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Abstract: Memory used for storing the configuration bitstream of field programmable gate array in
space applications often encounters single event upset problems, which may disrupt the integrity
of data in memory and lead to unpredictable failures. For commercial memories used in low Earth
orbit (LEO), single-bit errors and double-byte errors account for a large proportion. Meanwhile,
error detection and correction (EDAC) schemes, e.g., triple modular redundancy, linear block codes,
memory scrubbing, and the combination of these schemes, are very popular in LEO missions. To
further these works, a novel EDAC scheme with cascaded “Bose–Chaudhuri–Hocquenghem and
cyclic redundancy check” codes and a proper scrubbing method is presented in this paper. The
performance of the proposed design is measured and compared with state-of-the-art EDAC schemes
in terms of hardware overhead, time overhead and error correction and detection capabilities. It is
concluded that the proposed EDAC scheme is better suited for memory in space applications.

Keywords: EDAC; memory; Bose–Chaudhuri–Hocquenghem; cyclic redundancy check; single event
upset; field programmable gate array

1. Introduction

It is well known that data stored in memory chips suffer from single event upsets
(SEUs) in space applications. Bit-flips are induced naturally by cosmic radiation, extreme
temperature, electromagnetic radiation, etc. There is a famous experiment of SEU obser-
vations for commercial memories based on the Alsat-1 satellite in low Earth orbit (LEO).
The Alsat-1 was launched on November 2002 and the experiment lasted over eight years.
Table 1 shows a summary of 32 MBytes Ramdisk of SEU observations [1]. The probability of
single-bit errors is the highest, which is 98.59%, followed by the probability of double-byte
errors, which is 1.223% and is dominated by double-bit error in single-byte.

Error detection and correction (EDAC) technologies which can detect and correct
errors in a certain degree are very popular in improving the reliability of memory devices.
For the transmission of secure data between devices and its local memory, triple modular
redundancy (TMR) is widely used for anti-SEU design, but its probabilistic error correction
ability can cause cumulative error [2,3]. Another disadvantage of TMR is its large memory
overhead (200%) [4]. Linear block codes are also well-known and widely used. However,
for the error correction requirements in Table 1, these famous linear block codes, e.g.,
Hamming code, Parity code, Berger code, are not available because of the limitation of
their error-correcting capabilities [5,6]. In addition, linear block codes with excessive error-
correcting capabilities (e.g., LDPC, Reed–Solomon Code) are not necessary because they
will increase design complexity and cause large hardware overhead [7,8]. For scrubbing
methods which are also famous in space applications, it is too time-consuming to rewrite the
entire memory [9]. Besides, some researchers have found a transistor-level EDAC method
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with small hardware overhead, which helps design the radiation-hardened memory cell
library but is not suitable for error correction, in Table 1 [10–12].

Table 1. Single event upset (SEU) observations for Alsat-1.

System Monitored Parameters

Memory Size 32 M-Bytes
Observation period 2622 days, 29 November 2002–14 August 2010

Bits monitored 268,435,456
Total number of errors 265,649
No. of Single-bit errors 261,905 (98.59%)

No. of Double-byte errors 3249 (1.223%)
No. of Severe errors 247 (0.093%)

No. of Multiple-bit errors 233 (0.087%)
No. of Hardware errors 15 (0.005%)

Figure 1 shows the block diagram of an SRAM-based field programmable gate array
(FPGA) in space applications. Once SEU occurs, it will lead to data flipping of the memory
chip, which will affect the logical state of the FPGA, or even threaten the safety of the
FPGA, resulting in irreparable failures [13]. An in-orbit controller acts as a bridge for the
FPGA and its configuration memories. Programmable read-only memory (PROM) which
is immune to SEU can be programmed only once. The bitstream stored in the PROM is
usually used for the initialization of the FPGA, while the bitstream stored in the memory
array is usually used for the functional reconfiguration of the FPGA. In addition, the
bitstream stored in the memory array has the function of in-orbit maintenance and update
through universal asynchronous receiver/transmitter (UART).

Figure 1. Block diagram of an SRAM-based field programmable gate array (FPGA) in
space applications.

In order to improve the reliability of data in the memory array, the in-orbit controller
is usually designed to detect and correct the configuration bitstream that may be affected
by SEU. The corresponding steps are as follows:

(1) Data encoding: The configuration data are received through the UART, and then
redundant encoding is performed by EDAC method.

(2) Periodic readback checking: Check the data stored in the memory array periodically
through the FPGA readback function.

(3) Periodic scrubbing: According to the scrub interval set in advance, the memory array
can be rewritten unconditionally by continuous scrubbing.

This paper focuses on hardware implemented EDAC schemes for memory in space
applications. Section 2 presents the state-of-the-art EDAC schemes for memory in space
applications. Then, a novel proposed EDAC scheme is given in Section 3. Section 4 analyzes
experimental results. Finally, conclusions are drawn in Section 5.

2. Present State-of-the-Art EDAC Schemes

EDAC is committed to adding redundant bits to data in a specific way. When the
data is corrupted, the redundant bits can help to identify and eliminate the corruption
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in a certain range. There are many EDAC schemes that meet the design purpose of this
paper [14–16]. At present, the EDAC schemes that have been applied to space applications
include TMR, linear block codes, memory scrubbing, and the combination of these schemes.

2.1. TMR

TMR is widely used for anti-SEU design. The implementation consists of three
identical memories storing the same data and a voter [2,3], as shown in Figure 2. The voter
outputs the majority of the data from the three memories, so that when SEU occurs in one
of the memories, the output remains valid. Since the probability of error events occurring
simultaneously in two memories is minimal, the error correction ability of the circuit can
be improved by the TMR.

Figure 2. Block diagram of triple modular redundancy (TMR).

However, there is still a certain probability of error decoding, resulting in cumulative
error after subsequent propagation. Furthermore, as can be seen from Figure 2, memory
overhead is a major drawback of the TMR. It wastes twice the required memory.

2.2. Linear Block Code Schemes

The EDAC circuit for memory array including an encoder and a decoder is shown in
Figure 3. The encoder generates redundant data bits based on input data, while the decoder
uses redundant data bits to detect and eliminate errors in a certain range. For linear block
code (n, k), the number of codeword data bits, encoded data bits and redundant data bits
are n, k and c (c = n − k), respectively. Therefore, the encoder has k-bit input and n-bit
output, while the decoder has n-bit input and k-bit output. However, for the data bus of the
memory array, a DDR ×8 chip with a bit width of eight is one of the most common options.

Figure 3. Block diagram of memory with error detection and correction (EDAC) circuit.

Typically, there are four parameters used to measure the performance of linear block
codes, i.e., error correction capacity (tc), error detection capacity (td), code rate and bit
overhead. They are expressed by

tc =
d − 1

2
(1)

td = d − 1 (2)

Code Rate =
k
n

(3)

Bit Overhead =
c
k

(4)
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where d is the minimum Hamming distance. In addition, time and space complexity needs
to be considered to measure the efficiency of coding schemes.

According to the data in Table 1, it is necessary to select the coding scheme with
proper Hamming distance so that tc is equal to two or slightly higher. Therefore, some
of the schemes, such as Hamming code, Parity code, Berger code, etc., do not meet this
requirement [5,6]. In addition, Reed–Solomon code which is good at correcting non-binary
codes is not considered in this paper [17]. Table 2 shows linear block code schemes with
proper error correction capabilities, where p × q means the size of memory block.

Table 2. Linear block code schemes with proper tc.

Code Scheme td tc Code Rate Bit Overhead Complexity
(n, k, d) Time Space

Hadamard (16,5,8) 7 3 31.25% 220% O(nlog2n) O(nlog2n)
Binary Golay (23,12,7) 6 3 52.17% 91.66% O(pq) O(2q)

Ternary
Golay

(11,6,5) 4 2 54.54% 83% O(pq) O(2q)

BCH

(15,7,5) - 2 46.67% 114.29%

O(q2) O(pn)
(31,21,5) - 2 67.74% 47.62%
(63,51,5) - 2 80.95% 23.53%

(127,113,5) - 2 88.98% 12.39%
(255,239,5) - 2 93.73% 6.69%

4D Parity (561,560) - 2 84.21% 18.56% O(pn) O(pn)(2193,2048) - 2 87.67% 13.28%

As can be seen from Table 2, Hadamard code has the lowest time and space complexity,
but the ratio of code rate to bit overhead (C2B) is also the lowest, which means that the
coding overhead is too high. Compared to Hadamard code, Golay codes have better
coding overhead, but they are still not good enough. As the length of the Bose–Chaudhuri–
Hocquenghem (BCH) code increases, the size of the corresponding memory block increases
and the C2B ratio becomes better, but the time complexity increases exponentially [18]. 4D
Parity codes have great C2B ratio and great time and space complexity. A big problem of
4D Parity codes is that it is applicable to the whole memory block, and its error correction
and detection capability needs to be applied to the whole memory block, which means that
the error correction and error detection time will be sacrificed in a certain degree [19,20].

2.3. TMR Based EDAC

To further improve the reliability of data in memory array, the combination of TMR
and linear block code is very effective [4,21,22], as shown in Figures 4 and 5.

Figure 4. Block diagram of EDAC-TMR scheme with triple memories.
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Figure 5. Block diagram of EDAC-TMR scheme with triple EDACs.

Both circuits inherit the error correction and detection function of the linear block code
and the redundancy of TMR technology. However, the circuit shown in Figure 4 requires
an additional two times the required memory, while the circuit shown in Figure 5 requires
an additional eight times the required EDAC module and one time the required memory.

2.4. Memory Scrubbing

There are two kinds of scrubbing operation, one is scrubbing based on the UART in
a fixed interval, the other is scrubbing based on the EDAC circuit [23,24]. For the former,
the memory is rewritten unconditionally and the scrubbing interval is set according to the
SEU rate. For the latter, the SEU is scrubbed out sequentially by decoding and rewriting
operations. Since the EDAC circuit has inherent error correction and detection capabilities,
potential errors can be automatically corrected and overridden. Memory scrubbing is
also an effective EDAC solution, but the problem is that rewriting all data in memory is
extremely time-consuming.

3. A New Proposed EDAC Scheme

For the purpose of reducing hardware and time overhead while meeting the anti-SEU
requirements shown in Table 1, this section presents a new EDAC scheme by designing a
cascaded code scheme and an improved scrubbing method.

3.1. Cascaded Code Scheme

Taking into account the time and space complexity and the C2B ratio in Table 2, BCH
and 4D parity codes are suitable for data protection of memory in space applications.
However, 4D parity codes have greater time overhead than BCH in response to errors,
which can adversely affect memory scrubbing. Accordingly, this paper prefers BCH codes
with similar C2B ratios to 4D parity codes.

Figure 6 illustrates the effect of increasing code length on C2B ratio of BCH and 4D
parity codes. Greater code length means greater space complexity and greater hardware
overhead. Therefore, the middle BCH(63, 51, 5) which has similar C2B ratio to 4D parity
codes is more appropriate for single-bit and double-bit error correction. For other error
cases with less error probability in Table 1, this paper uses cyclic redundancy check 32
(CRC32) code which has high error detection ability for error checking.
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Figure 6. Code length to code rate to bit overhead (C2B) ratio.

Figure 7 shows the block diagram of the proposed EDAC system. Because the data
bit width of the memory array in this paper is 8 bits, in byte, the calculation parallelism
of the encoders (i.e., CRC_EN and BCH_EN) and decoders (i.e., CRC_DE and BCH_DE)
designed below is eight bits.

Figure 7. Block diagram of the proposed EDAC system.

3.2. BCH

For BCH(63, 51, 5) over GF(2) and GF(26), the data polynomial m(x) and the generator
polynomial g(x) are defined as

m(x) = m0 + m1x + · · ·+ m50x50 (5)

g(x) = x12 + x10 + x8 + x5 + x4 + x3 + 1 (6)

3.2.1. Encoding

The codeword polynomial c(x) is given by

c(x) = p(x) + x12m(x) (7)

where the remainder is

p(x) = x12m(x) mod g(x) (8)

Let

Mi =m8i+7x7 + m8i+6x6 + · · ·+ m8i+1x + m8i,

i =0, 1, · · · , 6.
(9)
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where m55,m54,. . . ,and m51 are zeros. Then

p(x) =x12m(x) mod g(x)

=(((((((M6x8 + M5)x8 + M4)x8 + M3)x8 + M2)x8

+ M1)x8 + M0)x8 + 0)x4 mod g(x)

(10)

Since the encoded data bits cannot be divisible by eight, the formula for the first eight
iterations of the encoder is

pi(x)1 =(pi−1(x)x8 + Mi) mod g(x)

=pi−1(x)x8 mod g(x) + Mi
(11)

and the formula for the last iteration of the encoder is

pi(x)2 = pi−1(x)x4 mod g(x) (12)

Accordingly, the schematic of the 8-bit parallel BCH(63, 51, 5) encoder is shown in
Figure 8.

Figure 8. Schematic of the 8-bit parallel BCH(63, 51, 5) encoder.

Then the codeword vector is given by

(c62, c61, · · · , c1, c0) =(m50, m49, · · · , m1, m0,

p11, p10, · · · , p1, p0)
(13)

3.2.2. Decoding

The decoding process of BCH includes three steps:

(1) Computing the syndrome polynomial s(x) based on the input r(x) to the decoder.
(2) Calculating the error location polynomial Λ(x) by the key equation.
(3) Calculating the roots (e(x)) of Λ(x) by Chien search algorithm, and correcting errors

based on the roots:
ĉ(x) = r(x)− e(x) (14)

The flow of BCH decoding is shown in Figure 9.

Figure 9. Flow of Bose–Chaudhuri–Hocquenghem (BCH) decoding.
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(1) Syndrome
For BCH codes that can correct two bits errors, the number of syndrome values si

should be four. si is defined as

si =
n−1

∑
j=0

rj

(
αi
)j

= r0

(
αi
)0

+ r1

(
αi
)1

+ · · ·+ rn−1

(
αi
)n−1

(15)

where α is the primitive element of GF(26).
For 8-bit parallel computing, the above formula can be derived as

si =
(

0α7 + r62α6 + · · ·+ r56

)
α56 +

(
r55α7 + r54α6 + · · ·

+r48)α
48 + · · ·+

(
r7α7 + r6α6 + · · ·+ r0

) (16)

The corresponding calculation circuit is shown in Figure 10.

Figure 10. Schematic of the syndrome computation circuit.

(2) Key equation
The error location polynomial Λ(x) for the BCH(63, 51, 5) is defined as

Λ(x) = λ0 + λ1x + λ2x2 (17)

and can be calculated by the SiBM algorithm through the key equation

s(x)Λ(x) = Ω(x) mod x4 (18)

where Ω(x) is the error value polynomial. The SiBM algorithm and its formula derivation
process are described in detail in Ref. [25].

Figures 11 and 12 show the implementation of the SiBM algorithm for the BCH(63, 51,
5) and its basic processing element (PE), respectively.

Figure 11. Schematic of the key equation computation circuit.
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Figure 12. Schematic of the processing element.

After two iterations, the output of the registers (R0 ∼ R2) shown in Figure 11 is the
coefficients (λ0 ∼ λ2) of the error location polynomial Λ(x).

(3) Chien search
The Chien search algorithm searches the error location by checking whether Λ(αi) is

zero. Λ(αi) can be written as

Λ
(

αi
)
=

2

∑
j=0

λjα
ij =

2

∑
j=1

λjα
ij + λ0,

i =0, 1, · · · , 62.

(19)

If Λ(αi) is equal to zero, it means that the input data ri has an error, otherwise
there is no error. For 8-bit parallel computing, eight of the above formulas are calculated
simultaneously, as shown in Figure 13.

Figure 13. Schematic of the Chien search circuit.

After Chien search, the roots (e(x)) of Λ(x) are calculated. Then errors in the decoded
codeword ĉ(x) can be corrected by Formula (14).

3.3. CRC

Since the BCH(63, 51, 5) is not sensitive to errors greater than two bits, CRC code can
be used as a supplement for error detection of other error cases shown in Table 1. The
probability of missed detection of the CRC32 is 2−32, which can cover almost all error cases
in Table 1.

CRC code is mainly used for the binary data. The data polynomial m(x) and the
generator polynomial g(x) of the CRC32 are defined as
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m(x) =m0 + m1x + · · ·+ m63x63 (20)

g(x) =x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1
(21)

where m63 is zero.

3.3.1. Encoding

The encoding process of the CRC32 is similar to the BCH(63, 51, 5). The codeword
polynomial c(x) is given by

c(x) = p(x) + x32m(x) (22)

where the remainder is

p(x) = x32m(x) mod g(x) (23)

Let

Mi =m8i+7x7 + m8i+6x6 + · · ·+ m8i+1x + m8i,

i =0, 1, · · · , 7.
(24)

Then

p(x) =x32m(x) mod g(x)

=((((((((((M7x8 + M6)x8 + M5)x8 + M4)x8

+ M3)x8 + M2)x8 + M1)x8 + M0)x8

+ 0)x8 + 0)x8 + 0)x8 mod g(x)

(25)

The formula for the iterations of the encoder is

pi(x) =(pi−1(x)x8 + Mi) mod g(x)

=pi−1(x)x8 mod g(x) + Mi
(26)

Accordingly, the schematic of the 8-bit parallel CRC32 encoder is shown in Figure 14.

Figure 14. Schematic of the 8-bit parallel cyclic redundancy check 32 (CRC32) encoder.

After 13 iterations, the codeword vector is given by

(c95, c94, · · · , c1, c0) =(m63, m62, · · · , m1, m0,

p31, p10, · · · , p1, p0)
(27)



Electronics 2021, 10, 533 11 of 15

3.3.2. Decoding

The decoding process of the CRC32 is similar to its encoding process. The novel
remainder is

p̂(x) = r(x) mod g(x) (28)

where r(x) is the received input data from memory.
The schematic of the 8-bit parallel CRC32 decoder is shown in Figure 15.

Figure 15. Schematic of the 8-bit parallel CRC32 decoder.

After 13 iterations, if the bitwise-OR result of p̂(x) is equal to zero, it indicates that the
input r(x) has no error, otherwise an error is detected.

3.4. Proposed EDAC Process

The proposed EDAC process includes data encoding, periodic readback checking and
scrubbing, respectively.

(1) Data encoding: Each 51 bits of data received through the UART is encoded by the
BCH_EN to 63 bits. After adding one bit zero, the new 64 bits data are encoded by the
CRC_EN to 96 bits. The codeword vector stored in memory array is

(c95, c94, · · · , c1, c0) =(0, m50, m49, · · · , m1, m0,

pb11, pb10, · · · , pb1, pb0,

pc31, pc30, · · · , pc1, pc0),

(29)

where pbi and pci means that the remainder values of the BCH_EN and the CRC_EN,
respectively. In addition, as each 51 bits of data are compiled to 96 bits, the memory
overhead of the proposed scheme will increase by 88.24%.

(2) Periodic readback checking: Check the data stored in memory array periodically
through the FPGA readback function. The errors in Table 1 are divided into three cases, i.e.,
no errors, single-bit or double-bit errors and multiple-bit errors which have more than two
bits errors. The corresponding decoding process are:

• No errors: Both the BCH_DE and the CRC_DE indicate that there are no errors.
• Single-bit or double-bit errors: If the decoding result of the BCH_DE is wrong, the

decoded 51 bits data are encoded again by the BCH_EN and written to the blank
area of the memory array. Using new encoded data and the old CRC redundant bits,
the CRC_DE can identify whether the error has been corrected by the BCH_DE. If
yes, overwrite the original data in the memory array with the new encoded data.
Otherwise, it means that there are multiple-bit errors and the corresponding memory
address should be marked.
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• Multiple-bit errors: Other than the above multiple-bit errors, if the decoding result of
the BCH_DE is right and the decoding result of the CRC_DE is wrong, it also means
that there are multiple-bit errors and the corresponding memory address should
be marked.

(3) Scrubbing: According to the marked memory addresses, memory array can be
partially rewritten through the UART.

Obviously, the probability of the multiple-bit errors in Table 1 is relatively small, which
means that the scrubbing step is rarely implemented. Therefore, the proposed memory
scrubbing method is very time-saving.

4. Experimental Results

The proposed EDAC scheme was implemented in an In-orbit controller chip (Bsv5cbrh)
of Beijing Microelectronics Technology Institute as described in Section 3. The EDAC
system shown in Figure 7 was verified both in function and timing. Meanwhile, a PCB-
level fault injection system based on Figure 1 was developed to validate the proposed
scheme, including Bsv5cbrh, Xq5vsx95t, Xcf32p, etc., as shown in Figure 16. The proposed
approach of the in-orbit controller was implemented based on the process described in
Section 3.4. Correspondingly, the relationship between EDAC capability and the use of
EDAC resources is shown in Table 3.

Figure 16. A PCB-level fault injection system.

Table 3. Relationship between EDAC capability and the use of EDAC resources.

No Errors SED SEC DED DEC MED MEC

BCH_EN X X X X X X X
BCH_DE X X X X X X X X X
CRC_EN X X
CRC_DE X X X X X X X X X
Scrubbing X X

Note: SED: single error detection, SEC: single error correction, DED: double error detection, DEC: double error
correction, MED: multiple error detection, MEC: multiple error correction.

Based on the description of Section 3.4, it can be indicated from the results of the
BCH_DE and the CRC_DE if there were no errors. For single-bit errors, all the locations
in the memory were simulated to ensure 100% fault coverage. The result of the CRC_DE
should be correct in this case. The BCH_EN was used to encode the decoded data from the
BCH_DE, and the BCH_DE was used twice to check whether the error can be corrected
or not. For double-bit errors in each 63-bit, pseudo-random sequence (i.e., Pseudo-Noise



Electronics 2021, 10, 533 13 of 15

Code) to simulate the fault injection address was used, in which case the corresponding
32-bit data checked by the CRC_DE should also be correct. The use of EDAC resources
in this case was the same as the use of EDAC resources to handle single-bit errors. For
multiple-bit error detection, there was no need to rewrite the whole memory or the memory
corresponding to the marked address, it could be judged by the combination of the results
from the BCH_DE and the CRC_DE. Accordingly, the uses of EDAC resources were similar
to the two cases described earlier (i.e., no errors and single-bit errors). For multiple-bit
error correction, in addition to the previous case, memory scrubbing function was triggered
to ensure 100% error correction, in which case all EDAC resources were used.

To measure the performance of the proposed EDAC, a comparison between the state-
of-the-art EDAC schemes and the proposed EDAC scheme is shown in Table 4. The overall
memory overhead is an increase of 88.24% in stored data, which is smaller than when
using TMR or EDAC-TMR methods. The overall EDAC overhead is an increase of 100%
in EDAC module, which is significantly smaller than when using EDAC-TMR method
shown in Ref. [26]. The time overhead of the proposed EDAC is greater than the time
overhead of TMR but less than the time overhead of EDAC-TMR methods shown in Table 4.
Furthermore, since it inherited the error correction and detection capability of the cascaded
“BCH(63, 51, 5) and CRC32” codes, the proposed EDAC scheme could correct single-bit
and double-bit errors and detect multiple-bit errors. By memory scrubbing circuit, the
proposed EDAC scheme could also correct multiple-bit errors. Hence, the proposed EDAC
scheme had the highest error detection and correction capability shown in Table 4.

Table 4. Comparison of experimental results.

EDAC Type TMR EDAC-TMR 1 [4] EDAC-TMR 2 [26] The Proposed EDAC

EDAC overhead 0 0 800% 100%
Memory overhead 200% 200% 100% 88.24%

Time overhead tV tE + tV tE + 2tV tE
EDAC Capability MEC-MED DEC-DED DEC-DED MEC-MED

Severe errors correction NO YES YES YES
Corrected in-orbit errors 98.7% 100% 100% 100%

Note: tE: EDAC delay time, tV : Voter delay time.

Based on the proposed EDAC scheme, the encoding delay for the cascaded “BCH_EN
and CRC _EN” was only 21 clock cycles, while the decoding delays for the BCH_DE and
the CRC_DE were 20 clock cycles and 13 clock cycles, respectively. In addition, instead of
rewriting all data in memory in a certain interval, the proposed EDAC scheme automatically
scrubbed out single-bit errors and double-bit errors through the proposed EDAC circuit,
and overrode the data through the UART with the marked memory addresses. For memory
scrubbing based on the EDAC circuit, the proposed design could correct errors after 96
bits data were detected, while the design based on 4D parity codes must correct errors
after a whole memory block was detected. For memory scrubbing through the UART, the
memory addresses were marked only if there were multiple-bit errors in each 96-bit block,
severe errors, and hardware errors shown in Table 1, which meant that the probability of
memory scrubbing through the UART was less than 1.408%. Therefore, compared to the
error-correcting time based on the EDAC circuit using 4D parity codes and the rewriting
time for the whole memory, the proposed scrubbing method was relatively time-saving.

5. Conclusions

This paper has presented a novel EDAC scheme of the In-orbit controller chip (Bsv5cb
rh) for memory in space applications. The EDAC scheme is based on the combination
of the cascaded “BCH(63, 51, 5) and CRC32” codes and an improved scrubbing method.
This scheme is sufficient to handle the typical SEU rate at LEO environment. The design
is verified both in function and timing. The overall system cost is significantly smaller
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than the present state-of-the-art EDAC schemes. Experiments to simulate the error cases in
Table 1 have shown that 100% of the errors can be detected and corrected.
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