a)

b)

Denoising Autoencoder Beacon 03
spot 01 spot 02 spot 03 spot 04 spot 05 spot 06 spot 07 spot 08 spot 09 spot 10

Figure 4. Denoising RSSI Graphs: (a) noised RSSI (b) RSSI after denoising.

A converting autoencoder converts the form of the grouped data from the in-car
data into the out-car data in Figure 5. By doing so, the system model can estimate the
user’s location from using only one deep learning model regardless of the user in-car or
out-car situations.

a)

b)

Converting Autoencoder Beacon 03
spot 01 spot 02 spot 03 spot 04 spot 05 spot 06 spot 07 spot 08 spot 09 spot 10

Figure 5. Converting RSSI Graphs: (a) RSSI inside a Car (b) converting to outside RSSI.
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In the proposed system, the ways of preprocessing the data are different depending on
whether the data are from inside the vehicle or outside the vehicle. However, it is difficult
to find out whether the user is inside or outside the vehicle by using only RSSIs of BLE
beacons. That is why we use sensor data collected from a smartphone. Among the lots
of sensor data from the smartphone, the magnetometer shows very meaningful data for
detecting user status related to the vehicle. By training MLP, 1D-CNN, SVM model using
sensing data from the magnetometer, we predict whether the user is inside or outside the
vehicle. As a result, it is possible to preprocess the data appropriately for the user status.

Unlike the work in [10] which is based on separated networks for in and out of a car
to detect location, SVM has 74.5% accuracy for the out-car data and 92.2% accuracy for the
in-car data in the same trained model. MLP has 98.1% accuracy for the out-car data and
94.9% accuracy for the in-car data. CNN has 98% accuracy for the out-car data and 94.5%
accuracy for the in-car data. The highest accuracy of out-car data is 98.1% and that of in-car
data is 94.9% in the same trained model.

3.2. Status Sensing and Intent-Based Reactions

This subsection explains procedures of user and vehicle status sensing, which are
addressed in the Table 1, through BLE beacon signals, GPS, accelerometer, magnetic sensor,
and light sensor. Although many previous studies mentioned restriction of some wireless
signals and sensors are not affordable and feasible for user status sensing or indoor/outdoor
positioning, we have done our own preliminary experiments on all possible sensor and
signal data. By preliminary experiments, we have ensured that temperature, WiFi, cellular,
and pressure factors were not considered for this parking system case. On the other
hand, light sensors, magnetic sensors, accelerometers and GPS show very meaningful
data for detecting user and vehicle status. As shown in Figure 6, light sensor data are
dramatically decreased when a user gets inside a building. However, users do not carry
their smart mobile device on their person every time. So, here we also consider alternative
meaningful data so that GPS is taken into consideration. Figure 6 illustrates the number of
the Satellite for GPS detection from 13 to 1. In D-PARK, the criteria are chosen based on
these preliminary experimental results for user and vehicle status sensing.

Table 1. Status, Intent and Reactions.

Case No. Status and Intent Reactions

Come

1 Approach to the parking lot Welcome message

2 Search a parking spot Empty/preferred parking spot recommendation
and navigation

3 Waiting for parking Keeping on recommendation

4 Parked/Get off the car Parked spot notification and the nearest entrance
recommendation according to user goals

5 Get into the associated building ‘Welcome Building’ message & direction notification to the
destination of user

Return
6 Return to the parking lot Notifying parked spot and direction to it
7 Pay Informing parking fee
8 Get in the car Notifying direction to the exit

Leave 9 Leaving Keep on notifying
10 Left ‘Good-bye’ message
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Walk outside Get inside

Walk outside Get inside

Figure 6. Illumination and GPS change between inside/outside a building.

In addition, the comparison of accelerometer and magnetic sensing data shown in
Figure 7 explains interesting and meaningful results. An accelerometer is the most common
sensor for behavior sensing by smart mobile devices; however, it is too sensitive. That is, the
data of an accelerometer are measured highly frequently and quickly change and fluctuate,
so it is not easy to differentiate user status and behavior. Hence, D-PARK considers a
combination of acceleromater data with magnetic sensor data, as shown in Figure 7.

The flow chart of Figure 8 presents D-PARK operations for smart parking with lo-
calization, status sensing and intent-based reactions. Each status, intent and associated
reactions are explained in Table 1. Based on the status sensing technique such as detecting
‘walking’ or ‘driving’, user intent could be derived from joining of not only status sensing
results but also BLE beacon signal status. Such comprehensive detection is able to increase
the status sensing accuracy, as shown in Figures 6 and 7. Table 2 addresses user intent
detection by comprehensive status sensing of users and vehicles.
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Get in 

Get in 

Walk

Walk Sit down

Sit down

Figure 7. Accelerometer and magnetic data change in/out of a car.

Table 2. User Intent Detection.

Intent Methodology

Parking spot search After entrance beacon detection;
Driving status

Waiting for parking Driving, then Stop;
Same beacons detection

Building entrance search Parked;
Walking

Parked spot search Getting outside;
Beacon detection again

Payment Walking;
Detecting beacons of payment machines

Leaving
Getting in the car;

Driving;
To-exit beacon detection
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Figure 8. D-PARK operation flow chart.
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4. User Service Experience Experiment

This section shows the proof-of-concept prototype to implement and evaluate the
novel positioning mechanism and the new parking service paradigm. To implement D-
PARK, this paper takes into account a smart parking lot on the campus with eleven BLE
beacons running the iBeacon protocol. Figure 1 illustrates the testbed on the campus
parking lot nearby a building. In terms of a cloud system, an apache, a MySQL, and a
tomcat were set up on a desktop. The cloud resources are utilized for content delivery
by BLE beacon IDs and service management. A mobile appliation running Android 6.0
was developed. For people sensing, the patterns and histories of BLE beacon and GPS
signal reception and the sensing from sensors on the phone such as accelerometer and
magnetic were analyzed. The experiments were fulfilled for positioning accuracy of our
high-resolution proximity estimation mechanism and the level of user experience for total
experience time and complication of using the system in parking situations. Table 3 details
the system environments.

Table 3. Experimental environments.

Mobile OS Android 8.0

Edge OS Ubuntu 16.04 LTS

Number of beacons 3

BLE beacon broadcast interval 100 ms

Number of parking spot 8 for parking spots,
2 for parking in the areas with no lines

Number of collected data (per parking spot) 6000

Figure 9 illustrates the average service utilization time for the parking lot service to
determine the service smartness. The legacy method means that combined service app
utilization in the parking lot is based on existing smartphone apps to search the parking lot
and the entrance of the building on the map and a manual parking place search by walking
around the parking lot, while the developed app that relys on the proposed framework is
solely exploited for the parking service. The legacy approach shows a much longer time
period of 6.8 times (230 s) than the proposed method (34 s). Hence, according to this total
utilization time for the entireity of the parking service procedures, users should experience
much faster and dedicated service provisioning.

Legacy method 
combination

Proposed 
framework
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Se
rv

ic
e 
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n 

Ti
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e 
(s
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Figure 9. Service utilization time.
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5. Conclusions and Future Work

This paper has proposed a user-dedicated smart parking scheme with high-resolution
proximity estimation, user/vehicle status sensing and user-intent-based smart service. In
this scheme, the first study of BLE-beacon-based outdoor localization with a parking spot
scale is reported. In addition, the data from sensors and wireless signals from smart mobile
devices have been exploited to provide a comprehensive user and vehicle status sensing
mechanism. Based on the sensing mechanism, the cloud-smart mobile device interaction
was also implemented for intent-based smart service delivery to users in parking lots.
The proof-of-concept shows implementation of this strategic system and the experimental
results prove the system improves the performance of parking service operations.

In future work, we will add dynamic occupancy ratio analytics to improve user
experience regarding finding the right parking spot at the right time. Furthermore, social
computing will be adopted on the cloud system for achieving better user preference
understanding for more accurate user intent detection. In addition, all technologies will
be experienced by practical users for real surveys of their experiences with fine-grained
parking service utilization points.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1I1A3A01062944).
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