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Abstract: Android is increasingly being targeted by malware since it has become the most popular
mobile operating system worldwide. Evasive malware families, such as Chamois, designed to
turn Android devices into bots that form part of a larger botnet are becoming prevalent. This calls
for more effective methods for detection of Android botnets. Recently, deep learning has gained
attention as a machine learning based approach to enhance Android botnet detection. However,
studies that extensively investigate the efficacy of various deep learning models for Android botnet
detection are currently lacking. Hence, in this paper we present a comparative study of deep learning
techniques for Android botnet detection using 6802 Android applications consisting of 1929 botnet
applications from the ISCX botnet dataset. We evaluate the performance of several deep learning
techniques including: CNN, DNN, LSTM, GRU, CNN-LSTM, and CNN-GRU models using 342
static features derived from the applications. In our experiments, the deep learning models achieved
state-of-the-art results based on the ISCX botnet dataset and also outperformed the classical machine
learning classifiers.

Keywords: botnet detection; deep learning; Android botnets; convolutional neural networks; dense
neural networks; recurrent neural networks; long short-term memory; gated recurrent unit; CNN-
LSTM; CNN-GRU

1. Introduction

The increase in Android’s popularity worldwide has made it a continuous target
for malware authors. The volume of malware targeting Android has continued to grow
in the last few years [1,2]. Android has been attacked by numerous malware families
aimed at infecting mobile devices and turning them into bots. These bots become parts
of larger botnets that are usually under the control of a malicious user or group of users
known as botmasters. The Android botnets may be used to launch various types of attacks
such as distributed denial of service (DDoS) attacks, phishing, click fraud, theft of credit
card details or other credentials, generation and distribution of spam, etc. Nowadays,
malicious Android botnets have become a serious threat. Additionally, their increasing
use of sophisticated evasive techniques such as self-protection or multi-staged payload
execution [3], calls for more effective approaches to detect them.

The Chamois malware family [3–5], which was discovered on Google Play in August
2016 is one example of the emerging sophisticated Android botnet threats. By March 2018,
Chamois had infected over 20 million devices, which were commandeered into a botnet
that received instructions from a remote command and control server [5]. The botnet was
used to serve malicious advertisements and to direct victims to premiums Short Message
Service (SMS) scams. The early version of Chamois disguised as benign apps that tricked
users into downloading it on their devices, and this was detected and almost completely
eradicated by the Android security team. Later versions of Chamois appeared which were
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distributed by tricking developers and device manufacturers into incorporating the botnet
code directly into their apps. Chamois was sold to developers as a legitimate software
development kit, and to the device manufacturers as a mobile payment solution [5].

The emergence of evasive and technically complex families like Chamois has driven
interest in adopting machine learning based techniques as a means to improve existing
detection systems. In the past few years, several works have investigated traditional
machine learning techniques such as Support Vector Machines (SVM), Random Forest,
Decision Trees, etc., for Android botnet detection. Some of the more recent machine
learning based Android botnet detection work, such as ref. [6] and ref. [7] have focused on
deep learning. Nevertheless, empirical studies that extensively investigate various deep
learning techniques to provide insight into their relative performance for Android botnet
detection are currently lacking. Hence, in this paper, we present a comparative analysis
of deep learning models for Android botnet detection using the publicly available ISCX
botnet dataset. Our approach is based on classification of unknown applications into ‘clean’
or ‘botnet’ using 342 static features extracted from the apps. We evaluate the performance
of several deep learning models on 6802 apps consisting of 1929 botnet apps from the ISCX
botnet dataset. The models investigated include Convolutional Neural Networks (CNN),
Dense Neural Networks (DNN), Gated Recurrent Units (GRU), Long Short-Term Memory
(LSTM), as well as more complex networks like CNN-LSTM and CNN-GRU.

The rest of the paper is organized as follows: Section 2 contains related works.
Section 3 gives an overview of the overall system for deep learning-based Android botnet
detection, while Section 4 provides brief background discussions of the deep learning
models that were built for this study. Section 5 discusses the methodology and experimen-
tal approach, while Section 6 presents the results and discussion of results. Finally, the
conclusions and future work are outlined in Section 7.

2. Related Work

Kadir et al. in their paper [8], studied several families of Android botnets aiming to
gain a better understanding of the botnets and their communication characteristics. They
presented a deep analysis of the Command and Control channels and built-in URLs of the
Android botnets. They provided insights into each malicious infrastructure underlying
the families, and uncovered the relationships between the botnet families by using a
combination of static and dynamic analysis with visualization. From their work, the
ISCX Android botnet dataset consisting of 1929 samples from 14 Android botnet families
emerged. Since then, several works on Android botnet detection have been based on the
dataset which is available from ref. [9].

Anwar et al. [10] proposed a mobile botnet detection method based on static features.
They combined permissions, MD5 signatures, broadcast receivers, and background services
to obtain a comprehensive set of features. They then utilized these features to implement
machine learning based classifiers to detect mobile botnets. Having performed experiments
using 1400 botnet applications of the ISCX dataset, combined with an extra 1400 benign
applications, they recorded an accuracy of 95.1%, a recall of 0.827, and a precision of 0.97
as their best results.

Android Botnet Identification System (ABIS) was proposed in [11] to detect Android
botnets. The method is based on static and dynamic features consisting of API calls, permis-
sions, and network traffic. ABIS was evaluated with several machine learning techniques.
In the end, Random Forest was found to perform better than the other algorithms by
achieving 0.972 precision and 0.96 recall.

In ref. [12], machine learning was used to detect Android botnets using permissions
and their protection levels as features. Initially, 138 features were utilized and then in-
creased to 145 after protection levels were added as novel features. In total, four machine
learning models (i.e., Random Forest, multilayer perceptron (MLP), Decision Trees, and
Naive Bayes) were evaluated on 3270 applications containing 1635 benign and 1635 botnets
from the ISCX dataset. Random Forest was found to have the best results yielding 97.3%
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accuracy, 0.987 recall, and 0.985 precision. The authors of [13] also utilized only the ‘re-
quested permissions’ as features and applied Information Gain to reduce the features and
select the most significant requested permissions. They evaluated their approach using
Decision Trees, Naive Bayes, and Random Forest. In their experiments, Random Forest
performed best, with an accuracy of 94.6% and false positive rate of 0.099%.

Karim et al. in [14], proposed DeDroid, a static analysis approach to investigate
properties that are specific to botnets that can be used in the detection of mobile botnets.
in their approach, ‘critical features’ were first identified by observing the coding behavior
of a few known malware binaries that possess Command and Control features. These
‘critical features’ were then compared with features of malicious applications from Drebin
dataset [15]. The comparison with ‘critical features’ suggested that 35% of the malicious
applications in the Drebin dataset could be classed as botnets. However, according to their
study, a closer examination confirmed 90% of the apps as botnets.

Jadhav et al. [16], present a cloud-based Android botnet detection system that lever-
ages dynamic analysis by using a virtual environment with cluster analysis. The toolchain
for the dynamic analysis process is composed of strace, netflow, logcat, sysdump, and
tcpdump within the botnet detection system. However, in the paper there were no ex-
perimental results provided to evaluate the effectiveness of the proposed cloud-based
solution. Moreover, the virtual environment can easily be evaded by the botnets using
different fingerprinting techniques. In addition, being a dynamic-analysis based approach,
the systems effectiveness could be degraded by the lack of complete code coverage [17,18].

In ref. [19], a method was proposed by Bernardeschia et al. to identify Android botnets
through model checking. Model checking is an automated technique used in verifying
finite state systems. This is achieved by checking whether a structure representing a
system satisfies a temporal logic formula describing their expected behavior. In particular,
static analysis is used to derive a set of finite state automata from the Java byte code that
represents approximate information about the run-time behavior of an app. Afterwards,
the botnet malicious behavior is formulated using temporal logic formulae [20]; then by
adopting a model checker, it can be automatically checked whether the code is malicious
and identify where the botnet code is located within the application. These properties
are checked using the CAAL (Concurrency Workbench, Aalborg Edition) [21] formal
verification environment. The authors evaluated their approach on 96 samples from
the Rootsmart botnet family, 28 samples from the Tigerbot botnet family, in addition to
1000 clean samples. The results obtained on the 1124 app samples showed perfect (100%)
accuracy, precision, and recall.

Alothman and Rattadilok [22] proposed a source code mining approach based on
reverse engineering and text mining techniques to identify Android botnet applications.
Dex2Jar was used to reverse engineer the Android apps to Java source code. Natural
Language Processing techniques were applied to the obtained Java source code. They also
evaluated a ‘source code metrics (SCM)’ approach of classifying the apps into ‘botnet’ or
‘clean’. In the SCM approach, statistical measures, such as total number of code lines, code
to comment ratio, etc., were extracted from the source code and the metrics were used as
features for training machine learning classifiers. The Java source code was extracted from
9 apps from 9 ISCX botnet families, as well as 12 normal apps. The TextToWordVector filter
within WEKA (Waikato Environment for Knowledge Analysis), together with TF-IDF, was
then applied to the code. They also applied WEKA’s StringToWordVector with TF-IDF filter
while varying the numbers of the ‘words to keep’ parameter. SubSetEval feature selection
method was used to reduce the features. The features were applied to Naive Bayes, KNN,
J48, SVM, and Random Forest algorithms, were KNN obtained the best performance.

In ref. [23], a real-time signature-based detection system is proposed to combat SMS
botnets, by first applying pattern-matching detection approaches for incoming and out-
going SMS text messages. In the second step, rule-based techniques are used to label
unknown SMS messages as suspicious or normal. Their method was evaluated with over
12,000 test messages, where all 747 malicious SMS messages were detected in the dataset.
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However, the system produced some false positives where 349 SMS messages were flagged
as suspicious. In ref. [24], a botnet detection technique called ‘Logdog’ is proposed for
mobile devices using log analysis. The approach relies on analyzing the logs of mobile
devices to find evidence of botnet activities. Logdog writes logcat messages to a text file in
the background while the Android user continues to use their device. The system targets
HTTP botnets looking for events or series of events that indicate botnet activities and was
tested manually on a botnet and a normal app.

In ref. [6], Android botnet detection based on CNN and using permissions as features
was proposed. In the proposed method, apps are represented as images that are constructed
based on the co-occurrence of permissions used within the applications. The images were
then used to train a CNN-based binary classifier. The binary classifier was evaluated
using 5450 apps containing 1800 botnet apps from the ISCX dataset. They obtained an
accuracy of 97.2%, with a recall of 0.96, precision of 0.955, and f-measure of 0.957. Similarly,
ref. [7] proposes an Android botnet detection approach based on CNN, where not only
permissions were used as features but also API calls, Commands, Intents, and Extra Files.
Unlike in ref. [6], 1D CNN was used and the model was evaluated with the 1929 ISCX
botnet apps and 4873 benign apps resulting in 98.9% accuracy, 0.978 recall, 0.983 precision,
and 0.981 F1-score.

Different from the aforementioned earlier works, this paper aims to investigate the
performance of several deep learning techniques to gain insight into their effectiveness in
detecting Android botnets based on the extraction of 342 static features from the applica-
tions. To this end, we implemented CNN, DNN, LSTM, GRU, CNN-LSTM, and CNN-GRU
models and evaluated the models using 1929 ISCX botnet apps and 4873 benign apps. The
deep learning models developed in the study are discussed in Section 4 and the results of
the experiments with the models are presented in Section 6.

3. Deep Learning-Based Android Botnet Detection System

At a fundamental level, our botnet detection system is designed to distinguish be-
tween clean apps and botnet apps. As a result, it may sometimes fail to correctly classify an
unknown app by mistakenly identifying a benign app as botnet or vice-versa. The various
accuracy metrics used in the experiments presented in Section 6 will enable us to capture
the extent to which a given deep learning model used as a classifier can be relied upon
to correctly predict which category an unknown app should belong to. The classification
system is implemented by extracting static features from thousands of applications consist-
ing of both botnet and clean examples. A bespoke tool that we developed in Python for
automated reverse engineering of Android Package files (APKs) was utilized in the process.
Using the tool, we extracted a total of 342 features from 5 different categories shown in
Table 1.

Table 1. The five types of features used in developing the deep learning models.

Feature Types Number

API calls 135
Permissions 130
Commands 19

Extra executables 5
Intents 53
Total 342

The five feature types include: (1) API calls (2) commands (3) permissions (4) Intents
(5) extra (binary or executable) files. Most of the features were from the ‘API calls’ and
‘permissions’ category as shown in Table 1. A selection of the features is shown in Table 2.
These features are represented as vectors of binary numbers with each feature in the vector
represented by a ‘1’ or ‘0’. Each feature vector (corresponding to one application) is labelled
with its class. The feature vectors are loaded into the deep learning model during the
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training phase. After training, the model can then be used to predict the class (clean or
botnet) of an unknown application using its extracted feature vector. Figure 1 gives a high
level overview of the overall botnet detection system.

Table 2. Examples of features extracted for the deep learning models.

Feature Name Type

TelephonyManager.*getDeviceId API
TelephonyManager.*getSubscriberId API

abortBroadcast API
SEND_SMS Permission

DELETE_PACKAGES Permission
PHONE_STATE Permission
SMS_RECIVED Permission

Ljava.net.InetSocketAddress API
READ_SMS Permission

Android.intent.action.BOOT_COMPLETED Intent
io.File.*delete( API

Chown Command
Chmod Command
Mount Command

.apk Extra File
.zip Extra File
.dex Extra File
.jar Extra file

CAMERA Permission
ACCESS_FINE_LOCATION Permission

INSTALL_PACKAGES Permission
android.intent.action.BATTERY_LOW Intent

.so Extra File
android.intent.action.POWER_CONNECTED Intent

System.*LoadLibrary API
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Figure 1. Overview of the deep learning-based detection system for Android botnets.

4. Deep Learning Techniques Applied to Android Botnet Detection
4.1. Convolutional Neural Networks

A CNN is a feedforward neural network whereby the information moves only in the
forward direction from the input node, through the hidden nodes to the output nodes with
no loops or cycles. Such (feedforward) networks are primarily used for pattern recognition.
CNN generally works well for identifying simple patterns in data which will then be used



Electronics 2021, 10, 519 6 of 17

to form more complex patterns in the higher or deeper layers. CNNs typically consists of
convolutional layers and pooling layers. The role of the convolutional layer is to detect
local conjunctions of features from the previous layer, while the role of the pooling layer
is to merge semantically similar features into one [25]. CNNs combine concepts such as
shared weights, local receptive fields and spatial subsampling [26]. They take advantage of
many parallel and cascaded convolutional filters to solve high dimensional non-convex
problems such as regression, image classification, semantic segmentation, object detection,
etc. Due to weight sharing in each layer and by processing limited dimensions, a CNN
requires fewer parameters than a traditional neural network and is much easier to train.

Datasets that possess a one-dimensional structure can be processed using a one-
dimensional convolutional neural network (1D CNN). A 1D CNN is quite effective when
you expect to derive interesting features from shorter (fixed-length) segments of the overall
feature set, and where the location of the feature within the segment is not important.
The use of 1D CNN can be commonly found in Natural Language Processing (NLP)
applications. Similarly, 1D CNN is applicable in problems where vectorized data are used
to represent the characteristics of the items whose state or category is being predicted
(e.g., an Android application). The 1D CNN could be used to extract potentially more
discriminative feature representations that describe any existing patterns or relationships
within segments of the vectors characterizing each entity in the dataset. These new features
are then fed into a classifier (e.g., LSTM, GRU or a fully connected layer) which will in
turn process the derived features to produce a set of outputs that will contribute towards a
final classification decision. Hence, CNNs can be employed as feature extraction layers
for a given classifier which then eliminates the need to apply separate feature ranking and
selection outside of the deep learning model.

Figure 2 depicts a 1D CNN model made up of two convolutional layers and two max
pooling layers. The output of last pooling layer is flattened and connected to a dense (fully
connected) layer of N units. The N-unit dense layer is in then connected to a final output
layer containing a single neuron with a sigmoid activation function which is given by:
S = 1

1+e−x .

Figure 2. 1D CNN model with 2 convolutional and max pooling layers feeding a dense (fully
connected) layer. The model is designed for botnet detection by classifying Android applications into
‘normal’ or ‘botnet’.

The output layer performs the final classification into one of two classes, i.e., ‘botnet’
or ‘normal’. The convolutional layers utilize Rectified Linear Units (ReLU) with activation
function given by: f (x) = max(0, x). ReLU helps to mitigate vanishing and exploding
gradient issues [27].
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4.2. Long-Short Term Memory

LSTM [28,29] is a type of recurrent neural network (RNN) which, unlike feedforward
networks, utilizes feedback and is able to ‘memorize’ parts of the input and use them in
making predictions. RNNs are designed to handle sequential data and thus have found
popular application in areas such as speech recognition and machine translation. Different
from traditional artificial neural networks that fully connect all nodes, or CNN that explore
nodes from local to global layer by layer, RNNs use state neurons to explore the relationship
in context. Traditional RNNs have a known problem of vanishing gradients which hinders
their ability to have long term memory and thus can only make predictions based on the
most recent information in the sequence. LSTM solves the vanishing gradient problem
and is therefore able to process longer sequences (long term memory). LSTM is a recurrent
neural network that can understand contextual information from a sequence of features. It
has the ability to add or remove information from the hidden state vector with the aid of a
gate function, thereby retaining important information in the hidden layer vectors.

As shown in Figure 3a, LSTM consists of three gate functions. These include: the
forget gate, the input gate, and the output gate. The forget gate is used to control the
amount of information in Ct−1 is retained in the process of computing Ct and it (the forget
vector) can be expressed as:

ft = σ
(

U f xt + W f ht−1 + b f

)
(1)

where U f , W f , and bf constitute the parameters of the forget gate and xt is the input vector
in step t, while ht−1 is the hidden state vector in the previous step t − 1. The input gate
determines how much information of xt is added to Ct and can be expressed as:

ft = σ
(

U f xt + W f ht−1 + b f

)
(2)

where Ui, Wi, and bi are the parameters of the input gate and hence Ct can be calculated
by relying on the forget gate vector ft as well as the input gate vector it as follows:

ft = σ
(

U f xt + W f ht−1 + b f

)
(3)

where C̆t = tanh(Ucxt + Wcht−1 + bC) denotes the information represented in the hidden
layer vector. Note that ∗ denotes the Hadamard (element-wise) product. The output gate
controls the output in Ct, and we have:

ot = σ(Uoxt + Woht−1 + bo) , ht = ot ∗ tanh(Ct) (4)

where Uo, Wo, and bo are the parameters of the output gate and Ct is the internal state in
step t.

Figure 3. Recurrent neural networks. (a) LSTM; (b) GRU.
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4.3. Gated Recurrent Units

A GRU [30] is also a kind of RNN model and a variant of LSTM. However, unlike
LSTM which has three gates, GRU has only two gates, i.e., reset gate and update gate, as
shown in Figure 3b. This makes GRU less complicated and therefore faster to train than
LSTM. The gates are two vectors that decide which information should be passed to the
output. The update gate enables the model to determine how much of the past information
needs to be passed along to the future. The update gate Zt is calculated for step t using the
formula given by:

zt = σ(Uzxt + Wzht−1) (5)

where Uz, Wz are the parameters (weights) of the update gate and ht−1 holds information
for the previous t − 1 units. The reset gate is used to decide how much of the past
information to forget which can be calculated using:

rt = σ(Urxt + Wrht−1) (6)

where Ur, Wr are the parameters (weights) of the reset gate and ht−1 holds information for
the previous t − 1 units. The current memory content will use the reset gate to store the
relevant information from the past as follows:

ct = tanh(Ucxt + rt ∗Wcht−1) (7)

where Uc, Wc are the parameters (weights). Note that ∗ denotes the Hadamard (element-
wise) product. At the last step, the vector ht which holds the information for the current
unit and passes it down the network will be calculated by:

ht = zt ∗ ht−1 + (1− zt) ∗ ct (8)

A GRU network obtains a long spatial (or temporal) sequence with lower computa-
tional complexity compared to traditional encoder-decoder architecture. With its gating
mechanisms, GRU can overcome the vanishing gradient problem and is therefore capable
of processing longer sequences than standard RNN. Both GRU and LSTM can be applied to
sequences of spatial features to determine the extent of dependencies or establish context
between features that are located several places apart.

4.4. Dense Neural Networks

The DNN model is a regular deeply connected neural network with several layers. In
a DNN model, each neuron in a layer receives an input from all the neurons present in the
previous layer. The layers are known as the dense layers and constitute the hidden layers
of the network. Such neural networks are also known as Multilayer perceptron (MLP). It is
composed of an input layer, an output layer that makes a decision or prediction about the
input, and an arbitrary number of hidden layers in between. The model is often trained on
a set of input–output pairs and learns to model the correlation (or dependencies) between
those inputs and outputs. The basic unit (a perceptron) of the model produces a single
output based on several real-valued inputs by forming a linear combination using its input
weights. The output is typically passed through a non-linear activation function ϑ:

y = ϑ

(
n

∑
1

wixi + b

)
= ϑ

(
WTX + b

)
(9)

where W denotes the vector of weights, X is the vector of inputs, b is the bias and ϑ is the
non-linear activation function.

The sigmoid or the hyperbolic tangent functions were the non-linear activation func-
tions typically used in the past due to their ability to map complex relationships within
data. However, these two non-linear activation functions do not perform well in networks
with many layers due to the vanishing gradient problem. Nowadays, rectified linear
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activation function ReL (and its variants) is the preferred function used in training dense
neural networks. Hence, the neurons in a network employing ReL activation are known
as ReLU (Rectified Linear activated Units). ReL is a piecewise linear function given by:
f (x) = max(0, x). It will output the input directly if positive, and will output a zero if
negative. ReLU overcomes the vanishing gradient problem and enable models to learn
faster and perform better. Hence, it is used as the default activation function when devel-
oping the DNN and the CNN networks. In our study, we have experimented with different
numbers of hidden layers for the DNN, and numbers of units per layer and recorded the
performance of each configuration.

4.5. Hybrid Models

In this paper, we refer to hybrid models as those combining different deep learning
techniques to leverage the unique capabilities of each of the techniques. For example in
CNN-LSTM or CNN-GRU depicted in Figure 4, the model will utilize CNN to extract
local n-gram features (where n is set by the length of the filters). The CNN’s max pooling
layer downsamples the output to reduce the dimensionality, which also contributes to the
reduction in overfitting. The LSTM or GRU layers are then used to capture long-range
dependencies that may be present within the features encoded by the CNN layers. The
vectors output by the LSTM-GRU layer with the context and dependencies information
will then be transmitted to dense layers for further processing before the final classification
by the sigmoid activated output layer consisting of a single unit.

Figure 4. Overview of the CNN-LSTM and CNN-GRU hybrid model architecture.

5. Methodology and Experiments

In this section, we further detail our approach and outline the experiments undertaken
to evaluate the deep learning models implemented in this paper. The models were devel-
oped in Python using the Keras library with TensorFlow backend. Other libraries utilized
include Scikit Learn, Seaborn, Pandas, and Numpy. The experiments were performed on a
Ubuntu Linux 16.04 64-bit Machine with 8GB RAM.

5.1. Problem Definition

Let A = {a1, a2, . . . an} be a set of applications where each ai is represented by a vector
containing the values of n features (where n = 342). Let a = {f 1, f 2, f 3, . . . fn, cl} where
cl ∈ {botnet, normal} is the class label assigned to the app. Thus, A can be used to train a
model to learn the behaviors of botnet and normal apps, respectively. The goal of a trained
model is then to classify a given unlabeled app Aunknown = {f 1, f 2, f 3, . . . fn, ?} by assigning
a label cl, where cl ∈ {botnet, normal}.
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5.2. Dataset Used for the Investigation

As mentioned earlier, the ISCX Android botnet dataset from [9] was utilized for the
experiments in this paper. This dataset contains 1929 botnet apps and has been employed
in previous works including [6–8,10–13,22]. Table 3 shows the distribution of samples
within the 14 different botnet families present in the dataset. To complement the ISCX
dataset, we obtained 4873 clean from Google Play store. These apps were cross-checked for
maliciousness using Virus Total (https://www.virustotal.com (accessed on 20 December
2020)). Thus, a total of 6802 apps were used in our experiments.

Table 3. Botnet dataset composition.

Botnet Family Number of Samples

Anserverbot 244
Bmaster 6

Droiddream 363
Geinimi 264
Misosms 100
Nickyspy 199

Notcompatible 76
Pjapps 244
Pletor 85

Rootsmart 28
Sandroid 44
Tigerbot 96
Wroba 100
Zitmo 80
Total 1929

5.3. Experiments to Evaluate the Deep Learning Techniques on the Android Dataset

In order to investigate the performance of the deep learning models, we performed
several experiments with different configurations of the models to enable us observe the
optimum performance that is possible with each model architecture. The models are
designed to exploit the capabilities of the constituent neural network types as discussed
in Section 4. The following metrics are used in measuring the performance of the models:
Accuracy, precision, recall, and F1-score. Given TP as true positives, FP as false positives,
FN as false negatives, and TN as true negatives (all with respect to the botnet class), the
metrics are defined as follows (taking the botnet class as positive):

• Accuracy: the ratio between correctly predicted outcomes and the sum of all predic-
tions expressed as: TP+TN

TP+TN+FP+FN
• Precision: All true positives divided by all positive predictions, i.e., was the model

right when it predicted positive? Expressed as: TP
TP+FP

• Recall: All true positives divided by all actual positives. That is, how many positives
did the model identify out of all possible positives? Expressed as: TP

TP+FN
• F1-score: This is the weighted average of precision and recall, given by: 2×Recall×Precision

Recall+Precision

All the results of the experiments are from 10-fold cross validation where the dataset
is divided into 10 equal parts with 10% of the dataset held out for testing, while the models
are trained from the remaining 90%. This is repeated until all of the 10 parts have been
used for testing. The average of all 10 results is then taken to produce the final result.
Additionally, during the training of all the deep learning models (for each fold), 10% of the
training set was used for validation.

6. Results and Discussions

This section will present the results of investigating CNN-GRU, CNN-LSTM, CNN,
and DNN models. Subsequently, a comparative performance evaluation of the models
and how they measure against traditional machine learning models will be discussed.

https://www.virustotal.com
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Finally, we will examine how these models have performed compared to results reported
in previous works on Android botnet detection.

6.1. CNN-GRU Model Results

Here, we present the results obtained from CNN-GRU model where the configurations
of both the CNN layer and the GRU layer were varied. A summary of the results is
presented in Table 4. In the top half of the table, the configuration had 1 convolutional layer
and 1 max pooling layer in the CNN part. These models are named as CNN-1-layer-GRU-X
where X stands for the number of hidden units in the GRU layer. The Convolutional layer
receives input vector of dimension 342 from the input layer, and it consists of 32 filters each
of size = 4. The max pooling layer has its parameter set to 2, which means it would reduce
the output of the convolutional layer by half. The outputs from the max pooling layer are
concatenated into a flat vector before sending to the GRU layer. As depicted in Figure 4, the
output from the CNN-GRU layers are forwarded to 2 dense layers. The first dense layer
had 128 units, while the second one had 64 units. The 64-unit layer is finally connected
to a sigmoid-activated single-unit output layer where the final classification decision into
‘clean’ or ‘botnet’ is made. The model can be summarized in the following sequence:

Input [342] -> Conv [32 filters, Size=4] -> max pooling -> flatten -> GRU[X] -> Dense [128,
ReLU] -> Dense[64, ReLU]-> Dense[1, Sigmoid] where X is the number of GRU hidden
units taken as 5, 10, 25, and 50, respectively.

Table 4. Results from the CNN-GRU models of various configurations using the architecture depicted
in Figure 4.

Accuracy Precision Recall F1-Score Number of
Parameters

CNN-1-layer-GRU-5 0.988 0.982 0.976 0.979 90,442
CNN-1-layer-GRU-10 0.989 0.986 0.975 0.980 172,457
CNN-1-layer-GRU-25 0.988 0.981 0.978 0.979 419,402
CNN-1-layer-GRU-50 0.989 0.980 0.980 0.980 833,977
CNN-2-layer-GRU-5 0.988 0.985 0.974 0.979 53,528
CNN-2-layer-GRU-10 0.989 0.986 0.974 0.980 93,993
CNN-2-layer-GRU-25 0.989 0.982 0.978 0.980 217,098
CNN-2-layer-GRU-50 0.991 0.988 0.979 0.984 425,273

The results of the bottom half of Table 4 are from the same CNN-GRU architecture
described above, but with the CNN part having 2 convolutional layers and 2 max pooling
layers. The model can be summarized in the following sequence:

Input [342] -> Conv [32 filters, Size=4] -> max pooling -> Conv [32 filters, Size=4] -> max
pooling -> flatten -> GRU[X]->Dense [128, ReLU] -> Dense[64, ReLU]->Dense[1, Sigmoid]
where X is the number of GRU hidden units taken as 5, 10, 25, and 50, respectively.

Note that a dropout = 0.25 is incorporated between each of the layers in the models to
reduce overfitting.

From Table 4, we can see that the model with the 1-layer CNN had higher overall
accuracy of 98.9% when the number of GRU hidden units were set at 10 or at 50. The
corresponding F1-score were also the highest at 0.980. The recall of the GRU-50 model was
0.980 compared to that of the GRU-10 model, which was 0.975. This means that the GRU-50
model was better at detecting botnet apps than the GRU-10 model in the top half of Table
4. Note that the GRU-5 model from the 1-layer CNN batch (top-half) which had 5 hidden
units actually did perform well also by obtaining an overall accuracy of 98.8%, with an
F1-score of 0.979 and a botnet detection rate (recall) of 97.6%. It had the least numbers of
parameters to train, i.e., 90,422.

From the bottom half of Table 4, the 2-layer CNN models with the best overall accuracy
was the one with 50 units in the GRU layer (i.e., CNN-2-GRU-50). It obtained 99.1%
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accuracy, and the best F1 score of 0.984. The recall (botnet detection rate) was 97.9% while
the precision was 98.8%, the highest in all of the CNN-GRU models. From these set of
results, we can conclude the following:

• The best overall performance for the CNN-GRU models was from the model with
2 convolutional layers and 50 hidden units in the GRU layer.

• Very good results can be obtained by CNN-GRU model with only 1 convolutional
layer and few hidden units (5) in the GRU layer. The accuracy observed was 98.8%,
and the F1 score was 0.979. The lower the number of hidden units, the faster it is to
train the model.

6.2. CNN-LSTM Model Results

This section presents the results of the CNN-LSTM models with different configura-
tions in both the CNN layer and the GRU layer. The results are presented in Table 5. Similar
to the results of CNN-GRU in Table 4, the top half is for the models with 1 convolutional
layer and 1 max pooling layer in the CNN part, while the bottom half (of Table 5) shows the
results of the models having 2 convolutional layers and 2 max pooling layers in the CNN
part. The models are named with the convention CNN-1-layer-LSTM-X in the top half, or
CNN-2-layer-LSTM-X in the bottom half, where X stands for the number of hidden units
in the LSTM layer. As depicted in Figure 4, the output from the CNN-LSTM layers are
forwarded to 2 dense layers. The first dense layer had 128 units, while the second one had
64 units. The 64-unit layer is finally connected to a single unit sigmoid activated output
layer where the final classification decision into ‘clean’ or ‘botnet’ is made. The model can
be summarized in the following sequence:

Input [342] -> Conv [32 filters, Size=4] -> max pooling -> flatten -> LSTM[X] -> Dense [128,
ReLU] -> Dense [64, ReLU]-> Dense[1, Sigmoid]

where X is the number of LSTM hidden units taken as 5, 10, 25, and 50, respectively.

Table 5. Results from the CNN-LSTM models of various configurations using the architecture
depicted in Figure 4.

Accuracy Precision Recall F1-Score Number of
Parameters

CNN-1-layer-LSTM-5 0.990 0.987 0.977 0.982 117,497
CNN-1-layer-LSTM-10 0.990 0.986 0.980 0.983 226,617
CNN-1-layer-LSTM-25 0.990 0.985 0.979 0.982 555,117
CNN-1-layer-LSTM-50 0.990 0.983 0.983 0.983 1,106,777
CNN-2-layer-LSTM-5 0.989 0.986 0.973 0.980 66,553
CNN-2-layer-LSTM-10 0.989 0.986 0.974 0.980 120,633
CNN-2-layer-LSTM-25 0.990 0.984 0.979 0.981 284,073
CNN-2-layer-LSTM-50 0.989 0.984 0.976 0.980 560,473

For the bottom half of Table 5, the models can be summarized in the following se-
quence:

Input [342] -> Conv [32 filters, Size=4] -> max pooling -> Conv [32 filters, Size=4] -> max
pooling -> flatten -> LSTM[X]->Dense [128, ReLU] -> Dense [64, ReLU]->Dense [1, Sigmoid]

where X is the number of LSTM hidden units taken as 5, 10, 25, and 50, respectively.
Note that a dropout = 0.25 is incorporated between each of the layers in the models to

reduce overfitting.
Table 5 (top half), it can be seen that the all the CNN-LSTM models with only 1 layer

in the CNN part had overall accuracy of 99%. The models with 10 and 50 hidden units,
respectively, in the LSTM layer obtained identical F1-score of 0.983, compared to the
ones with 5 and 25, respectively, which had F1-score of 0.982. The best recall (or botnet
detection rate) of 98.3% was recorded with the LSTM-50 model. However, having more
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than 1.1 million parameters, the LSTM-50 model will be longer to train than the LSTM-10
model which has only 226,617 parameters.

From the bottom half of Table 5, the 2-layer CNN models with the best overall accuracy
was the one with 25 units in the LSTM layer (i.e., CNN-LSTM-25). It obtained 99% accuracy,
and the best F1 score of 0.981. The recall (botnet detection rate) was 97.9% while the
precision was 98.4%. From the results of Table 5, we can conclude the following:

• The best overall performance for the CNN-LSTM models was from the model with
1 convolutional layer and 25 hidden units in the LSTM layer.

• Very good results can be obtained by CNN-LSTM model with only 1 convolutional
layer and few hidden units (5) in the LSTM layer. This is evident from the results of
the CNN-1-layer-LSTM-5 where the accuracy observed was 99%, and the F1 score was
0.982, precision was 98.7%, and recall (botnet detection rate) was 97.7%.

• Comparing Tables 4 and 5, the results of CNN-LSTM were generally better than those
of CNN-GRU even though a CNN-GRU model obtained the highest F1-score of 0.984
with an overall accuracy of 99.1%.

6.3. CNN Model Results

In this section we discuss the results of the CNN model which is summarized in
Table 6. The CNN model consists of 2 convolutional layers and 2 max pooling layers. The
resulting vectors are ‘flattened’ and fed into a dense layer containing 8 units. The model’s
sequence can be summarized as follows:

Input [342] -> Conv [32 filters, Size=4] -> max pooling -> Conv [32 filters, Size=4] -> max
pooling-> flatten -> Dense [8, ReLU] -> Dense [1, Sigmoid]

Table 6. Results from a 2-layer CNN model obtained by varying the number of filters, with length of
filters = 4 in both convolutional layers.

Accuracy Precision Recall F1-Score Number of
Parameters

CNN-2-layer-4-filters 0.986 0.978 0.974 0.976 2,777
CNN-2-layer-8-filters 0.988 0.980 0.977 0.978 5,657

CNN-2-layer-16-filters 0.988 0.980 0.976 0.978 11,801
CNN-2-layer-32-filters 0.989 0.983 0.978 0.981 25,625
CNN-2-layer-64-filters 0.987 0.980 0.975 0.977 59,419

In our preliminary study presented in [24], this particular configuration of the model
has been determined to yield the best performance on the same features extracted from
the same app dataset used for the other models presented in this paper. More extensive
performance evaluation of the CNN model has been presented in [24], where the effect
of varying the other parameters, such as filter length, number of layers, and max pooling
parameter has been investigated.

As shown in Table 6, the CNN model with 32 filters yielded the best results with 98.9%
overall accuracy, precision = 0.983, recall = 0.978, and F1-score = 0.981. When compared to
the results in Tables 4 and 5, it can be observed that most of the CNN-LSTM configurations
and some of the CNN-GRU configurations achieved higher results than the CNN-only
model. This suggests that the LSTM and GRU were able to capture some dependencies
amongst the features thus improving the performance of the model.

6.4. DNN Model Results

The results obtained from the Dense Neural Network model is presented in this
section. The naming convention used to describe the models is DNN-Y-layer-N as shown
in Table 7, where Y stands for the number of hidden layers and N is the number of units in
the layer. For example, the sequence of the DNN-2-layer-200 model can be summarized
as follows:
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Input [342] -> Dense [200, ReLU] -> Dense [200, ReLU] -> Dense [1, Sigmoid]

Table 7. Results from the DNN model with various numbers of layers and units per layer.

Accuracy Precision Recall F1-Score Number of
Parameters

DNN-1-layer-100 0.990 0.984 0.982 0.983 34,401
DNN-2-layer-100 0.991 0.990 0.979 0.984 44,501
DNN-3-layer-100 0.991 0.988 0.980 0.984 54,601
DNN-1-layer-200 0.990 0.982 0.982 0.982 68,801
DNN-2-layer-200 0.990 0.981 0.983 0.982 109,001
DNN-3-layer-200 0.989 0.982 0.980 0.981 149,201
DNN-1-layer-300 0.990 0.985 0.981 0.983 103,201
DNN-2-layer-300 0.989 0.984 0.978 0.981 193,501
DNN-3-layer-300 0.989 0.979 0.984 0.981 283,801

Note that a dropout = 0.25 is incorporated between each of the layers in the models
to reduce overfitting. Additionally, in all of the DNN models and the previous models in
Sections 6.1–6.3, the optimization algorithm used was ‘Adam’ and ‘Binary cross entropy’
was used for the loss function. Furthermore, all the models were configured to automati-
cally terminate the training after the validation loss is observed to have not changed for a
specific number of K training epochs, where K was set to 20.

From Table 7, it can be observed that the DNN models with a single hidden layer did
not result in the best outcomes. Likewise, in most cases, using 3 hidden layers as observed
with the DNN-3-layer-200 and DNN-3-layer-300 also did not give the best outcomes. The
best performance was obtained from the model with 2 hidden layers and 100 units in each
layer, where the overall accuracy is 99.1% and F1-score = 0.984. The model with 3 hidden
layers and 100 units in each layer also gave identical results. This shows that increasing the
number of units in each layer is unlikely to improve the performance any further.

6.5. Best Deep Learning Results vs. Classical Non-Deep Learning Classifiers

In Table 8, we juxtapose the best results from our investigation of the deep learning
classifiers with the results from the classical machine learning techniques. The DNN and
the CNN-GRU models achieved the best results as depicted in the table. The highest
accuracy achieved by both models were 99.1% which also corresponds to the highest F1-
score of 0.984. These results are followed closely by the CNN-LSTM model which achieved
99% overall accuracy and F1-score of 0.983. Next, was the CNN-only model with 98.9%
accuracy and F1-score of 0.981. All of these models outperformed the classical machine
learning classifiers where the best two were SVM and Random Forest. SVM had 98.7%
overall accuracy and F1-score of 0.976, while Random Forest obtained 98.5% accuracy and
F1-score of 0.973. These results suggest that with the static based features extracted for
detecting Android botnets, the deep learning models will perform beyond the limits of the
classical machine learning classifiers.

In the table, the GRU-only model is shown as having the least accuracy results com-
pared to all the other models. This GRU model consisted of 200 hidden units and obtained
an overall accuracy of 82.9%. Similarly, with LSTM-only models, overall accuracies below
75% were observed (results not shown in the table). This confirmed our initial expecta-
tion that pattern recognition (e.g., with convolutional layers or dense layers) was more
important for the type of feature vectors used in the study, rather than context or depen-
dencies. However, the results of Sections 6.1 and 6.2 for the hybrid models suggests that a
combination of methods that can capture both characteristics is promising.
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Table 8. A summary of the best results of each technique compared to popular non-deep learn-
ing classifiers.

Accuracy Precision Recall F1-Score Number of
Parameters

DNN-2-layer-100 0.991 0.990 0.979 0.984 44,501
DNN-3-layer-100 0.991 0.988 0.980 0.984 54,601

CNN-2-layer-GRU-50 0.991 0.988 0.979 0.984 425,273
CNN-1-layer-LSTM-10 0.990 0.986 0.980 0.983 226,617
CNN-1-layer-LSTM-50 0.990 0.983 0.983 0.983 1,106,777
CNN-2-layer-32-filters 0.989 0.983 0.978 0.981 25,625

SVM 0.987 0.980 0.973 0.976 -
Random Forest 0.985 0.982 0.965 0.973 -
Simple Logistic 0.984 0.983 0.963 0.973 -

Decision Tree (J48) 0.981 0.974 0.958 0.966 -
Naïve Bayes 0.872 0.728 0.874 0.795 -

Bayes Net 0.867 0.736 0.832 0.781 -
GRU-200 0.829 0.677 0.766 0.718 122,001

6.6. Model Training Times

When training the deep learning models, the number of epochs has a major influence
on the overall model training time. In our experiments we utilized a stopping criterion
based on minimum validation loss rather than specifying a fixed number of training epochs.
For this reason, the number of training epochs varied between the different configurations
of a given model. Hence, the longest CNN-GRU model to train was the CNN-2-layer-GRU-
25 which took 145 s, and the testing time was 0.482 s. Whereas the shortest CNN-GRU
model to train was the CNN-1-layer-GRU-10 model which took 84.4 s with a testing time
of 0.399 s. The longest CNN-LSTM model to train was the CNN-2-layer-LSTM-5 which
took 141 s with a testing time of 0.468 s. The shortest CNN-LSTM model to train was the
CNN-1-layer-LSTM-25 model which took 83.6 s with a testing time of 0.419 s. Compared
to the other models, the DNN was the fastest to train with training times ranging from 10
to 26 s and an average testing time of 0.15 s.

6.7. Comparison with Previous Works

The results obtained in our study improves the performance beyond the reported
results in previous papers that also used the ISCX botnet dataset in their work. This can
be observed in Table 9. The second column shows the numbers of the botnet and benign
samples used in each of the referenced paper. Note that in some papers, some of the metrics
were not reported. Even though the complete datasets and techniques used were different
in each of the previous works, Table 9 shows that the models developed in this paper
achieved state-of-the-art results with the ISCX botnet dataset compared to the others.

Table 9. Performance comparisons with previous works that utilize ISCX botnets samples.

Paper Botnets/Benign ACC (%) Prec. Rec. F1-Score

Hojjatinia et al. [6] 1800/3650 97.2 0.955 0.960 0.957

Tansettanakorn et al. [11] 1926/150 - 0.972 0.969 -

Anwar et al. [10] 1400/1400 95.1 0.970 0.827 -

Abdullah et al. [13] 1505/850 - 0.931 0.946 -

Alqatawna and Faris [12] 1635/1635 97.3 0.987 0.957 -

Yerima and Alzaylaee [7] 1929/4873 98.9 0.983 0.978 0.981

This paper 1929/4873 99.1 0.990 0.979 0.984
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7. Conclusions and Future Work

In this paper, we presented an extensive evaluation of various deep learning tech-
niques for Android botnet detection using 342 static features consisting of 5 different types.
The deep learning models investigated include: CNN, DNN, GRU, LSTM, as well as CNN-
LSTM and CNN-GRU. The experiments were undertaken using 6802 apps consisting of
1929 botnet apps from the ISCX botnet dataset which has been utilized in several previous
works. The outcomes of our experiments showed that with optimum configuration, the
deep learning models performed quite well yielding high accuracies that were beyond the
limits of the classical machine learning classifiers. DNN showed the best overall perfor-
mance, while CNN-GRU and CNN-LSTM showed promising results that were much better
than GRU-only or LSTM-only models. In future work, we plan to further investigate the
performance of the deep learning models for botnet detection using alternative static and
dynamic features. Another possible direction is to explore alternative network architectures
such as those consisting of parallel rather than purely sequential integrations of the deep
learning model components.
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