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Abstract: Dynamic cable-tension is an important bridge-health indicator. However, it is difficult to 
be measured precisely and efficiently. A remote bridge dynamic cable-tension measurement 
method is proposed. It uses an interferometric radar sensor, a time-frequency analysis technique, 
and a tension estimation approach based on a string-vibration-equation. One radar can measure the 
displacements of multiple cables aligned on one side of a bridge, at the same time. By solving the 
string vibration equation, each cable-tension is calculated from its fundamental frequency, which is 
obtained by time-frequency analyzing a short section of the cable’s whole displacement vector in an 
overlapped-piecewise manner. An adaptive amplitude and phase estimation (APES) algorithm is 
used to solve the frequency resolution deterioration problem due to the short duration. Simulations 
and field experiments with a K band interferometric radar validate that the proposed method is 
superior to traditional cable-tension measurements in terms of precision, robustness, and efficiency. 
The proposed method is of great application value in measuring and monitoring large cable-stayed 
bridges and cable-suspended bridges. 

Keywords: K band; interferometric radar; vibration frequency method; dynamic cable-tension 
measurement 
 

1. Introduction 
Cable-stayed bridges and suspension bridges are the first choices to build long-span 

bridges to cross rivers and seas [1]. Cables are vital structural anchors and force-bearing 
components of a bridge. A long-span bridge is composed of serval groups of cables. Each 
cable-tension should be designed appropriately to achieve rational deck alignment and 
internal-force distribution. Many bridge disasters result from cable failures. Therefore, the 
cable-tension must be measured accurately during the whole bridge-life-cycle, including 
the construction stage, the traffic-operating period, and the renovation phase [2].  

There are various methods to measure cable-tension, such as the pressure gauge 
measurement, the magneto-elastic based method [3], and the vibration-frequency based 
method [4]. The vibration-frequency based cable-tension measurement is the most widely 
used method due to its simple applicability and good adaptability. Vibration frequency 
measuring sensors can be roughly classified into cable-contact measuring ones and re-
mote measuring ones. Sensors of the first kind include accelerometers and vibration 
pickups. [5]. These sensors usually have to be bound near the lower ends of the cables for 
convenience, when no lift truck is available to raise the sensors to higher positions. Be-
cause the lower ends are usually connected to various types of vibration absorbers or an-
chorage devices, the sensors mounted at lower positions would fail to get satisfactory 
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measuring results. Sensors of the second kind include vision-based sensors and interfero-
metric radars [6–9]. Vision-based sensors generally require a reflector installed on a cable 
to improve the measuring precision. Besides, their performances tend to decrease in ad-
verse weather. On the other hand, interferometric radars are immune to adverse weather 
and require no additional reflectors. Since they are precise and efficient to measure mul-
tiple cables by only one snapshot, interferometric radars are accepted by more bridge en-
gineers. A rapid and dynamic cable-tension measurement has drawn more attraction in a 
bridge health monitor application. The interferometric radar will be a potential sensor to 
meet these special requirements.  

Cable displacements are first measured by an interferometric radar and then trans-
formed into the spectrum domain [8]. The cable-tension can be obtained by solving the 
stay-cable free vibration differential equation [5] at last. The first step has been verified by 
numerous experiments [10]. The last step is also well studied by taking factors, such as 
damper, bending stiffness, and temperature variation, into considerations [4,11]. How-
ever, it is often taken for granted that the middle step works well with the conventional 
fast Fourier transform (FFT). The widely used FFT method would be affected by high 
sidelobes, which makes it hard to distinguish the peak of a weak target from the sidelobes 
of a strong one. Although the sidelobes can be suppressed by weighting the input dis-
placement, it would cause a main lobe expansion problem at the same time. ZOOM-FFT 
(ZFFT), FFT-Fourier Series (FFT-FS), and chirp z-transform (CZT) are proposed to im-
prove the computation resolution. These FFT-based methods still suffer limited frequency 
resolution that is in inverse proportion to the time duration [12]. Besides, they cannot give 
an accurate frequency peak due to sidelobe leakage from a nearby component. Park et al. 
have proposed a noniterative frequency estimation method for a single sinusoidal model 
[13]. By properly setting the phase interval, it can achieve good performance when Gauss-
ian noise and harmonic components are present. Giarnetti et al. have proposed a paramet-
ric method to non-recursively estimate the frequency of multi-harmonic sinusoidal, espe-
cially with short duration [14]. The method is computationally efficient and it is very suit-
able for time-frequency distribution analysis, as a reference frequency required can be de-
termined by the last result. However, both models do not match the actual model of 
bridge-cable deformation, as there are other unknown sinusoidal interferences. By using 
fast Hartley's transform, the computation efficiency can further be improved since the in-
put vector is real data [15].  

Adaptive spectral estimation can give more precise results if the time-domain data 
can be modeled as a sum of multiple sinusoidal signals. Cable displacement waveforms 
can meet the very assumptions. Typical adaptive spectral estimation methods include the 
adaptive autoregressive (AR) algorithms, the Capon beamforming method [16], the adap-
tive amplitude, and the phase estimation (APES) method [17,18]. The APES method is of 
great interest in a wide range of applications, including time-frequency signal analysis, 
speech processing, radar signals analysis, etc. It can provide bias-free spectra estimation, 
which is the premier pursuit of cable-tension measurement. Although several fast imple-
mentations of APES are developed to improve the computation efficiency [19–21], we will 
only use the basic APES implementation. This paper aims to get the precise fundamental 
frequency and the resulting cable-tension in a short duration. An APES-based time-fre-
quency analysis method is proposed to estimate the dynamic cable-tension for dynamic 
load tests. Key parameters are analyzed to get better resolution, better signal-to-noise ratio 
(SNR) adaptability, and better multi-signal discrimination ability. The performance of the 
new method is compared with those of FFT-based methods. The main contributions of 
this paper are given below. 
• Systematically describe the principle of a remote dynamic cable-tension measuring 

method. 
• An APES-based bridge dynamic cable-tension estimation method is proposed. When 

compared with other cable-tension estimation methods, it can achieve more accurate 
fundamental frequency, especially when there are nearby frequency interferences. It 



Electronics 2021, 10, 501 3 of 16 
 

 

can also provide improved spectra resolution constrained by the duration of the 
measured displacement.  

• The cable time-frequency distribution is analyzed with data recorded when a high-
speed train passed a cable-stayed bridge. The result can reveal the operational con-
dition of the bridge, such as cable-tension distribution, dynamic cable-tension varia-
tion, the fundamental frequency of the bridge deck, etc. These properties can provide 
unprecedented details of the dynamic cable-tension change process. 
The rest of this paper is organized as follows. The diffusion characters of bridge ca-

bles, the principle of a vibrating frequency-based cable-tension measurement method, and 
the principle of vibrating frequency measuring interferometric radar are reviewed in Sec-
tion 2. Section 3 briefly describes an APES-based time-frequency analysis technique for 
bridge cables. Section 4 presents simulations and the cable frequency analysis of a high-
speed railway bridge. Finally, conclusions are drawn in Section 5. 

2. Interferometric Radar-Based Cable-Tension Measurement 
2.1. Principles of the Interferometric Radar 
2.1.1. Remote Displacement Measurement 

To distinguish nearby cables, an interferometric radar has to emit wideband signals. 
Linear frequency modulation (LFM) signals are the most widely used waveforms. The 
frequency of an LFM signal is changing linearly with time, and it can be formulated as: 

( ) 2
0

1rect exp 2 0<
2t

tS t A j f t kt t T
T

π    = ⋅ + <        
 (1)

where 𝑓  is the start frequency, 𝑇 is the sweep period, and 𝑘 is the chirp rate. 𝐴 is the 
amplitude, and it is often omitted for simplicity. The received signal of a point target at 
range 𝑅 is: 

( ) ( )tr tS S t τ= −  (2)

where 𝜏 = 2𝑅 𝑐⁄  is the round-trip traveling time. 𝑐 is the speed of light. The bandwidth 
of an interferometric radar is usually more than 0.3 GHz, so a dechirp receiver is often 
used to reduce the cost of the radar. The received intermediate-frequency signal after a 
low-pass filter can be written as: 

( ) 2
0

1t exp 2
2IFS j f k t kπ τ τ τ  = + −    

 (3)

where the first exponential component indicates the phase delay. The second component 
is a linear phase term and indicates the range of the target. The last component is the 
quadratic phase error of a dechirp operation. One dimensional radar image is obtained by 
applying the FFT, which is expressed as: 

( ) ( ) ( )
( ) ( ) ( )( )2

0

t exp 2

=exp exp 2 + sin c

T

RC IFS f S j ft dt

j k j f f k f T
τ

π

π τ π τ π τ τ

= −

− + −      

  (4)

The maximum peak of the 1D radar image is located at 𝑓 = -𝑘𝜏. The resolution of the 
radar 𝜌  is proportional to the time duration 𝑇 - 𝜏. For a cable-tension measuring inter-
ferometric radar, 𝑇 is much larger than 𝜏 , so 𝜌 ≈ 𝑐 2𝑘𝑇⁄ . 

The cable is measured repeatedly by a radar, and it would output a measured data 
matrix, which is donated as ( , )RC sS f t . st  is the time of the measurement. The phase of 
the peak is a sensitive range indicator of the measured target. It can be expressed as 

2
0 0( ) 2 ( ) ( ) 2 ( )s s s st f t k t f tϕ π τ π τ π τ= − ≈ . The interferometric approach is an accurate 

phase retrieval method. The detailed implementation of interferometry is composed of 
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two steps. The first step is a conjugate multiplication. Two terms of the multiplication are 
( ),RC sS f t  and ( ), +RC s sS f t tΔ . stΔ  is the repetitive observation time. The first step can be 

written as: 

( ) ( ) ( ){ }
( ) ( )

( )

*2
0

2
0

0

, exp ( ) exp 2 ( ) ( )

exp ( + ) exp 2 ( ) ( )

exp[ 2 ( ) ( ) ]

s s s s

s s s s s s

s s s

S k t j k t j f k t t

j k t t j f k t t t t

j f t t t

τ π τ π τ τ

π τ π τ τ

π τ τ

− = − − ×  

− Δ − + Δ + Δ  
≈ + Δ −



 (5)

The approximant in Equation (5) holds true because the term )( stkτ  is much smaller 
than 

0f . For example, )( stkτ  and 
0f  are 0.33 MHz and 24,000 MHz, respectively. There-

fore, the first term is much smaller than the second term. The second step is interferomet-
ric phase extraction and it can be achieved by the arctangent (in radians) operation, as 
following: 

( ){ } ( )0( ) arctan , 2 ( ) ( )s s s s st S k t f t t tϕ τ π τ τΔ = − ≈ + Δ −  (6)

As stΔ  is small in cable tension measuring radars, the interferometric phase lays in 
the principal value section, and no phase unwrapping is required. The interferometric 
phase is proportional to the displacement of the target. ∆𝜑(𝑡 )∆𝑡 = 2π𝑓 ∆𝜏(𝑡 )∆𝑡 = 4π𝑓 ∆ R (𝑡 )𝑐 ∆𝑡  (7)

The interferometric phase is usually measured at a fixed pulse repetition frequency 
(PRF). The PRF should be set high enough to make sure the interferometric phase is not 
wrapped. If the maximum deformation velocity is RvΔ , then the minimum PRF is 

( )4 Rv λΔ . However, the maximum deformation velocity is hard to measure. The PRF is 
set no smaller than 200 as a rule of thumb. Equation (7) can be replaced by the time differ-
ential formulation in the following. ∆𝑅 𝑛𝑃𝑅𝐹 = λ4π Δφ 𝑛𝑃𝑅𝐹  (8)

where 𝑛 is the slow-time index. The cable displacement is obtained by integrating the time 
differential from the beginning to the 𝑛th sampling point. The displacement can be written 
as:  𝑑(𝑛) = ∆𝑅 𝑘𝑅𝑅𝐹  (9)

Vibration frequency can be calculated by using spectrum estimation methods, e.g., 
the FFT-based methods. 

2.1.2. Radar Characteristic of a Bridge Cable 
A typical bridge cable is composed of a group of braided steel cords. If the cable is 

uncovered, its periodic structure tends to induce the Bragg diffusion phenomenon. How-
ever, bridge cables are usually covered by polyethylene jackets to improve their service 
lifetimes. Then, the bridge cable can be modeled as a finite cylinder. The radar cross-sec-
tion (RCS) of a cylinder is formulated as [22]: 

2
2 sin( sin )cos

2 sin
D kHkH

kH
θσ θ

θ
 

=  
 

 (10)

where 2k π λ= . 𝐻 and 𝐷 are the length and the diameter of the cylinder, respectively. 𝜃 
is the incidence angle. Simulation results show that the RCS reaches a maximum when 𝜃 = 0 and decreases when 𝜃 increases [23]. To improve displacement precision, the angle 
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of a radar must be properly adjusted to get an optimal radar image that all the cables have 
large peaks. 

2.2. Principles of Vibration Frequency-Based Cable-Tension Measurement 
A simplified yet satisfactory tension estimation equation is often used in practical 

engineering, by ignoring the bending stiffness as well as the elastic and damping param-
eters. The cable-tension 𝐹 can be written as [7]: 

2
24 ( )nfF ml n
n

 =  
 

=1,2,  (11)

where 𝑚 is the cable weight per unit length, 𝑙 ̅ is the cable length, 𝑓  is the 𝑛th vibration 
frequency, and it has a relation with the fundamental frequency 𝑓  as 𝑓 = 𝑓 𝑛⁄ . 

If more precise tension estimation is a pursuit, we have to solve the micro-vibration 
differential equation at a static equilibrium position [11]. 

4 2 2 2

4 2 2 2+ 0I
v v y v vE F h k v c m
x x x t t

∂ ∂ ∂ ∂ ∂′ ′− − + + =
∂ ∂ ∂ ∂ ∂

 (12)

where 𝐸  is the bending stiffness, 𝑣 = 𝑣(𝑥, 𝑡) is the vertical vibration, 𝑦 = 𝑦(𝑥) is the 
vertical displacement due to the cable’s self-weight, ℎ is an additional cable-tension 
caused by vibration, and 𝑘  and 𝑐′ are the elastic and damping parameters, respectively. 𝑡 is the time and 𝑥 is the longitudinal position. 

3. APES-Based Time-Frequency Analysis of Bridge Cables 
3.1. Cable Displacement Model 

Cable displacement can be modeled by a sum of sinusoidal signals. The sinusoidal 
signals are the cable fundamental frequency waveform and its harmonic components, and 
the bridge deck’s fundamental frequency waveform and its harmonic components. The 
displacement is contaminated by white Gauss noise and can be expressed as: 

,
, , ,1

( ) ( ) ( )p nP jn
p n p n n p np

y n e cωα ω ω
=

= +  (13)

where ,p nω  and ,p nα are the frequency and the amplitude of the 𝑝th sinusoidal compo-

nent, respectively. nc  is a white Gauss noise and 𝑃 is the total number of sinusoidal 
signals. The frequency and amplitude of cable displacement vary due to the fluctuating 
bridge load. However, the variations are small. It is rational to assume that the frequency 
and amplitude remain stable at a certain period. An instant frequency and amplitude es-
timation can be made from a partial observation, and the dynamic frequency and ampli-
tude parameters can be estimated from the entailed observation in a piecewise manner. 
For notational convenience, we drop the dependence on 𝑝 and 𝑛 below. 

3.2. Principles of APES-Based Spectrum Estimation 
Li proposed the first derivation of a maximum likelihood estimation of a complex 

sinusoidal signal, called APES [17]. Then, Stoica gave another derivation of the APES [18]. 
It is similar to the data dependent Capon filter. 

21

0,

1min ( ) ( ) , : ( ) 1L j l
l

l e Subject to
L

ω

α
α ω ω−

=
− = H H

Mh
h y h a  (14)

where ( -1)[1, , ]j j Me eω ω− −= T
Ma  ; ( ) [ ( ), ( 1), ( 1)]l y l y l y l M= + + − Ty  . M is the length of 

the adaptive filter. The minimization of Equation (14) gives: 

1

0

1ˆ ( ) ( ); ( ) ( )L j l
l

l e
L

ωα ω ω ω − −
=

= = Hh g g y  (15)
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Insertion of Equation (15) in Equation (14) yields the following minimization prob-
lem for the determination of h : 

ˆmin : ( ) 1subject to ω =H H
Mh

h Qh h a  (16)

where ˆ ˆ ( ) ( )ω ω= − HQ R g g  and 1

0

1ˆ ( ) ( )L

l
l l

L
−

=
=  HR y y . The optimal coefficients can be 

obtained by a Lagrange multiplication [17]. 

1

1

ˆ ( )
ˆ( ) ( )APES

ω
ω ω

−

−
= M

H
M M

Q ah
a Q a

 (17)

An optimal complex spectrum estimation is obtained, by inserting Equation (17) into 
Equation (15).  

1

1

ˆ( ) ( )ˆ ( ) ˆ( ) ( )
ω ωα ω

ω ω

−

−
=

H
M

H
M M

a Q g
a Q a

 (18)

The computation load of APES is large, especially the matrix-inverting operation. It 
can be reduced by using the matrix inversion lemma. Then a new formulation of the in-
version of Q is: 

1 1
1 1

1

ˆ ˆ( ) ( )ˆ ˆ
ˆ( ) ( ) 1

ω ω
ω ω

− −
− −

−
= −

−

H

H

R g g RQ R
g R g

 (19)

The computation efficiency is improved as direct matrix inversions are prevented. By 
substituting Equation (19) into Equation (18), a new expression of the frequency response 
is obtained by using the formula below. 

( )
1

21 1 1

ˆ( ) ( )ˆ ( )=
ˆ ˆ ˆ( ) ( ) 1 ( ) ( ) ( ) ( )

ω ωα ω
ω ω ω ω ω ω

−

− − −− −

H
M

H H H
M M M

a R g

g R g a R a a R g
 (20)

Since R̂  is Hermitian and positive definite, we can obtain an upper triangular ma-
trix by Cholesky factorization, such that -1 1 2 1 2ˆ ˆ ˆ= ( )H− −R R R . Let 

( )
( )

1 2

1 2

ˆ ( )

ˆ ( )

ω

ω

−

−

=

=

H *
M

H *
L

b R a

d R Ya
 (21)

where ( ) ( )[ 0 , 1 ]L= −Y y y . Vectors 𝐛 and 𝐝 are the spectrum of ( )1 2ˆ − H
R  and ( )1 2ˆ − H

R Y

, respectively. Equation (21) can be calculated by the FFT to further improve efficiency. 
The frequency estimation can be written as: 

( ) 2
ˆ ( )=

-
α ω

−

H

H H H

b d
d d I b b b d

 (22)

Larsson [20] and Glentis [21] proposed other fast implementations of the APES in 
2002 and 2008, respectively. Fast implementation is not the focus of this paper at this stage. 
Interested readers can read these papers for further study.  

3.3. APES-Based Time-Frequency Analysis 
If the dynamic cable-tension is the pursuit, the APES method can be applied repeat-

edly to different sections of the displacement vector. Nearby sections can be overlapped 
to get smoother results. The main signal processing flow of APES-based time-frequency 
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analysis is similar to that of short-time Fourier transformation (STFT). The flow chart is 
shown in Figure 1. 
1. A long input displacement vector is filtered by a high-pass filter (HPF). The measured 

displacement always contains a DC offset component. There would be a large peak 
at 0 Hz in the spectrum. The sidelobe of the peak would be much larger than the peak 
of a cable’s fundamental frequency peak. So, a high-pass filter is used to suppress the 
adverse influence. There are many types of the HPF filter. The HPF filter in this man-
uscript is performed with a MATLAB function, called ‘smooth.’ The operation is for-
mulated as ( )= ( ) smooth( ( ), )smoothy n d n d n L− . Where smoothL  is the smooth length parameter 
of the ‘smooth’ function. The smaller the smoothL , the larger the cut-frequency of the 
HPF filter. Then, the filtered displacement is decimated by a reasonable factor to re-
duce the total data length and the computation load subsequently. 

2. The new vector is divided into sections of the same length with some proper over-
lapping factors.  

3. Each section is processed by the APES algorithm. 
4. Frequency peaks from APES output are extracted. Fundamental frequency can be 

preliminarily identified if its high harmonic frequencies exist. Then, the fundamental 
frequencies are further judged, according to the relation that they are inversely pro-
portional to the cable length.  

5. The APES algorithm and fundamental frequency identification are applied repeat-
edly to all the divided sections. Then the dynamic cable-tension can be obtained.  

 
Figure 1. Time-frequency analysis flow charts of a bridge cable. 

4. Results 
In this section, the proposed method is evaluated by simulation and real interfero-

metric radar data analysis. 

4.1. Frequency Estimation Precision and Super-Resolution Ablility 
Three simulation experiments are conducted to demonstrate the characters of APES. 

Two of them are to evaluate the frequency estimation precision under single-tone and 
double-tone conditions. The third one is to analyze the relations of estimation precision 
vs. SNR. Results reveal that the APES can achieve super-resolution ability and higher fre-
quency estimation precision, especially in multi-tone circumstances. Parameters in these 
simulations are the same as those of the later K band interferometric radar. 

Table 1 shows the parameters of APES in the following three simulations. The dis-
placement sampling frequency is 20 Hz and the sampling length is 10 s. Therefore, the 
length of an input vector is 200 points. According to the time-frequency theory, the fre-
quency resolution of the vector is ρ = 1 10⁄  Hz. ZOOM-FFT (FFT for short), CZT, and 
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APES methods are adopted to estimate the frequency. The spectrum analysis interval of 
these methods is set to ρ 160,⁄  which is fine enough to analyze the frequency resolution 
of the three methods. Stoica [18] suggests the APES filter tap to be half the input vector 
length to get an optimum result, so the filter tap is set to be 100 in the simulations. 

Table 1. Parameters of APES in these simulations. 

Vector Length 
(s) 

Frequency 
Resolution 

(Hz) 

PRF 
(Hz) 

Section 
Length 
(point) 

Section 
Overlap 
(point) 

Filter  
Taps 

(orders) 

Spectrum 
Analysis Range (Hz) 

Spectrum 
Analysis Interval 

(Hz) 
10 0.1 20 200 180 100 0–5 0.000625 

By using the Monte Carlo method, each simulation is conducted 100 times. The mean 
absolute percentage error (MAPE) is used to assess the estimation precision. The MAPE 
is defined as: 

1

1= 100simN i real
MAPE i

sim real

f ff
N f=

−
Δ ×  (23)

where 𝑓  and 𝑓  are the estimated and the real frequency of the simulated tone, re-
spectively. 𝑁  is the repeated simulation number, and it is set to be 100. 

4.1.1. Single-Tone Frequency Estimation 
The first simulation aims to evaluate single-tone frequency estimation accuracy. The 

frequency of simulated sine waveform varies from 1.0 Hz to 2.0 Hz. A white Gauss noise 
with the −10 dB relative power is added to the single-tone waveform. 

The curve of MAPE vs. frequency deviation is shown in Figure 2. The blue solid, red 
solid, and yellow dash curves are the results obtained by APES, FFT, and CZT, respec-
tively. The red solid and yellow dash curves are overlapped, which indicates that the per-
formances of FFT and CZT are the same. Since the blue and red curves are not always 
superior to each other, it can hardly judge which method is better. Since all the MAPE 
curves are lower than 0.025%, all three methods can achieve precise frequency estimation 
under the single-tone condition. 

 
Figure 2. Single-tone frequency estimation error vs. different frequency position. The blue solid 
curve, the red solid curve, and the yellow dash curve are the results obtained by adaptive ampli-
tude and phase estimation (APES), fast Fourier transform (FFT), and chirp z-transform (CZT), re-
spectively. 

4.1.2. Double-Tone Signal Frequency Estimation 
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The second simulation aims to evaluate the frequency estimation performance when 
multiple tones are present, which is closer to the actual condition of a cable-tension meas-
urement. The frequency of one tone is fixed at 1 Hz, and that of the other tone exponen-
tially changes. The gap between the two tones ranges from 0.05 Hz, which is half the fre-
quency resolution, to 3.97 Hz. A white Gauss noise whose power is −20 dB is added to the 
double-tone waveform. 

The result of the second simulation is shown in Figure 3. The performances of the 
FFT and the CZT are also identical in this simulation. The MAPE curve of APES is much 
lower and keeps consistent among all the frequency gaps, even if the gap is below the 
resolution limit ρ . This indicates the super-resolution ability of APES. However, the per-
formances of FFT and CZT fluctuate. Their MAPEs are generally much larger and can 
reach some minimums only at specific frequency gaps. The reason for the phenomenon is 
that ZOOM-FFT and CZT are FFT-based methods and the Fourier transformation suffers 
sidelobe leakage. Both the estimation frequency of the fixed tone and the varying tones 
are contaminated by each other’s sidelobes. The simulation demonstrates that the perfor-
mance of APES is superior to those of the two methods. 

 
Figure 3. Double-tone frequency estimation error vs. different frequency position. The blue solid 
curve, the red solid curve, and the yellow dash curve are the results obtained by APES, FFT, and 
CZT, respectively. 

4.1.3. Frequency Estimation Performance vs. SNR 

The third simulation aims to evaluate the frequency estimation robustness when the 
power of the added white Gauss noise varies from −40 dB to 0 dB at a 1 dB interval. The 
frequencies of the two tones are fixed at 1 Hz and 1.1 Hz. The gap equals the frequency 
resolution ρ . 

The MAPE and standard deviation(std) are chosen for comparison. The MAPE 
curves and the std curves are shown in Figure 4 and Figure 5, respectively. The curves of 
FFT and CZT are the same, so their performances are identical. Their MAPE curves are 
nearly constant with varying SNR levels, which indicates that the two methods are robust 
estimators. The MAPE curve of APES is much lower than those of the other two methods 
at all the SNR levels. At the same time, the MAPE curve of APES increases as SNR gets 
lower. Since APES is a data-dependent spectrum estimator, it is more affected by the level 
of input noise. The std curve of APES is generally larger than those of the other two meth-
ods. However, since the SNR is larger than 0 dB, it is the most common cable-tension 
estimation case. The APES methods can still achieve superior results. 
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Figure 4. Mean absolute percentage error (MAPE) vs. different signal to noise ratio (SNR). The 
blue solid curve, the red solid curve, and the yellow dash curve are the results obtained by APES, 
FFT, and CZT, respectively. 

 
Figure 5. Standard deviation of frequency estimation error vs. different SNR. The blue solid curve, 
the red solid curve, and the yellow dash curve are the results obtained by APES, FFT, and CZT, 
respectively. 

4.2. Dynamic Cable-Tension Analysis under the Impact of a High-Speed Train 
The methods are applied to the data of a cable-stayed railway bridge. The bridge is 1 

kilometer south of the Changsha southern railway station. The bridge, which crosses the 
Wuguang high-speed railway line, is an import node of the Hukun high-speed railway 
line, as shown in Figure 6. It is composed of one tower and four groups of cables. Each 
group contains 8 cables. Its tower height is 72.9 m and its span length is 224 m. An inter-
ferometric radar is placed by the foot of the tower to measure the cables. The radar is a 
pointed ramp upwards to make sure that cables are within the beam width of the anten-
nas. The picture of the interferometric used in the experiment is placed at the lower-left 
corner. The antennas used in this experiment are horn antennas, and their beam width are 
about 15° × 15°. Due to the block of the bridge body, the five longest cables are visible to 
the radar. The parameters of the radar are listed in Table 2. We recorded their displace-
ments at 200 Hz for 186 s during which a train passed by. We also recorded their displace-
ments without passing trains for comparison and the duration of the recorded data is 300 
s. 
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Table 2. Parameters of simulation and the K band interferometric radar. 

Frequency 
Range 

Band Width 
(GHz) 

Sampling Frequency 
(MHz) 

Antenna Gain 
(dBi) 

Transmitting Power 
(dBmW) 

PRF 
(Hz) 

Decimate 
Factor 

K band 1 10 22 27 200 10:1 

Chansha
Railway 
Station

Hukun Line 
Bridge

 
Figure 6. Experimental descriptions. The Hukun-Wuguang bridge is on the south of the southern Changsha railway sta-
tion. The five longer cables on the north-east side are measured. 

Figure 7 shows the radar image of the experimental scene. We can see the five peaks 
marked by blue dash lines correspond to the five cables. These cables are the ones in a red 
color in Figure 6. Their displacement curves are shown in Figure 8. These curves vibrate 
within small ranges, then change immediately when the train enters the bridge, and re-
main vibrating with much larger amplitudes when the train leaves the bridge. These ca-
bles under changing ambient load may bear changing force. Dynamic cable-tension is es-
timated by the APES method and the CZT method. Only the nearest and farthest cable is 
analyzed to make the article concise. The time-frequency distribution images of the two 
cables are shown in Figure 9 and Figure 10. The spectrum obtained by APES has much 
sharper peaks and lower sidelobe in both experiments. The APES method can resolve the 
two frequencies around 1.1 Hz that the CZT method cannot do in Figure 10. The superior 
performance of APES is prominent in these experiments. 

Time-frequency distribution is an important approach to analyze cable’s dynamic 
character. There are three bright lines in Figure 9a,b, and two bright lines in Figures 9c,d. 
The extra line around 1 Hz is the fundamental frequency of the bridge deck, which is 
excited by the passing train after 35 s. The component can be observed in all cable’s time-
frequency distribution images. At other times, the displacement of the bridge deck is triv-
ial, so its fundamental frequency can hardly be observed. When the fundamental fre-
quency components of the deck and the shortest cable are separated with a large interval, 
in Figure 9a,b, both the CZT and the APES methods can give good results. On the contrary, 
the fundamental frequency of the deck and the longest cable are adjacent in Figures 10a,b. 
Only the APES can distinguish them. The two frequency components of the shortest cable 
are observed in the interval between 0 Hz to 5 Hz in Figure 9. At the same time, four 
frequency components of the longest cable are observed. 
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Figure 7. High resolution 1D radar image of the five cables. The five peaks are among 45 m to 70 m, which correspond to 
the five longest cables in a red color in Figure 6. 

  
(a) (b) 

Figure 8. The cable displacements of the Hukun-Wuguang bridge, which (a) is the displacement of the nearest cable at 
52.19 m and (b) is the displacement of the farthest cable at 67.02 m. 
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(c) 

 
(d) 

  

Figure 9. Time-frequency distribution of the shortest cable. (a) result of CZT-based short-time Fourier transformation 
(STFT) and (b) result of APES-based time-frequency distribution, when a train passes by for 35 s and 40 s. (c) Result of 
CZT-based STFT and (d) result of APES-based time-frequency distribution, when the bridge is on a free condition. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Time-frequency distribution of the longest cable. (a) Result of CZT-based STFT and (b) result of APES-based 
time-frequency distribution, when a train passes by for 35 s and 40 s. (c) The result of CZT-based STFT and (d) result of 
APES-based time-frequency distribution, when the bridge is on a free condition. 
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By the analysis tools, dynamic behaviors of the bridge can be observed and analyzed. 
The fundamental frequency is extracted from the time-frequency distribution images in 
Figure 9 and Figure 10. The fundamental frequency curves are shown in Figure 11. The 
results of APES and CZT are displayed as blue lines and red lines, respectively. Some 
significant details of the dynamic fundamental frequency are observed. 
1. When the frequency of interest is far from other frequency components, both meth-

ods can obtain similar estimation performance. The curves in Figures 11b,d and be-
fore 30 s in Figure 11a,c are the cases. 

2. When the frequency of interest is interfered by a nearby frequency component, the 
CZT method suffers fluctuated estimation. The smaller the frequency gap, the larger 
the fluctuating amplitude. Fortunately, the APES method can still achieve fine esti-
mation. The curves after 50 s in Figures 11a,c are the cases. 

3. When the train embarks the bridge, the fundamental frequency increases. This means 
that the cable-tension increases. The increased tension phenomenon is observed in 
all the cables, so it is feasible to calculate the bridge load from the sum of all cables’ 
tension. 

4. The fundamental frequency curve in Figure 11a is complicated a short moment be-
fore the train enters the bridge. The cable-tension undergoes a decreasing and then 
increasing progress.  

5. Dynamic frequency estimation is also a challenge for the APES method, especially 
when the frequency component is not a stationary sinusoidal signal and be interfered 
by closely signals. This is the reason that the frequency curve of APES changes rap-
idly, in Figure 11c. 
By taking a look at the spectrum slices of the two methods, in Figure 12, we know 

why the CZT method outputs fluctuated frequency estimation. The slices are taken at the 
moment of 47.1 s, 47.2 s, and 47.3 s. The frequency peaks of the APES method are constant, 
but the peaks of the CZT method are not always distinguished. The CZT method would 
find a correct peak at 47.3 s, but wrong peaks at 47.1 s and 47.2 s. 

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Figure 11. Fundamental frequency curves extracted from the time-frequency distribution images. The blue curve and the 
red curve are results of the CZT and the APES method, respectively. Dynamic fundamental frequency of the shortest cable 
with the passing train (a) and without load (b). Dynamic fundamental frequency of the longest cable with the passing 
train (c) and without load (d). 
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Figure 12. Spectrum slices of the CZT method at a different time (blue solid line at 47.1 s, red solid 
line at 47.2 s, and orange solid line at 47.3 s). Spectrum slices of the APES method at different 
times are constant. 

5. Conclusions 
A remote dynamic cable-tension estimation method is presented. Displacements of a 

group of cables are measured by a K band interferometry radar at one time. Each cable-
tension can be calculated from the cable’s fundamental frequency, based on the string vi-
bration equation. By adopting a time-frequency analysis method, multiple fundamental 
frequencies are estimated from short sections of the entire measured displacement vector 
in an overlapped-piecewise manner. The amplitude and phase estimation (APES) algo-
rithm is used to improve the frequency estimation performance in short-time circum-
stances. Simulations and real data processing validate that the proposed method is supe-
rior to traditional fundamental frequency measurements in terms of precision, robustness, 
and efficiency. 

The proposed interferometry radar and signal processing method can give remote, 
efficient, precise, and dynamic fundamental frequency measurements. It is of great appli-
cation value in the bridge construction control stage, the bridge operation monitoring 
stage, and the bridge refinement stage. The APES algorithm is a vital part of the proposed 
method, and its execution efficiency needs to be further improved. This is a research di-
rection in the future. 
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