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Abstract: Owing to recent advancements in deep learning methods and relevant databases, it is
becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints.
This study investigates the major breakthroughs and current progress in deep learning-based monoc-
ular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or
cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their
relevant attributes. Based on this simple sensor modality for practical applications, deep learning-
based monocular 3D object detection methods that overcome significant research challenges are
categorized and summarized. We present the key concepts and detailed descriptions of representative
single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the
detection models on their baseline benchmarks. Finally, we explore several directions for future
research on monocular 3D object detection.

Keywords: deep learning; monocular object detection; 3D object detection

1. Introduction

Deep learning networks have increasingly been extending the generality of object
detectors. In contrast to traditional methods in which each stage is individually hand-
crafted and optimized by classical pipelines, deep learning networks achieve superior
performance by automatically deriving each stage for feature representation and detection.
In addition, new approaches for data-driven representation and end-to-end learning with
a substantial number of images have led to significant performance improvements in 3D
object detection. With the evolution of deep representation, object detection is being widely
used in robotic manipulation, autonomous driving vehicles, augmented reality, and many
other applications, such as CCTV systems.

Beyond the significant progress in image-based 2D object detection, 3D understanding
of real-world objects is an open challenge that has not been explored extensively thus
far. In addition to the most closely related studies [1–6], we focus on investigating deep
learning-based monocular 3D object detection methods. For location-sensitive applications,
conventional 2D detection systems have a critical limitation in that they do not provide
physically correct metric information on objects in 3D space. Hence, 3D object detection is
an interesting topic in both academia and industry, as it can provide relevant solutions that
significantly improve existing 2D-based applications.

Camera sensors that capture color and texture information have emerged as an essen-
tial imaging modality in many computer vision applications. The passive camera sensors
do not interfere with other active optical systems, and always work well with them when
needed. For image-based deep representations that encode depth cues, monocular images
are also highly cost-effective. Owing to considerable accumulations of annotations for RGB
databases, the data-driven representations using deep neural networks make monocular
3D object detectors even more advantageous without expensive depth-aware sensors or
cameras at additional viewpoints.
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To understand the major breakthroughs and current progress in practical 3D ob-
ject detection, we contribute to the literature by reviewing recent developments in deep
learning-based state-of-the-art 3D object detection with monocular RGB databases. The re-
mainder of this paper is organized as follows. Section 2 presents the overall background
for our taxonomic approach. Section 3 summarizes well-known datasets for monocular 3D
object detection. Section 4 comprehensively describes multi-stage approaches and end-to-
end learning for monocular 3D object detection methods. The key concepts, representative
solutions, and effectiveness of the detection models in terms of their baseline benchmarks
are discussed in detail. Section 5 briefly highlights potential research opportunities. Finally,
Section 6 concludes the paper.

2. Background on Object Detection

Given an image with a pixel grid representation, object detection is the task of localiz-
ing instances of objects with bounding boxes of a certain class. An important contribution
in solving the 2D object detection problem is the use of region-based convolutional neu-
ral networks (R-CNNs), which involves two main stages: region proposal and detection.
The region of interest (ROI) of an image is proposed on the basis of certain assumptions,
such as color, texture, and size. The ROI is cropped to feed a CNN that performs the
detection. By combining prior knowledge and labeled datasets, the two-stage detection
framework has emerged as a classical model in both 2D and 3D object detection [7–10].

Another important algorithm for object detection is the YOLO algorithm [11]. It does
not have a separate region proposal stage; instead, it divides an input image roughly
into an N × N grid. Based on each grid cell, localization and classification tasks are
performed together in a unified regression network, followed by further post-processing.
Early end-to-end approaches performed poorly in the detection of small or occluded objects.
As new datasets are being developed, there have been significant innovations in end-to-end
networks [12–14]. As fewer proposal steps with hand-crafted features are involved in
single-stage methods, they are computationally less complex than multi-state approaches
that usually prioritize detection accuracy. In practice, there was active competition between
multi-stage and single-stage methods for object detection tasks. 3D object detection is
similar to this overall flow.

The goal of 3D object detection systems is to provide 3D-oriented bounding boxes
for 3D objects in the 3D real world. The 3D cuboids can be parameterized by 8-corners,
3D centers with offsets, 4-corner-2-height representations, or other encoding methods.
In monocular 3D object detection methods, we seek the oriented bounding boxes of 3D
objects from single RGB images. Similarly to 2D-image-based object detection systems,
monocular 3D object detection methods can be also categorized into two main types,
as shown in Figure 1. From a taxonomic point of view, we have extended them to six
sub-categories, according to the main distinguishing features of each sub-category. As
shown in Table 1, we have summarized the main features of ten high-quality datasets,
such as descriptions with quick links, input data types, contextual information for dif-
ferent applications, the availability of synthetic RGB images, the number of 3D object
instances/categories, the number of training/testing images, and lastly, other related ref-
erences, which can be used for future research. In Table 2, we have briefly explained key
features of the most representative works for each category and the related databases,
computational time, and so on. All of those methods use powerful algorithms that can
only run on a high-performance system using GPUs, and we did not pay attention to
lightweight deep learning models for lower-power embedded/mobile systems.

Based on a general understanding of object detection, we review 11 datasets for
monocular 3D object detection and more than 29 recent algorithms. The unique properties
of 3D object detection systems, such as different data representations and the availability
of both 2D and 3D annotations, make the 3D detection frameworks more complicated
and interesting.
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• Two-stage Approach
Fast/Faster R-CNN [7, 8],

Mask R-CNN [9],

Lighthead R-CNN [10]

• 2D Detection-driven

Method

Mono3D [15],

GS3D [16], SubCNN [17]

• Representation 

Transform

Pseudo-LiDAR [23],

OFTNet [24], etc

• Direct Regression

Deep-6DPose [25],

M3D-RPN [26],

PoseCNN [27], etc

• 2D-3D 

Correspondences

Tekin et al. [28],

SSD-6D [29], BPnP [30]

• Single-stage Approach
YOLO/YOLO-v4 [11, 12]

Single Shot Detector (SSD) [13]

RetinaNet [14]

 Multi-stage Methods for Monocular 3D Object Detection

 End-to-end Learning for Monocular 3D Object Detection

 2D Object Detection

Various prior 

information from 2D

(Intermediate

representations)

End-to-end architecture

for learning 3D information

form 2D images directly

New representations

for 3D object detection

(depth, camera param., etc)

Prediction of 2D projections

for a set of 3D key points 

(PnP problem formulation)

• 3D Shape Information

DeepMANTA [18],

ROI-10D [19],

Mono3D++ [20], etc

• Depth Estimation

MF3D [21],

MonoGRNet [22],

Mono3D++ (shape+depth)

Figure 1. Overview of the 2D/3D monocular object detection methods [7–30].

Table 1. Datasets used for monocular 3D object detection.

Dataset Description Data Type Scene Type Syn.? # 3D Objects # Images Related References

PASCAL
3D+ [31]

A Benchmark for
3D Object Detection in the
Wild (WACV 2014)

RGB +
3D models

Indoor +
Outdoor Real 3000 per cate.

12 categories >20,000
PASCAL VOC [32],
ImageNet [33],
Google Warehouse

SUN
RGB-D [34]

A Scene Understanding
Benchmark Suite
(CVPR 2015)

RGB-D Indoor Real 14.2 per image
800 categories

>10,335
in total

NYU depth v2 [35],
BerkeleyB3DO [36]
SUN3D [37]

ObjectNet
3D [38]

A Large Scale Database
3D Object Recognition
(ECCV 2016)

RGB +
3D models

Indoor +
Outdoor

Real
+ Syn.

201,888 inst.
100 objects 90,127

ImageNet [33],
ShapeNet [39],
Trimble Warehouse

FAT [40]
A Synthetic Dataset for
3D Object Detection
(CVPRW 2018)

RGB +
3D models

Household
Objects Syn. 1–10 per image

21 objects 61,500 YCB [41]

BOP [42,43]
Benchmark for 6D Object
Pose Estimation (ECCV
2018, ECCVW 2020)

RGB-D +
3D models

Indoor
(various)

Real
+ Syn.

302,791 inst.
in 97,818 real
images (test)
171 objects
(w/texture)

>800 K
train, test
RGB-D
(mostly synthetic)

LM [44],
LM-O [45],
T-LESS [46],
ITODD [47],
YCB-V [27],
HB [48],
RU-APC [49],
IC-BIN [50],
IC-MI [51],
TUD-L [42],
TYO-L [42]

Objectron [52]
Object-Centric Videos
in the Wild with Pose
Annotations

RGB Indoor +
Outdoor Real

17,095 inst.
(multi-view)
9 categories

>4 M
(14,819 videos)

Open Images [53]
Similar to
CAMERA [54]
(Real/syn. data)

KITTI 3D [55]
KITTI Vision Benchmark
Suite—3D Objects
(CVPR 2012)

RGB (Stereo) +
PointCloud

Driving
Scenes Real 80,256 inst.

3 categories 14,999
Virtual KITTI 2 [56]
* Photo-realistically sim-
ulated DB

CityScape
3D [57]

Dataset and Benchmark
for 9 DoF Vehicle Detection
(CVPRW 2020)

RGB (Stereo) Driving
Scenes Real 8 categories 5000 CityScape [58]

Synscapes [59] A Photo Synthetic Dataset
for Street Scenes RGB Driving

Scenes Syn. 8 categories 25,000
Similar to
CityScape [58]
(Structure, content)

SYNTHIA-
AL [60]

Synthetic Collection of Im-
agery and Annotation —3D
Boxes (CVPR 2012)

RGB Driving
Scenes Syn. 3 categories >143 K ImageNet [33]

SYNTHIA [61]

https://cvgl.stanford.edu/projects/pascal3d
https://cvgl.stanford.edu/projects/pascal3d
https://cvgl.stanford.edu/projects/pascal3d
http://rgbd.cs.princeton.edu
http://rgbd.cs.princeton.edu
http://rgbd.cs.princeton.edu
https://cvgl.stanford.edu/projects/objectnet3d
https://cvgl.stanford.edu/projects/objectnet3d
https://cvgl.stanford.edu/projects/objectnet3d
https://research.nvidia.com/publication/2018-06_Falling-Things
https://research.nvidia.com/publication/2018-06_Falling-Things
https://research.nvidia.com/publication/2018-06_Falling-Things
https://bop.felk.cvut.cz/home/
https://bop.felk.cvut.cz/home/
https://bop.felk.cvut.cz/home/
https://github.com/google-research-datasets/Objectron
https://github.com/google-research-datasets/Objectron
https://github.com/google-research-datasets/Objectron
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/
https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/
https://www.cityscapes-dataset.com/cityscapes-3d-dataset-released
https://www.cityscapes-dataset.com/cityscapes-3d-dataset-released
https://www.cityscapes-dataset.com/cityscapes-3d-dataset-released
https://synscapes.on.liu.se/features.html
https://synscapes.on.liu.se/features.html
https://synthia-dataset.net/downloads
https://synthia-dataset.net/downloads
https://synthia-dataset.net/downloads
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Table 2. Representative monocular 3D object detection methods.

Method Category Key Feature Related Datasets Computational Time Code?

Mono3D [15] 2D-driven
Method

An energy minimization approach that
places object candidates on the 3D plane,
and then scores each candidate box via
several intuitive potentials encoding se-
mantic segmentation, contextual infor-
mation, size and location priors and typi-
cal object shape.

KITTI 3D

It takes 1.8 s in a single core, but ex-
haustive search in the proposal
step can be done efficiently as all
features can be computed with in-
tegral images.

Yes

DeepMAN
TA [18]

3D Shape
Informat.

Simultaneous vehicle detection, part lo-
calization (even if some parts are hidden),
visibility characterization, and 3D tem-
plate for each detection. Coarse-to-fine
object proposal with multiple refinement
steps for accurate 2D vehicle bounding
boxes.

KITTI 3D

It is approximately twice faster
than Mono3D, due to the lower
resolution of images in the coarse-
to-fine method, considerably re-
ducing a search space.

No

MF3D [21] Depth
Estimation

Multi-level fusion scheme for monocu-
lar 3D object detection utilizing a stand-
alone depth estimation module to ensure
the accurate 3D localization and improve
the detection performance.

Cityscape,
KITTI 3D

The inference time including the
depth module achieves about
120 ms per img. on a NVIDIA
GeForce GTX Titan X.

No
Partial
implement.

Pseudo-
LiDAR [23]

Represent.
Transform

Conversion of an estimated depth map
from stereo or monocular imagery into
a 3D point cloud, which mimics the real
LiDAR, and takes advantage of existing
LiDAR-based detection pipelines.

KITTI 3D

The paper does not focus on real-
time processing. More effective
way to speed up depth estima-
tion is required.

Yes

Deep-6D
Pose [25]

Direct
Regression

An end-to-end deep learning framework
for detection, segmentation, and 6D pose es-
timation of 3D objects. It directly regress 6D
object poses without any post-refinements.

LineMOD
(LM), [51]

Due to the end-to-end architec-
ture, it offers an inference speed
of 10 fps on a Titan X GPU (not
optimized speed).

No
Partial
implement.

Tekin et al. [28] 2D-3D
Correspo.

A single-shot approach for simultane-
ously detecting an object in an RGB im-
age and predicting its 6D pose without
requiring multiple stages or having to ex-
amine multiple hypotheses. It predicts
the projected vertices of the object’s 3D
bounding box.

LM,
LM-O

A pose refinement step can be
used to boost the accuracy, but it
runs at 10 fps. Without additional
post-processing, it takes 50 fps on
a single Titan X GPU.

Yes

3. Datasets Used for Monocular 3D Object Detection

Although deep learning methods for 2D object detection using pure RGB images
have achieved considerable success, it is much more challenging to obtain 3D-oriented
bounding boxes owing to the absence of absolute 3D information in the 2D image plane.
In general, when the number of layers to be trained increases, the size of the labeled
datasets is especially important for obtaining the data-driven solution. Compared with
well-built 2D datasets, 3D datasets are still under construction. In this section, we review
well-known RGB (or RGB-D) datasets used in recent 3D object detection tasks.

3.1. Beyond PASCAL

PASCAL3D+ [31], which is an extension of one of the most popular 2D detection
benchmarks, PASCAL VOC [32], handles 12 selected categories of rigid objects. As shown
in Figure 2, 3D CAD models are collected and aligned to images in the PASCAL VOC
database. To overcome some ambiguities of 2D images in different categories, additional
photos from ImageNet [33], according to the 12 categories, are included. Instead of a
small number of images per category, captured in controlled environments, more than
3000 objects per category are stored in PASCAL3D+, with rich 3D annotations for objects
appearing in a variety of natural images. Indeed, PASCAL3D+ with its extended 3D
information, facilitated significant progress in research on monocular 3D object detection.

https://xiaozhichen.github.io/
https://github.com/abbyxxn/maskrcnn-benchmark-3d
https://github.com/abbyxxn/maskrcnn-benchmark-3d
https://github.com/mileyan/pseudo_lidar
https://github.com/ryohachiuma/Deep-6dPose
https://github.com/ryohachiuma/Deep-6dPose
https://github.com/microsoft/singleshotpose
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Alignment

Figure 2. PASCAL3D+ [31] for 3D object detection and pose estimation.

3.2. SUN RGB-D

SUN RGB-D [34], which is an extension of the SUN3D dataset [37] developed at Prince-
ton University, contains 10,355 images with depth channels from four different sensors.
For example, 3389 frames without severe motion blur have been manually selected from
the SUN3D videos. Further, 1449 RGB-D images from the NYU Depth V2 dataset [35] and
554 realistic scene images from the Berkeley B3DO dataset [36] are included. The collected
datasets handle 47 scene categories and around 800 object categories, and the annotations
consist of 146,617 2D polygons and 64,595 3D-oriented bounding boxes. On average,
14.2 objects are annotated in each image. Thus, the SUN RGB-D dataset has had a major
impact on indoor vision tasks such as 3D object, detection using RGB or RGB-D images,
object orientation estimation, and indoor scene understanding.

3.3. ObjectNet3D

ObjectNet3D [38] comprises 90,127 images with 44,147 3D models in 100 rigid object
categories. The 2D images are initially acquired from ImageNet [33] and added from
Google searches for some categories that do not include sufficient numbers of images.
Furthermore, 3D models from ShapeNet [39] and Trimble Warehouse were selected to
precisely align with 201,888 objects appearing in these photos. Similarly to PASCAL3D+,
this process gives a 3D shape label and the closest pose annotation for each object. Given
accurate 2D and 3D annotations, ObjectNet3D facilities the study of object proposal, shape
retrieval, object detection, and pose estimation algorithms.

3.4. Falling Things (FAT)

Falling Things (FAT) [40], which is an extension of the Yale-CMU-Berkeley (YCB)
dataset [41], contains 61,500 snapshots of 21 household objects. A physics-based graphic
simulator was introduced to generate photorealistic training images and automatic an-
notations to evaluate and train robotic manipulation algorithms for household scenes.
By combining synthetic objects and backgrounds, all the information, such as 2D/3D
locations, poses, and segmentation masks, is available for all the objects drawn in the high-
quality simulation images. The simulation process and analysis are also well described.
In the context of robust perception for robotic manipulation, this synthetic dataset can
help improve the overall performances of object classification algorithms, pose recognition
algorithms, and other related algorithms.

3.5. Benchmark for 6D Object Pose Estimation (BOP)

The Benchmark for 6D Object Pose Estimation (BOP) dataset [42,43] contains training
images with rigid objects at various viewpoints, wherein the 6D poses (3D translation and
3D rotation in space) of the presented objects are known, or texture-mapped models of the
3D objects were well prepared. The images with test objects have occlusions or background
clutter; hence, some parts of the objects may not be observable and only the visible surface
can fit multiple 3D models. For the evaluation, the benchmark additionally consists of
eight well-known datasets in different scenarios.

One of the datasets is the LineMOD (LM) benchmark [44], comprising 15 texture-less
objects with discriminative shapes, sizes, and colors in household environments. A test
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image with background clutter shows an annotated object with small occlusions only.
The level of occlusion is further controlled in the LineMOD-Occluded (LM-O) dataset [45]
with additional annotations of all associated objects. T-LESS [46] comprises 30 industry-
relevant objects from 20 scenes with discriminative colors and no significant textures.
The objects have mutual similarities and symmetries in size and shape, and some objects
are composited from other assemblable objects. The MVTec Industrial 3D Object Detection
Dataset (ITODD) [47] contains 3500 labeled scenes and 28 objects acquired from realistic
setups for industrial applications. The 6D poses are known for the validation images only
and are not available publicly for the test images. The YCB-Video (YCB-V) dataset [27]
contains 133,827 frames with 21 objects, selected from 92 videos of the YCB dataset. The 80
K simulation images in the original dataset are also included in this benchmark. In the case
of the HomebrewedDB (HB) dataset [48], there are 33 toy, household, and industry-relevant
objects in 13 complex scenes with different backgrounds.

As shown in Figure 3, other datasets, such as RU-APC [49], IC-BIN [50], IC-MI [50],
and TYO-L [42], were also used for the BOP Challenge. The training and test images for
3D object detection are annotated with ground-truth object poses. Every dataset, together
with the given 3D models, is available in the unified BOP format.

LineMOD-Occluded (LM-O)

LineMOD (LM) T-LESS

MVTec ITODD (ITODD)

Rutgers APC (RU-APC)

Doumanoglou et al. (IC-BIN) Toyota Light (TYO-L)

Tejani et al. (IC-MI)YCB-Video (YCB-V)

HomebrewedDB (HB)

Figure 3. Benchmark for 6D Object Pose Estimatio (BOP) [43]. Note that multiple datasets for 3D
object detection were also collected for evaluation.

3.6. Context-Aware MixEd ReAlity (CAMERA)

The Context-Aware MixEd ReAlity (CAMERA) dataset [54] addresses the limitations
of traditional data generation by synthetically generating a large number of training images
and ground truths in a faster and more cost-effective manner. From mostly tabletop scenes,
553 background images were acquired in widely varying conditions. For hand-scale objects
such as a bowl, a bottle, a can, a camera, a mug, and a laptop, selected from ShapeNetCore,
a total of 300,000 composited images of 31 indoor tabletop scenes were rendered. Further,
25,000 photorealistic images were set aside for validation. For point sampling and plane
detection, the mixed reality compositing technique exploits the Unity engine with custom
plugins. In contrast to non-context-aware images from previous approaches, the simulated
images in this database facilitate and improve generalization in learning-based methods.

3.7. Objectron

The Objectron dataset [52] is a collection of short, object-centric video clips that
are accompanied by AR session metadata, including camera poses, sparse point clouds,
and characterizations of planar surfaces in the surrounding environment. In each video,
the camera moves around the object, capturing it from different angles. The data also
include manually annotated 3D bounding boxes for each object, which describe the object’s
position, orientation, and dimensions. The dataset consists of 15,000 annotated video clips
supplemented with over 4 million annotated images of the following objects: bikes, books,
bottles, cameras, cereal boxes, chairs, cups, laptops, and shoes. In addition, to ensure
geo-diversity, our dataset was collected from 10 countries across five continents. Along
with the dataset, we must mention a 3D object detection solution for four categories of



Electronics 2021, 10, 517 7 of 22

objects: shoes, chairs, mugs, and cameras. These models were trained using this dataset and
released in MediaPipe, Google’s open-source framework for cross-platform customizable
ML solutions for live and streaming media.

3.8. KITTI 3D

The KITTI3D benchmark [55] comprises 7481 training images, no official validation
images, and 7518 test images. As there is no validation set, the training images are often
split into 3712 images for training and 3769 images for analyzing the validation results
before reporting the results on the test set via the evaluation server. For 3D annotations of
2D images, the possible 3D bounding boxes are given for only three categories, namely,
cyclist, car, and pedestrian. Depending on object truncation, occlusion, and distance to the
camera, the difficulty of 3D detection is determined as hard, moderate, or easy. Figure 4
shows examples of the target objects with their ground-truth bounding boxes.

Figure 4. KITTI 3D object detection benchmark [55].

Virtual KITTI [56] is one of the first synthetic datasets for training and testing machine
learning models for autonomous driving applications. In a video-game world, it is easy
to create data for rare events, and scenes with changes in only one condition (such as the
weather) can be generated. Moreover, the exact ground truth can be generated along with
simulated images; hence, little annotation is required. The Unity game engine has been
used to explore this concept by carefully recreating real-world videos from the popular
KITTI autonomous driving benchmark suite.

3.9. CityScape 3D

Cityscapes 3D [39] is an extension of Cityscapes [57], one of the most influential
datasets, which enriches annotations with high-quality 3D bounding boxes for vehicles.
The original Cityscapes dataset [58] contains 5000 images, of which 2975 are used for
training, 500 are used for validation, and 1525 are used for testing. The 3D bounding box
annotations cover all eight semantic classes in the vehicle category of the Cityscapes dataset,
i.e., bicycle, bus, car, caravan, train, motorcycle, trailer, and truck. The 3D annotations are
newly labeled with nine degrees of freedom (DoF) using stereo images, resulting in more
accurate re-projection in images and a higher range than LiDAR-based methods. It is a
new benchmark for 3D detection tasks in autonomous driving with full 3D orientation,
including yaw, pitch, and roll labels. Compared to other 3D detection datasets, Cityscapes
3D has a high object density, which indicates complex scenes.

3.10. Synscapes

The Synscapes database [59], created by a collaboration between 7DLabs Inc. and re-
searchers at Linköping University, is a synthetic dataset comprising more than 25,000
simulated images. In the context of street scene parsing, the photorealistic rendering
technique tries to capture every aspect of the optical process in the camera system, from il-
lumination sources such as the sun, to the object’s material and geometric composition,
and finally, to the sensors. As photons hit digital sensors through a lens in a pinhole camera,
the signal is converted into an image with other physically plausible noise. For exam-
ple, owing to the relative velocities of vehicles, motion blur can be modeled. Synscapes
ensures simulations that are representative of the real world for data augmentation in
driving scenes.
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3.11. SYNTHetic Collection of Imagery and Annotations (SYNTHIA-AL)

The SYNTHetic collection of Imagery and Annotations (SYNTHIA) dataset [61] pro-
vides photorealistically rendered frames in city-level scenes. The categories handled in the
database are building, bicycle, car, fence, lane marking, road, pedestrian, pole, sidewalk,
sky, traffic light, traffic sign, vegetation, and void. The SYNTHIA-AL dataset is generated
by modifying the SYNTHIA environment using the Unity Pro game engine. In the context
of driving scenarios, the data are generated in a virtual world consisting of three differ-
ent areas, namely, town, city, and highway. These areas are populated with a variety of
pedestrians, cars, cyclists, and wheelchairs, except for the highway, which is limited to cars.
Several environmental conditions, such as season (winter, fall, and spring), day time (day
or night), and weather (clear or rainy) can be set. The ground truth is provided in terms of
2D/3D bounding boxes, instance segmentation, and depth information [60].

4. Monocular 3D Object Detection Methods

Researchers have proposed new methods to overcome challenges for monocular 3D ob-
ject detection. Here, we categorize these methods into multi-stage and end-to-end approaches.

4.1. Multi-Stage Approaches

First of all, we can deal with an ill-posed problem by employing prior hypotheses
on 3D objects. The prior knowledge includes semantic, context, shape, and location
information, and so on. By performing distinct tasks linearly, including hand crafting
features, 2D boxes of interest can be proposed. Alternatively, we can use standard 2D object
detectors with simple deep neural networks. As an example of GS3D [16], 2D detections
are converted into basic 3D boxes using projection knowledge, which is called guidance.
Given the guidance, the 3D bounding boxes are further refined without expensive stereo
data or point clouds.

With an additional 3D shape prior, we can perform 3D object detection through CAD
template matching. During the detection process, a template library will be established,
and the network will match the best model in the template library. In the case of the method
in [19], the 3D template, partial visibility, and partial coordinates of the detected vehicle
are given. Then, these features are considered to estimate the localization and orientation
with 2D–3D model fitting. Even if some parts of the test objects are not visible in the 2D
case, vehicle models can be retrieved via template matching.

As monocular images lack depth information owing to the principle of perspective
transformation, we can use deep learning to predict the depth map of the image first, which
serves as the basis for 3D object detection in the next stage. To achieve effective monocular
depth estimation, many algorithms have been developed in recent years. In addition to
using the depth estimation module, the object ROI and depth feature map are fused to
calculate the object coordinate and spatial location information [21]. Using a multi-layer
fusion scheme, this framework [21] can generate the final pseudo-point cloud information
for its application.

Likewise, it is also a popular algorithm for converting the image information into
point cloud information; the point-cloud-related network is then used for processing.
For another application of representation transform, the orthographic feature transform
(OFT) [24] maps perspective images to orthographic bird’s eye view (BEV) images in
the deep-learning-based framework. In general, the representation transform selects an
application-specific data representation that is more suitable for the target scenario than
the image domain. Hence, it can achieve satisfactory detection results.

4.1.1. 2D Detection-Driven Methods

Based on PASCAL3D+ [31], simultaneous 2D object detection and viewpoint esti-
mation was proposed by Su et al. [62]. Given an input RGB image and a bounding box
from an off-the-shelf detector, a deep representation was tailored specifically for viewpoint
estimation. The authors selected category-specific orientations of objects with a novel
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loss layer adapted over synthetically generated viewpoint labels. Experimental results
indicated that the performances of both joint detection and viewpoint estimation can be
significantly improved on PASCAL 3D+. 2D images and 3D shapes/scans can be connected
through their image synthesis pipeline; thus, information can be transported between the
two domains bidirectionally. When training datasets for deep learning need to be manually
annotated, this approach infers 3D information with negligible human effort.

For encoding raw images with different sensor modalities in compact descriptors,
Wohlhart et al. [63] used pair-wise and triplet-wise constraints on training images and
template views. By considering the dissimilarity and similarity of the descriptors, they effi-
ciently captured both the object categories and the 3D poses. The constraints untangle the
input images with different objects from different views into several clusters, which are
not only well separated but also structured as the corresponding sets of 3D poses. The Eu-
clidean metric between descriptors is sufficiently large when the descriptors are given
from different objects. Furthermore, when the encoded descriptors are given from the
same object, the distance is directly associated with the different 3D poses of the object.
In this manner, the learned descriptors can be generalized to classify unseen objects as well.
This approach requires binary masks of the objects of interest; however, it works well with
either RGB or RGB-D images of the LineMOD dataset [44].

To use a standard CNN method for high-quality detections, Chen et al. [15] assumed
that objects are always on the ground plane. Initially, given a set of category-specific object
proposals, the monocular 3D object detection is formulated as an energy minimization task
that optimally locates object candidates in the 3D world. Based on prior information such
as object size, location, shape, segmentation, and contextual information, each intuitive loss
function accurately optimizes a 3D box. Hence, Mono3D [15] uses two stages with a 2D
object detection network. The detection performance of this approach was quantitatively
confirmed on the challenging KITTI benchmark.

When objects have significant truncation, occlusion, and scale variations in the CNN-
based detection pipeline, region proposals can often be a bottleneck. To alleviate this issue,
subcategory-aware CNNs [17] have an interesting region proposal network whereby the
proposal step is guided by subcategory information. The subcategory concept refers to
categories of objects that share similar attributes, such as 3D shape and pose. Based on
this key assumption, the SubCNN considers a new detection network for joint detection
and subcategory classification. In addition, test objects at different scales are handled
using image pyramids in an efficient manner. While exploring the effects of subcategory
information on CNN-based object detection, extensive experiments were conducted on the
PASCAL VOC 2007, PASCAL3D+, and KITTI detection benchmarks.

In GS3D [16], 2D detections are converted into basic 3D boxes using projection knowl-
edge, which is called guidance. Given the guidance, the 3D bounding boxes are further
refined without expensive stereo data or point clouds. To remove representation ambigui-
ties in 2D bounding boxes, the underlying 3D structure in the surface feature is extracted.
In practice, coarse cuboids are reported to have sufficient accuracy for determining the 3D
bounding boxes of objects by refinement. To refine the 3D detections, the surface feature
extraction module, which is an affine extension of RoIAlign, is also used. In this framework,
the complex residual regression problem is reformulated as a classification task, which is
much easier to train. Finally, the discriminative ability is enhanced by the quality-aware
loss. This approach was evaluated using the KITTI 3D benchmark.

Figure 5 shows 2D detection-driven GS3D. 2D detections and the orientations of target
objects are obtained using the CNN-based model (2D+O subnet). Then, the proposed
algorithm generates the guidance using the given 2D bounding box and orientation with
a projection matrix. The refinement model (3D subnet) uses the extracted features from
visible parts and 2D detections of the projection guidance. Instead of direct regression,
the reformulated classification task is adopted by the refinement model with the quality-
aware loss to achieve a more accurate result.
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Figure 5. Overview of GS3D [16].

4.1.2. 3D Shape Information

While Mono3D [15], an optimization-based pioneering method, does not show satis-
factory accuracy and speed, its successor, Mono3D++ [20], achieves improved performance
with better template matching, as does the Ceres toolbox [64]. Mono3D++ [20] uses coarse
and fine 3D hypotheses to infer the object shape and pose from one RGB image. Specifically,
a fine representation for vehicles is generated by morphable wireframe models with differ-
ent shapes and poses. For lower sensitivity to 2D landmark features, a coarse representation
aims to model 3D bounding boxes to improve stability and robustness. For joint energy
minimization with a projection error, three priors are considered, namely, vehicle shape,
a ground plane constraint, and unsupervised monocular depth.

3D shape information-based methods tend to become slow when the number of
shape templates or object poses increases, because hand-crafted steps for comparing
them are required for optimization. To tackle this problem with some physical quantities,
Konishi et al. [65] proposed a new image feature based on orientation histograms of random
projection images from CAD models. Similarly, in [66], coarse initialization was adopted
for 3D poses of texture-less objects. In [67], temporally consistent, local color histograms
were used for pose estimation and segmentation of rigid 3D objects. For handheld objects,
the statistical descriptors can be learnt online within a few seconds.

Instead of optimizing separate quantities, Chabot et al. [18] proposed a multi-tasking
network structure for 2D and 3D vehicle analysis from a single image. For simultaneous
part localization, visibility characterization, vehicle detection, and 3D dimension esti-
mation, the many-tasks network (MANTA) first detects 2D bounding boxes of vehicles
in multiple refinement stages. For each detection, it also gives the 3D shape template,
part visibility, and part coordinates of the detected vehicle even if some parts are not visible.
Then, these features are considered to estimate the vehicle localization and orientation
using 2D–3D correspondence matching. To access the 3D information of the test objects,
the vehicle models are searched for template matching. The real-time pose and orientation
estimation uses the outputs of the network in the inference stage. At the time of publication,
this approach was the state-of-the-art approach using the KITTI 3D benchmark in terms of
vehicle detection, 3D localization, and orientation estimation tasks.

As shown in Figure 6, an input image is passed forward to the deep MANTA net-
work where convolution layers with the same weights have the same color. The existing
architecture is split into three blocks. With these networks, the object proposals are refined
iteratively until the final detection that is associated with the part’s coordinate, the part’s
visibility, and the template similarity. Moreover, non-maximum suppression (NMS) re-
moves some redundant detections. Based on the outputs, the best 3D shape is chosen in the
inference stage. 2D and 3D pose computation is then performed with the associated shape.

In the ROI-10D algorithm [19], a monocular deep network directly optimizes a novel
3D loss formulation and then lifts a 2D bounding box to 3D shape recovery and pose
estimation. Using CAD templates and synthetic data augmentation, deep feature maps
are generated and combined to obtain the shape dimensions. Then, shape regression is
performed to obtain the object information. In particular, the pose distributions are well
analyzed in the KITTI 3D benchmark. In metrically accurate pose estimation, learning
synthetic data is useful for increasing the pose recall; however, some hand-crafted modules
such as 2D and 3D NMS have a strong influence on the final results.
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Figure 6. Overview of the deep MANTA approach [18].

4.1.3. Depth Estimation

On the basis of deep-learning-based monocular depth estimation, Xu and Chen [21]
proposed the multi-level fusion-based 3D object detection (MF3D) algorithm, which com-
bines the Deep3Dbox algorithm [68] and a standard depth estimation module. Using deep
CNN features, it basically uses the existing detectors. In addition to 2D proposals, the dis-
parity estimation is computed to generate a 3D point cloud. Thus, the deep features
derived from the RGB images and the point cloud are fused to enhance the object detection
performance. The depth feature map and the ROI for objects are combined to obtain the
3D spatial location. The key idea of this framework is to use the multi-level fusion scheme,
taking advantage of the standalone module for disparity computation. Experimental re-
sults showed that the performance of 3D object detection can be boosted by 3D localization.
Figure 7 shows sub-networks of the MF3D framework [21]. The task-specific modules are
responsible for objectness classification, 2D box regression, and disparity prediction. Based
on region proposals and point cloud maps from the estimated disparity, the 3D bounding
box of the object is optimized and visualized as shown in the figures on the right.

Figure 7. MF3D for 3D object detection from monocular images [21].

MonoGRNet [22] uses depth estimation for similar reasons. However, it does not
require precise pixel-level depth annotation; only instance-level depth is considered for 3D
localization. The unified MonoGRNet uses four sub-networks for instance depth estimation
(IDE), 2D object detection, 3D localization, and corner regression. In the IDE module,
the depth of a target object is predicted at the center of its 3D bounding box. With sparse
supervision, this network performs depth inference only on the areas of objects detected
as 2D bounding boxes. By avoiding depth estimation for the entire image, it reduces the
computational requirements considerably. The global 3D position is achieved by simply
estimating the object location in the vertical and horizontal dimensions. Then, the corner
coordinates are regressed in the local context. By optimizing the poses and positions of 3D
bounding boxes, MonoGRNet is trained in the global context.
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4.1.4. Representation Transform

Pseudo-LiDAR [23] assumes that the main innovation for bridging the gap between
LiDAR-based and pure image-based 3D object detection is the computational represen-
tation itself for expressing the 3D scene. In other words, the point cloud representation
may be more suitable for monocular 3D object detection than the image-based representa-
tion with the same quality of depth information. Thus, the image-based depth maps are
converted into the proposed pseudo-LiDAR representations mimicking real liDAR signals.
For this reason, the deep ordinal regression network (DORN) [69] has been exploited for
monocular depth estimation, and the mathematical relationship between the 2D image
coordinates and the 3D pseudo-point cloud has been derived. After processing two addi-
tional networks for pseudo-point data, the representation transform makes it possible to
apply any LiDAR-based algorithms to monocular 3D object detection.

The BEV image is another popular representation for applications involving au-
tonomous vehicles. A common technique for converting images into BEV images is inverse
perspective mapping (IPM); however, it typically assumes that all the pixels should be
on the ground plane and it requires accurate camera parameters for estimating the plane
homography. Without needing to calibrate extrinsic parameters, the OFT [24] maps perspec-
tive images to orthographic BEV images in the deep-learning-based framework. The overall
architecture and its output is shown in Figure 8. To encode camera images, the authors
used a front-end ResNet-18 architecture and accumulated image-based features into a
voxel-based representation. The voxel features were then collapsed along the vertical
dimension to yield orthographic ground plane features. Another network was finally
employed to remove the distortional effects of perspective projection and refine the BEV
map. The top-down network processes these features in the BEV space. At each location on
the ground plane, it predicts a confidence score S, a position offset ∆pos, a dimension offset
∆dim, and an angle vector ∆ang. Reasoning in the 3D space improves the performance,
and the network is robust to objects that are distant or occluded.

Figure 8. Architecture overview for the orthographic feature transform [24].

In fact, the method proposed in [70] is similar. The two-phase approach basically uses
IPM to infer the distance from the 3D scene. In the first phase, camera motions such as
pitch and roll rotations are removed using inertial measurement units. The front view is
corrected and projected onto the BEV via the IPM module. In the second phase, the position,
orientation, and size of the vehicle are detected by the CNN. By canceling the camera pitch
and roll rotations, a vanishing point is moved to infinity so that it is not affected by any
vehicle attitude. The resulting projection image is parallel and linear with respect to the
x-y coordinate system of the vehicle. For 3D localization of objects in the real world,
the bounding box detected from the BEV is transformed by the inverse projection matrix
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for conversion into metric units. The proposed algorithm was quantitatively validated
using KITTI 3D.

The representation transform is also a promising candidate for robotics, augmented
reality, and 3D scene understanding. Wang et al. [54] recently proposed a novel normalized
object coordinate space (NOCS) for indoor applications. It defines a shared space with
consistent object orientation and scaling. To estimate the metrically accurate size and
pose of unseen objects, the NOCS map is predicted by the proposed network and used
with the depth map for pose fitting. Extensive experiments on the CAMERA dataset [54]
demonstrated that the proposed method can estimate the sizes and poses of unseen object
instances robustly in real environments.

4.2. End-to-End Approaches

Some recent methods directly return 3D location information of objects and pose
parameters of a camera. For example, a well-known deep representation uses the shared
2D and 3D detection space to build an independent monocular 3D area recommendation
network, which achieved the best performance at the time of its publication [26]. In practice,
the space for directly searching for rotation parameters is nonlinear, making it difficult for
the CNN to recognize the rotation of an object. To avoid this problem, some algorithms
have been proposed to discretize the rotation space or refine the result iteratively. Post-
processing is often crucial for direct regression.

Meanwhile, algorithms that use key points for an algebraic solver do not directly
obtain the pose of the object from a monocular image, but focus on 2D–3D point correspon-
dences to find a firm geometric model using the perspective-n-point (PnP) algorithm [71].
2D key point detection is easier than 3D localization and rotation estimation; however,
it requires a model of a known 3D object and some predefined key points. One of the
clear trends is to increase the number of matching pairs. For example, a pixel-wise voting
network (PVNet) [72] predicts pixel-level indicators corresponding to the key points so that
they can handle truncation or occlusion of object parts. Each pixel votes for the predefined
key points, which are optimized by the Ceres toolbox [64]. PVNet can achieve good results
compared to the previous algorithms.

In this section, we will review these methods using end-to-end CNNs with monocu-
lar images.

4.2.1. Direct Regression

Mousavian et al. [68] proposed Deep3Dbox, a method that estimates the 3D pose
and the size of the 3D bounding box of an object. Similarly to previous 2D-based object
detectors, it partitions the parameter space of the 3D bounding boxes into multiple bins
(MultiBin). From the shared convolution features, the proposed architecture estimates
the dimensions, angles, and confidences using fully connected layers, which can facilitate
robust MultiBin-based regression. Instead of using the L2 loss function to extract a rotation
angle directly, the angle is separated into numerous bins. Then, the confidence of each
bin and the offset are predicted using the residual of the center bin. In the object space
size estimation, the L2 loss function is directly used to compute the offset of the space
size. After determining the size and rotation angle of the object, we can restore the object’s
6D pose by computing the rotation matrix of the object. This method outperforms other
previous methods in terms of the orientation accuracy on the KITTI dataset and viewpoint
estimation on Pascal3D+.

Xiang et al. [27] proposed PoseCNN for 6D object pose estimation. It consists of
feature extraction, embedding, and classification/regression blocks. The feature extraction
network is based on a single-shot detector (SSD) [13]. Here, the extracted features are
shared among all the tasks performed by the second stage. Semantic labeling can provide
rich information for the objects, and this pixel-level classification is effective at dealing
with occlusions. Inspired by the implicit shape model, it can regress the center position and
object distance. It is difficult for the CNN to regress the 3D rotation matrix directly owing
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to the nonlinearity of the target space. Hence, a discretization scheme was proposed for the
space of rotation. However, the accuracy of estimating the rotation matrix may be degraded
by converting the regression of the rotation into a classification problem. To overcome this
problem, in PoseCNN [27], two new loss functions were designed for estimating the 3D
rotation matrix to handle symmetric objects and to match object shapes by decoupling
the estimations of 3D translation and 3D rotation. Poirson et al. [73] also used SSD [13],
the 2D object detector, to integrate the pose estimation for each detected object in the same
network. The previous two-stage approach requires at least three resamplings of the image
for region proposals, object detection, and pose estimation. By combining these steps into
a single network, they achieved very fast object detection and pose estimation of up to 46
frames on a Titan X GPU.

Deep-6DPose [25] achieves simultaneous estimations of object detection, segmentation,
and pose estimation using an end-to-end network. Interestingly, it takes advantage of the
concept in Mask-RCNN [9], in order to directly regress 6D poses of objects without further
post-processing. The remarkable contribution of this approach is the separate regression
of translation and rotation matrices using a Lie group. Compared with a conventional
orthonormal matrix or quaternion-based representation, a Lie algebra gives an optimal
solution owing to fewer parameters and the unconstrained condition. Deep-6Dpose
achieves rapid processing through its end-to-end architecture, and it is suitable for various
robotic applications.

M3D-RPN [26] uses a shared space of 2D detection and 3D detection for a single
3D region proposal architecture. It gives greater weight to the relationship of 2D and 3D
aspects. To improve the 3D parameter estimation accuracy, depth-aware convolution has
been proposed for learning more high-level features with spatial information, as shown
in Figure 9. Then, the pose optimization algorithm is adopted for orientation estimation,
followed by 2D detections and 3D projections. Applying M3D-RPN to BEV and 2D and 3D
object detection tasks shows the effectiveness of the single-stage network.

Figure 9. Overview of M3D-RPN [26]. It consists of parallel paths for global and local feature extraction.

Liu et al. [74] proposed measuring the degree of visual fitting between the object and
the projected 3D proposals for achieving high-precision localization. After regressing the
3D bounding box and the orientation of the object for constructing suitable 3D proposals,
they proposed the fitting quality network (FQNet), which can predict intersection over
union (IoU) in the 3D space between the 3D bounding box and the target object using
2D cues, as shown in Figure 10. Their motivation was that denoting the projections on
the image domain can provide additional knowledge to better understand the spatial
relationship. Matching the object-rendered image with the input image generates better
results compared to the limited accuracy of direct regression. DeepIM [75] is a new
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refinement method that uses a deep neural network for matching 6D poses iteratively.
Given an initial pose, a relative transformation can be predicted by matching the rendered
image with the observed image. As rendering the object and estimating the 6D pose are
complementary, the accuracy of pose estimation increases with iteration. The separate
representation of 3D position and rotation not only achieves accurate estimated poses but
also allows unseen objects to be refined. Experiments on commonly used benchmarks such
as LM [44] and T-LESS [46] demonstrated that the proposed method shows significant
improvements over previous methods.

Figure 10. Overall pipeline of a deep fitting degree scoring network [74], which refines an initial
bounding box using a regression module and FQNet.

4.2.2. 2D–3D Correspondences

BB8 [76] is based on the idea of using 2D–3D correspondences for 3D object localization.
In the first step, a network of object segmentation is applied to an input image for localizing
the objects. Next, another network is used to estimate the 2D projections of the interest
points of the 3D boundaries around the target objects. The 6D pose is estimated using the
relationship between the 3D bounding box corners and the corresponding projected 2D
points. To handle the rotational symmetry, it restricts the pose ranges in the training stage
and introduces a classifier to estimate the pose ranges at run time. For the final refinement
of the estimated poses, it includes a feedback loop to compare the input image and the
rendered object for better prediction of the 2D projected points. This holistic approach
showed more accurate results on the challenging T-LESS dataset [46].

SSD-6D [29] applies the SSD concept [13] to 6D pose estimation. As an extension
of SSD for inferring the 3D location and orientation, it predicts the corner points in the
bounding boxes, classes, viewpoints, and in-plane rotation. For better results, it tries to
find a proper sampling for the space of rotation. Interestingly, SSD-6D is trained using only
a synthetic dataset, which can alleviate the difficulties of building a database for new target
objects. SSD-6D can treat depth as an optional modality for hypothesis verification and
pose refinement.

Tekin et al. [28] used the YOLO network [77] to predict the key points of corresponding
objects. The network has a regular grid to present feature maps spatially. In each cell,
the 2D positions of the corner points corresponding to the 3D bounding boxes are predicted.
Then, the 6D pose can be computed using the PnP algorithm for the given 2D and 3D
correspondences. However, the predicted 2D points may be insufficient for pose estimation
when there is severe occlusion. To overcome such problems due to occlusion or truncation,
Hu et al. [78] proposed an image-segmentation-based method to estimate an object’s 6D
pose by aggregating numerous local pose estimates, which can achieve more accurate
key point estimations, even in cases of severe occlusion. To combine the pose candidates
into a more robust set of 3D and projected 2D correspondences, confidence measures are
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computed. Even in the case of severe occlusion, because it generates precise results based
on merging local pose estimates robustly, it does not adopt an additional refinement process.
The proposed algorithm was tested on the challenging LM-O [45] and YCB-V [27] datasets.
We believe the future goal of these 2D–3D correspondence approaches is to incorporate the
PnP step into the network to establish a complete, end-to-end framework.

The dense pose object detector (DPOD) [79] predicts dense multi-class 2D and 3D
correspondence maps between input images and possible 3D models. A 6D pose is com-
puted on the basis of the PnP algorithm and RANdom SAmple Consensus (RANSAC) for
the correspondences. Then, the pose is refined from the initial pose estimation using the
refinement architecture. In contrast to the previous methods that regress projections of
the object’s bounding boxes [28,76] or formulate pose estimation as a discrete classifica-
tion problem [29], DPOD shows more robust and accurate 6D pose estimation owing to
the dense correspondences. PVNet [72] also uses a denser key point prediction method,
as shown in Figure 11. Instead of using sparse key points by regression or prediction,
PVNet is used to predict pixel-level indicators corresponding to the key points. This flexible
representation can handle occlusion or truncated key points robustly. The RANSAC-based
voting scheme provides the spatial probability distribution of each key point for estimating
6D poses with an uncertainty-driven PnP algorithm.

Figure 11. Overview of the keypoint localization in PVNet [72]. The probability distributions of the
keypoint locations are estimated from hypotheses.

As the pose estimation problem belongs to the domain of geometric vision, it is essen-
tial to approach it as an end-to-end optimization to seamlessly combine the geometrically
relevant information with the deep learning process. To this end, the BPnP [30] was pro-
posed as an effective network module that computes the gradients of backpropagation by
guiding parameter updates in the network using a PnP solver. If the optimization block is
differentiable, the gradients of the PnP solver can be derived accurately via implicit differ-
entiation. Although it integrates a layer from the PnP solver, the proposed method can be
effectively employed to learn feature representations for various geometric vision problems
such as structure from motion, geometric camera calibration, and pose estimation. For pose
estimation, a BPnP-based trainable pipeline achieves higher accuracy by incorporating the
feature map loss with 2D–3D reprojection errors.

5. Discussion

In images captured by cameras, geometric clues are essentially lost during dimension
reduction through 3D to 2D projection. To overcome this problem, the studies reviewed in
this paper constitute an active domain of 3D object detection using RGB images. To begin
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with, we summarized well-known benchmark datasets [31,34,38,40–42,54,55,57,59,61] built
by research groups from academia and industry. Benchmark databases are useful for
fair comparison of the previous methods in the fields of machine learning and computer
vision. They freely present high-quality training and test datasets. This is important for
most of the deep-learning-based problems; in particular, for 3D-related tasks, sufficiently
comprehensive information with a large amount of data is necessary. In fact, 3D bounding
box annotation requires more specific guidelines for annotators and considerable time
and effort.

When no single annotation alone is sufficient for ideal end-to-end training, we often
use different types of human annotations together for a new task. By exploiting easily
accessible 2D/3D databases, multi-stage methods typically have intermediate represen-
tations or features learnt from different annotations/guidance. The 2D detection-driven
methods [15–17,62,63] started with two-stage 2D detectors, and developed the feature rep-
resentation of RGB images for detecting 3D objects. The 3D information of objects is often
inferred through fusion schemes with hand-crafted features on points, patches, and parts,
or topological structures in 2D.

For the additional prior knowledge, 3D hypothesis has long been used to recognize
and localize a 3D object from a single RGB image. To represent objects reliably, edges or
more robust local features are extracted from a photo and matched with their counterparts
in 3D models. Being that they are conceptually similar to the traditional approaches,
the algorithms using a 3D shape hypothesis [18–20,65–67] can derive 3D information based
on template matching with known 3D CAD models. Although it is not easy to deal with
multi-object cases in real time, this approach can be highly practical, providing new deep
representations and efficient optimization. Recognizing object locations in the actual 3D
space also plays an important role in scene perception.

By inferring the scene geometry from 2D images, the depth information can compen-
sate for the weakness of monocular vision. Given only a single RGB image and sufficient
ground-truth depth data on the Web, we can predict the depth value of each pixel of
the object of interest using learning-based monocular depth estimation. For example,
DORN [69] is a popular network for depth extraction that incorporates multi-scale features
to estimate pixel-level depth information with small errors. On the basis of existing depth
extraction networks, many 3D object algorithms [20–22] combine such depth information
as a sub-block in their proposed networks.

Some researchers argue that monocular 3D object detection is difficult to infer in
perspective image-based representation, especially when the appearance and scale of ob-
jects vary drastically with depth and meaningful distances. A typical approach for the
representation adaption is to transform the 2D image into a 3D point cloud. Then, we can
use the available networks for processing the 3D point cloud. Some studies such as [23]
have suggested that the data format for point cloud data is more suitable for detecting
and recognizing 3D objects. Another way to alleviate occlusion and scale variation in
perspective views is to convert the images into orthographic BEV images [24,70]. This ap-
proach forms the basis for future exploration of other tasks where the BEV representation
is naturally applicable, such as 3D object tracking and motion forecasting. To address the
representation challenge for hand-scale objects on a plane, Wang et al. [54] approached it
as a problem of detecting correspondences in the normalized coordinates of a shared space
of object description.

The most recent trend in monocular 3D object detection is learning deep neural net-
works to directly regress the 6D pose from a single image [25–27,68,75] or to estimate the
2D positions of 3D key points and solve the PnP algorithm [28–30,72,76,78,79]. The efficient,
robust PnP algorithm can detect multiple 3D objects from the candidate correspondences
between 2D and 3D points, but the object is considered as a global body in such cases.
Consequently, these methods suffer from severe occlusion, and they easily fail in various
real-world situations. As of the limitation of representation in the deep learning net-
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work and widely occurring occlusion, it is impossible to interpret the 2D–3D relationship
correctly using a single CNN model.

While the above-mentioned issues provide important clues for possible research di-
rections, we believe that 3D object localization with hybrid representations [80,81] has con-
siderable scope for improvement in the near future. Compared to unitary representation,
a hybrid representation with edge, region, or creative geometric assumptions or any object-
part awareness can use multiple training databases. Another possible direction is enforcing
the consistency beyond diverse representations by training the network in a self-supervised
manner. In particular, synthetic datasets can pave the way to robust representation for fea-
ture domain adaptation. Finally, beyond multiple intermediate representations, geometric
relationships across object categories in different scenes can be ultimately formulated as an
end-to-end optimization throughout an entire network. We believe that there is considerable
scope for finding the best representation transforms, geometric relationships, or other physical
conditions of 3D objects, and these discoveries can have a strong influence on future work.

6. Conclusions

Recently, deep learning methods have attracted considerable attention and witnessed
rapid development. In contrast to previous hand-crafted features, the success of the CNN
is attributed to its powerful ability to learn rich feature descriptions from an adequate
amount of training data. Monocular 3D object detection is not an exception. Hence, we
surveyed the current methodologies for deep-learning-based 3D object detection using
single RGB images. They are being employed in various practical applications such as
autonomous vehicles and robotics. We believe that the current gap between mature 2D-
based methods and nascent 3D-based methods can be rapidly bridged on the basis of
the intensive review presented herein. First, we summarized the widely used benchmark
databases for training and evaluating the proposed methods in this area, and we reviewed
the recent progress in monocular 3D object detection approaches by categorizing them into
multi-stage and end-to-end approaches. We dealt with the main approaches used by recent
methods to tackle the objective problem and discussed their underlying limitations. Finally,
we examined the issues involved in localizing objects in the 3D space, which presently is
an active research field because of its practical implications. Based on the current research
status, object localization followed by pose estimation could be developed adequately for
the 3D domain. In particular, enabling 3D perception only from a single camera will be
useful for prospective applications.
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