
electronics

Article

Two Stage Continuous Gesture Recognition Based on
Deep Learning

Huogen Wang 1,2

����������
�������

Citation: Wang, H. Two Stage

Continuous Gesture Recognition

Based on Deep Learning. Electronics

2021, 10, 534. https://doi.org/

10.3390/electronics10050534

Academic Editor: Hugo Proença

Received: 2 December 2020

Accepted: 20 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;
hw823@uowmail.edu.au

2 Hithink RoyalFlush Information Network Co., Ltd., Hangzhou 310012, China

Abstract: The paper proposes an effective continuous gesture recognition method, which includes
two modules: segmentation and recognition. In the segmentation module, the video frames are
divided into gesture frames and transitional frames by using the information of hand motion
and appearance, and continuous gesture sequences are segmented into isolated sequences. In
the recognition module, our method exploits the spatiotemporal information embedded in RGB
and depth sequences. For the RGB modality, our method adopts Convolutional Long Short-Term
Memory Networks to learn long-term spatiotemporal features from short-term spatiotemporal
features obtained from a 3D convolutional neural network. For the depth modality, our method
converts a sequence into Dynamic Images and Motion Dynamic Images through weighted rank
pooling and feed them into Convolutional Neural Networks, respectively. Our method has been
evaluated on both ChaLearn LAP Large-scale Continuous Gesture Dataset and Montalbano Gesture
Dataset and achieved state-of-the-art performance.

Keywords: gesture segmentation; gesture recognition; weighted rank pooling; dynamic image; 3D
Convolutional LSTM Network

1. Introduction and Related Works

Gesture recognition is an attractive research direction because of its wide application
in virtual reality, human–computer interaction, and sign recognition. However, it is also
a big challenge for the research of continuous gesture recognition, because the number,
order, and boundaries of gestures were unclear in a continuous gesture sequence [1]. Both
the temporal segmentation and the recognition problems need to be solved in continu-
ous gesture recognition. In fact, temporal segmentation and gesture recognition can be
solved separately.

One typical challenge in continuous gesture recognition is temporal segmentation.
The position and motion of hands were often employed for temporal segmentation [2,3].
However, these methods were sensitive to the complex background and built upon accurate
hand detection. Sliding window is also a promising skill to obtain gesture instances with
3D convolutional neural networks (3DCNN) [4]. Therefore, the computation of 3DCNN
is expensive and the length of the sliding volume is fixed. To overcome the drawbacks
of these works, a binary classification is proposed for temporal segmentation. As shown
in Figure 1, video frames can be classified into gesture frames that cover useful hand
movement and transitional frames between adjacent gestures. We believe that appearance
information and hand motion information are complementary in temporal segmentation.
Therefore, a novel temporal segmentation method was proposed to distinguish between
gesture frames and transitional frames by combining both appearance information and
hand motion information.
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Figure 1. The sample gesture sequence. A continuous gesture sequence is composed of gesture frames and transitional
frames between two gestures. We found that both the appearance information and hand motion information are useful for
temporal segmentation.

After temporal segmentation, a continuous gesture sequence can be divided into
several isolated gesture sequences. Therefore, isolated gesture recognition methods can
be employed for the final recognition. Several attempts have been made to recognize ges-
tures from RGB-D sequences with deep learning, including ConvNets combined with an
RNN [5–10], 3D CNN [11–19], Two-stream CNNs [20–26], and Dynamic Image (DI)-based
methods [27–32]. However, we argue that appropriate gesture recognition methods need to
be selected according to the difference characteristics of RGB modality and depth modality.
Therefore, we propose a novel gesture recognition network, which deals with RGB and
deep modality in different ways, respectively. For the RGB modality, the proposed method
adopts 3D ConvLSTM [9] to learn spatiotemporal features from video frames of a RGB se-
quence and its saliency sequence. An example of a RGB sequence and its saliency sequence
was shown in Figure 2. For depth modality, inspired by the outstanding performance of
rank pooling [27,28,30,31,33–35], this paper employs weighted rank pooling [36] to encode
depth sequences into Depth Dynamic Images (DDIs). To overcome temporal information
loss, DMDI is also extracted from the absolute differences (motion energy) between con-
secutive frames of a depth sequence with weighted rank pooling. Then, both DDIs and
DMDIs are fed into ConvNets for final recognition. Finally, multiple 3D ConvLSTMs and
ConvNet are fused together by late fusion.

Figure 2. Illustration of a RGB sequence (top) and its saliency sequence (bottom).

The proposed method achieved state-of-the-art performance on the ChaLearn LAP
ConGD Datasets [37] and Montalbano Gesture Recognition Dataset [38]. Part of the
work [39] was reported in Chalearn Challenges on Action, Gesture, and Emotion Recog-
nition: Large Scale Multimodal Gesture Recognition and Real versus Fake expressed
emotions @ICCV17 [40]. The key contribution of this paper is to segment the continuous
gesture with both the appearance information and the hand motion information, and to
encode the geometric, motion and structural information based on the different characteris-
tics of the RGB modality and depth modality. Compared with the conference paper [39],
the extension includes:

1. Temporal segmentation with both the appearance information and the hand
motion information;
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2. The bidirectional rank pooling in [39] is replaced with the weighted rank pooling [36]
to capture sequence-wide temporal evolution;

3. The method is also evaluated on Montalbano Gesture Dataset in addition to the
ChaLearn LAP ConGD Datasets and state-of-the-art results are achieved;

4. More analysis and discussion are presented in this paper.

The remainder of this paper is organised as follows. Section 2 gives the details of the
proposed temporal segmentation and gesture recognition method. Section 3 presents the
experiments to verify the effectiveness of the proposed method and the discussions. The
paper is concluded in Section 4.

2. Proposed Method

As shown in Figure 3, our proposed method consists of two steps: temporal segmen-
tation and gesture recognition. Given a continuous gesture sequence, we must determine
beginning and ending frames of gestures, this problem refers to temporal segmentation.
Then, each segmented gesture must be assigned a label.

Figure 3. The overview of our proposed method for continuous gesture recognition. The proposed
method consists of two phases: temporal segmentation and gesture recognition.

2.1. Temporal Segmentation

As shown in Figure 1, video frames can be divided into gesture frames and transition
frames with a binary classification problem. To address this problem, both the appearance
information and the hand motion information are employed to classify video frames in RGB
and depth sequences. Generally, one will put their hands down after performing a gesture.
Therefore, hand positions can be a wise way to realize temporal segmentation. Faster
R-CNN [41] was adopted to detect the hand regions, due to the excellent performance of
Faster R-CNN in object detection. Then, the height of hands in each frame was obtained
and the average height of the initial several frames was treated as the height threshold.
As shown in Figure 4, if one hand was first higher than the height threshold, it could be
considered as the beginning of a new gesture. If both hands were lower than the height
threshold, it could be considered as the ending of a gesture.

Figure 4. An example of the temporal segmentation result with hand positions for a continuous
gesture sequence.
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To take full advantage of the appearance information, two stream ConvNets were
used for temporal segmentation. As shown in Figure 5, two stream ConvNets are combined
by late fusion. The details of the training are presented in Section 3.1.1. We can use this
method to assign “transition frames” or “gesture frames” to each frame.

Figure 5. Two stream Convolutional Neural Networks (CNNs) for temporal segmentation.

Finally, the segmentation result was obtained by the fusion of both the above results.
As shown in Figure 6, the beginning and the end of each gesture are typically transitional
frames. The middle frame of transitional frames is treated as the final boundary between
two gestures.

Figure 6. An example of the temporal segmentation results. The transitional frames between adjacent
gesture are the boundaries. The sequence is segmented into three isolated gesture sequences, the
middle point of transitional frames is defined as the boundary of two gestures.

2.2. Proposed Gesture Recognition Network

Taking into account the different characteristics of the RGB and depth modality, a
novel gesture recognition framework is proposed. The overview of the proposed gesture
recognition framework is shown in Figure 7.
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Figure 7. The overview of the proposed gesture recognition framework.

2.2.1. Gesture Recognition for Depth Modality

Firstly, four sets of dynamic images, including Depth Dynamic Images (DDIs) and
Depth Motion Dynamic Images (DMDIs), are generated from a depth sequence through
bidirectional weighted rank pooling [36]. Weighted rank pooling takes into account the
fact that frames in a sequence and regions in frames have varying importance.

Construction of Dynamic Images

Dynamic images are formed by applying weighted ranking pool in a bidirectional
way directly to the pixels of the video sequence. DDIs are generated from depth sequence,
whereas DMDIs are constructed from the absolute differences between consecutive frames
through an entire depth sequence. In this paper, the temporal weight of the frame is
calculated with the average flow magnitude and the spatial weight of each pixel is the flow
magnitude of that pixel. Then each dynamic image is fed into a ConvNet for classification.
Figure 8 gives an example of the dynamic images, showing that DMDIs can be used as a
complement to DDIs to preserve both structural information and motion cues.

2.2.2. Gesture Recognition for RGB Modality

The 3D ConvLSTM network proposed in Zhu et al. [9] includes input preprocess-
ing, 3D Convolutional Network (3D CNN), Convolutional LSTM (ConvLSTM), Spatial
Pyramid Pooling (SPP), Fully Connected Layer (FC), and Softmax. Input preprocessing
adopts uniform sampling with temporal jitter based on pyramid input to sample each
sequence into a fixed length. Then, the video sequence is fed into the 3D CNN [12] to learn
short-term spatiotemporal features. Two-level ConvLSTM is adopted to learn long-term
spatiotemporal features from short-term spatiotemporal features. The output of the top
ConvLSTM layer is fed into SPP [42]. The full-connected layer is added on the top of SPP
and connected to Softmax. Different from [9], both RGB sequence and its saliency sequence
extracted using the algorithm described in [43] are fed into the 3D ConvLSTM networks.

2.2.3. Score Fusion for Classification

Given a pair of RGB and depth video sequences, the RGB sequence and its saliency
sequence are fed into trained 3D ConvLSTM networks, and DDIs and DMDIs are fed into
trained ConvNets separately. The outputs of all networks are nomalized using L1 norm
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and fused by average-score fusion in an element-wise way. The index of the max score in
the resultant vector is assigned as the label.

Figure 8. Samples of generated forward and backward Depth Dynamic Images (DDIs) and Depth Motion Dynamic Images
(DMDIs) for gesture Mudra1/Ardhapataka, the left images are dynamic images for forward, the right images are dynamic
images. From top to bottom: DDIs and DMDIs.

3. Experiments

The proposed method was evaluated on ChaLearn LAP ConGD Dataset [37] and
Montalbano Dataset [44]. The evaluation protocols of continuous gesture recognition is
Jaccard index (the higher the better). The network training and experimental results of the
proposed methods on the dataset were reported.

3.1. Network Training
3.1.1. Network Training for Temporal Segmentation

To train the ConvNets for temporal segmentation, a dataset was collected for the
binary classification. In the dataset, training samples of the class “transitional frames” were
collected from eight frames around the bounary of two gestures, and training samples of
the class “gesture frames” were picked from the rest frames. VGG-16 [45] was fine-tuned
for temporal segmentation from the pre-trained models on ImageNet [29]. Both networks
were trained using mini-batch SGD with the momentum and weight decay being set to
0.9 and 0.0001, respectively. The batch-size was 64. The activation functions in all hidden
layers were RELU. To fit the input size of VGG-16, the input images were resized into
224 × 224. The initial learning rate was 0.01 and decreased to 1

10 its every 40K iterations.
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The training underwent 90K iterations. The VGG-16 was implemented with Tensorflow
and trained on one TITAN X Pascal GPU.

3.1.2. Network Training for Depth Modality

Four ConvNets were trained on the DDIs and DMDIs individually. In this paper, the
ResNet-50 [46] was adopted as the ConvNet model. For ChaLearn LAP ConGD Dataset, We
fine-tuned the ConvNets for DDIs and DMDIs with pre-training models on ImageNet [29].
The networks were fine-tuned for Montalbano Gesture Dataset based on the models trained
on ChaLearn LAP ConGD Dataset. The data augmentation such as horizontal flip and
standard color augmentation was used. We adopted batch normalization right after each
convolution and before activation function. All hidden weight layers used the RELU. The
network weights were learned using mini-batch SGD with the momentum and weight
decay being set to 0.9 and 0.0001, respectively. The batch-size was set to 16. To fit the input
size of ResNet-50, all inputs were resized to 224 × 224. The learning rate was initially set to
10−4 and then dropped to its 1

10 every 40K iterations. The total training iterations was 90K
and early stopping was also used to reduce the overfitting. The optical flow was extracted
by the TVL1 optical flow algorithm implemented in OpenCV with CUDA. The ResNet-50
was implemented with Tensorflow and trained on one TITAN X Pascal GPU.

3.1.3. Network Training for RGB Modality

The 3D ConvLSTM was trained separately on RGB sequences and saliency sequences.
For ChaLearn LAP ConGD Dataset, the network was fine-tuned on RGB modality from
the pre-training model on SKIG [47] provided by Zhu et al. [9] and then this model
was fine-tuned on saliency sequences. The network was fine-tuned for the Montalbano
Gesture Dataset based on the models trained on ChaLearn LAP ConGD Dataset. Batch
normalization was introduced to accelerate the training processes. The learning rate was
set to 0.1 and then dropped to its 1

10 every 15K iterations. The weight decay was initially
0.004. At most 60K iterations are needed for training. The batch-size was set to 13, the
number of frames in each clip was 32, and each image was cropped into 112 × 112. The
3D ConvLSTM was implemented based on the Tensorflow and Tensorlayer platforms and
trained on one TITAN X Pascal GPU.

3.2. Evaluation of Different Settings and Comparision
3.2.1. Temporal Segmentation Evaluation

To evaluate the effectiveness of the proposed temporal segmentation method, we
compared the performance of the proposed temporal segmentation method with the one
of only using the hand motion information and the one of only using the appearance
information on ChaLearn LAP ConGD Dataset. The continuous gesture sequence was
divided into isolated gesture sequences with different segmentation methods, and then the
isolated gesture sequences were recognized with our proposed gesture recognition network.
The comparison on the validation set of Chalearn LAP ConGD Dataset is shown in Table 1.
Our proposed temporal segmentation method outperforms the method with only the hand
motion information used and only the appearance information used. These results also
demonstrated that the hand motion information and the appearance information were
complementary in temporal segmentation.

Table 1. Comparison of the performance of the proposed temporal segmentation method with the
one of only using the hand motion information and the one of only using the appearance information
on on the validation set of ChaLearn LAP ConGD Dataset.

Segmentation Methods Mean Jaccard Index

Hand motion information 0.5103
Appearance information (two stream CNNs) [39] 0.5214

Proposed segmentation method 0.6453
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3.2.2. Rank Pooling vs. Weighted Rank Pooling

Table 2 compares the performance using rank pooling and weighted rank pooling
on the validation set of ChaLearn LAP ConGD Dataset. The results of three groups rank
pooling are listed, including a convenient rank pooling, different spatial weight estimation
methods, and different temporal weight estimation methods. In the second group, flow-
guided aggregation is better than background-foreground segmentation and salient region
detection. The foreground area was segmented by the most reliable background model
(MRBM) [48], and the salient region was extracted by global contrast-based salient region
detection [49]. The spatial weight of the pixel in the foreground area/the salient region
is assigned to 1. Otherwise, the spatial weight is assigned to 0. In the third group, the
flow-guided frame weight is better than the selection key frames. The key frames were
selected by an unsupervised learning method [50]. The temporal weight of key frames is
assigned to 1, and the temporal weight of other frames is assigned to 0. These results show
that flow-guided aggregation method outperforms rank pooling 0.0401 and flow-guided
frame weight method outperforms rank pooling 0.0378. This verifies that weighted rank
pooling are more robust and more discriminative in gesture recognition.

Table 2. Comparison of recognition accuracy using rank pooling and weighted rank pooling on the
validation set of ChaLearn LAP ConGD Dataset.

Methods Mean Jaccard Index

Rank Pooling 0.6453

Background-foreground segmentation 0.6503
Salient region detection 0.6645

Flow-guided aggregation 0.6854

Selection key frames 0.6736
Flow-guided frame weight 0.6831

3.2.3. Different Features Evaluation

In this section, the features extracted from the RGB component and depth component
were evaluated. The performance using features extracted by the DDIs + ConvNet, DMDIs
+ ConvNet, RGB + 3D ConvLSTM, Saliency + 3D ConvLSTM, and their combination was
evaluated respectively. Average score fusion is used for the combination in this experiment.
The evaluation result was listed in Table 3, the symbol • denotes that the corresponding
feature is selected for gesture recognition, and the symbol × denotes that the corresponding
feature is not included for gesture recognition.

The ConvNet features from DDIs and DMDIs were compared on the validation set
of ChaLearn LAP ConGD Dataset in Table 3. Although the performance of DMDI was
slightly lower than the one of DDI, the fusion of the ConvNet features extracted from DDIs
and DMDIs achieved 0.1196 improvement (i.e., 0.6414 vs. 0.5218). The result demonstrated
that variations in the background, shadows, or sudden changed variations in lighting
conditions can have substantial impact on the performance and the ConvNet features
extracted from DDIs and DMDIs are complementary.

Then the 3D ConvLSTM features extracted from RGB and Saliency were compared
on the validation set of ChaLearn LAP ConGD Dataset. From Table 3, we can see the
performance of Saliency outperformed the one of RGB, which proved that the background
can reduce the performance. The fusion of the 3D ConvLSTM features extracted from
RGB and Saliency achieve 0.1302 improvement (i.e., 0.6127 VS. 0.4825). The results have
also demonstrated that the 3D ConvLSTM features extracted from RGB and Saliency
are complementary.

The Mean Jaccard Index achieved 0.6127 based on RGB modality, and the Mean
Jaccard Index was 0.6414 based on depth modality. In addition, the fusion of all features
offered 0.1686 improvement (i.e., 0.6904 vs. 0.5218) on the validation set of ChaLearn LAP
ConGD Dataset. These results have demonstrated that all features from ConvNet and 3D
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ConvLSTM are complementary and different discriminative. The result also verified the
effectiveness of our proposed network.

Table 3. The evaluation of different features on the validation set of ChaLearn LAP ConGD Dataset.
The symbol • in the Table 3 denotes that the corresponding feature is selected for gesture recognition,
and the symbol × denotes that the corresponding feature is not included for gesture recognition.

DDIs +
ConvNet

DMDIs +
ConvNet

RGB + 3D
ConvLSTM

Saliency + 3D
ConvLSTM

Mean Jaccard
Index

• × × × 0.5218
× • × × 0.5132
× × • × 0.4617
× × × • 0.4825
• • × × 0.6414
× × • • 0.6127
• × • × 0.6351
• • • × 0.6562
• × • • 0.6479
• • • • 0.6904

3.2.4. Score Fusion Evalution

In this paper, score fusion was employed to fuse the classification obtained from the
ConvNets and 3D ConvLSTMs. The common score fusion methods are average, maximum,
and multiply score function. The comparisons among the three score fusion methods were
shown in Table 4. These results showed that the average score fusion method achieved the
best result.

Table 4. Comparison of three different score fusion methods on the validation set of ChaLearn LAP
ConGD Dataset.

Score Fusion Methods Mean Jaccard Index

Maximum 0.6851
Multiply 0.6874
Average 0.6904

3.3. Evaluation on ChaLearn LAP ConGD Dataset
3.3.1. Description

The ChaLearn Gesture Dataset (CGD) includes color and depth video sequences
recorded by Microsoft Kinect [51]. There are 22,535 RGB-D gesture videos and 47,933 RGB-D
gesture instances in the ChaLearn LAP ConGD Dataset. A total of 249 gestures are included
and performed by 21 different individuals. Detailed information is shown in Table 5.

Table 5. Statistics of the ChaLearn LAP ConGD Dataset.

Sets # of Gestures # of RGB Videos # of Depth Videos # of Subjects

Training 30,442 14,134 14,134 17
Validation 8889 4179 4179 2

Testing 8602 4042 4042 2
All 47,933 22,535 22,535 21

3.3.2. Experimental Results

Table 6 compared the performance of the proposed method and that of exiting methods
on validation set. MFSK [37] and MFSK + DeepID [37] segmented the continuous gesture
sequence to isolated gesture firstly and recognized the isolated gesture with the hand-craft
features. Wang et al. [52] employed the QOM method to segment the continuous gesture
sequence and then extracted an improved depth motion map using color coding method
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over the segmented sequence, and CNN was adopted to train and classify the segmented
gesture. Chai et al. [3] first adopted Faster R-CNN to extract the hand for the temporal
segmentation, and then two-stream RNNs were adopted to fuse multi-modality features
for the recognition. Camgoz et al. [4] applied 3D convolutional networks to RGB video
and jointly learned the features and classifier. It can be seen that our proposed method
achieved state-of-the-art results compared with existing methods.

Table 6. Comparison of the proposed method and other methods on the validation set of ChaLearn
LAP ConGD Dataset.

Methods Mean Jaccard Index JS

MFSK [37] 0.0918
MFSK+DeepID [37] 0.0902

Wang et al. [52] 0.2403
Chai et al. [3] 0.2655

Camgoz et al. [4] 0.2809
Wang et al. [39] 0.5214

Proposed method 0.6904

The proposed method was also compared with the methods in ChaLearn LAP Large-
scale Continuous Gesture Recognition Challenge [40] in Table 7. The mean Jaccard Index
of our proposed method achieved 0.6976 in the test set. Our proposed method achieved
state-of-the-art results.

Table 7. Performance comparison with other teams in ChaLearn LAP Large-scale Continuous Gesture Recognition Challenge.

Team ICT_NHCI AMRL PaFiFA Deepgesture Wang et al. [39] Proposed Method

Mean Jaccard Index
JS (valid set) 0.5163 0.5957 0.3646 0.3190 0.5214 0.6904

Mean Jaccard Index
JS (test set) 0.6103 0.5950 0.3744 0.3164 0.5307 0.6976

3.4. Evaluation on Montalbano Gesture Dataset
3.4.1. Description

Montalbano gesture dataset [38] was also recorded by Microsoft Kinect Sensor. It
contains 20 Italian cultural/anthropological. Four modalities, including RGB, depth, mask,
and skeleton, can be found in this dataset. It is labeled frame-by-frame. The characteristics
of Montalbano Gesture Dataset were:

• the duration of each gesture varied greatly and there was no self-occlusion;
• there was no information on the number or order of gestures;
• the intra-class variability of gesture samples was high, while the inter-class variability

of some gesture categories was low.

These characteristics brought lots of challenges. The detail of Montalbano Gesture
Dataset was shown in Table 8.

Table 8. Information of Montalbano Gesture Dataset.

Training Sequences Validation Sequences Test Sequences

393 (7754 gestures) 287 (3362 gestures) 276 (2742 gestures)

Sequence Duration Number of Users Labeled Frame

1–2 min 27 1,720,800
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3.4.2. Experimental Results

Table 9 showed the result on Montalbano Gesture Dataset. Our proposed method
achieved state-of-the-art performance. Left and right hand regions are treated as indepen-
dent streams to improve the performance [53] and skeleton information is used in [54] to
crop the specific area in videos. However, only RGB and depth modalities were used in
our proposed method. The promising performance demonstrated the effectiveness of our
proposed method.

Table 9. Comparison of the proposed method and other methods on Montalbano Gesture Dataset.

Methods Mean Jaccard Index JS

MRF, KK, PCA, HoG [55] 0.827
AdaBoost, HoG [56] 0.834

Multi-scale DNN [53] 0.870
Temp Conv + LSTM [54] 0.906

Proposed Method 0.923

3.5. Discussion

Temporal segmentation is crucial for continuous gesture recognition. The temporal
segmentation and gesture recognition in continuous gesture recognition were performed
separately in this paper. We assume that there are some transition frames between two
consecutive gestures and one will puts hands down after performing a gesture. Although
our proposed method has achieved good performance on both ChaLearn LAP ConGD
Dataset and Montalbano Gesture Dataset, these assumptions limited the wider application
of the proposed method. In our future work, we will explore a more general approach to
address the problem of continuous gesture recognition.

In addition, current continuous gesture recognition methods can not address the prob-
lem of online gesture recognition. In actuality, important real-time applications including
sign language interpreter and driver assistance systems require identifying gestures as
soon as each video frame comes. How to improve the proposed method for online gesture
recognition will be a good research direction.

4. Conclusions

The paper presents an effective method for large-scale multimodal gesture segmen-
tation and recognition. The video sequences are first segmented into isolated gesture
sequences by classifying the frames into gesture frames and transition frames. For each
segmented gesture sequence, our proposed method explores the effective spatiotemporal
information based ConvNets for depth modality and 3D ConvLSTMs for RGB modal-
ity. Experimental results on the ChaLearn LAP ConGD Dataset and Montalbano Gesture
Dataset verified the effectiveness of our proposed method. In our future work, we will
explore a more general approach to address the problem of continuous gesture recognition
and improve the proposed method for online gesture recognition.
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