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Abstract: This work presents digital retrodirective method to do microwave power transfer (MPT) for
solar power satellite (SPS). Due to space environment, there is concern of antenna deformation, which
will affect beam forming. Size of SPS is large and synchronization among antenna modules is difficult.
Flexibility regarding frequency selection for MPT is also a requirement for SPS. Digital Retrodirective
method determines phase of pilot signal and power signal is transmitted with conjugate phase.
Digital Signal Processing (DSP) circuit is used for digital retrodirective method. Experiment is
performed without antenna deformation and with antenna deformation cases. Digital retrodirective
method performs beam forming without synchronization among antenna modules and corrects
effect of antenna deformation successfully. Flexibility for frequency selection is also achieved by the
DSP circuit. The presented results confirm that digital retrodirective method is a good candidate for
power transfer from SPS.

Keywords: beam forming; pilot signal; phase conjugation

1. Introduction

Need for renewable energy resources is increasing due to concern about depletion of
fossil fuel resources and global warming. Solar power is one option among renewables
and is being used on ground. Due to weather conditions and day and night cycle, solar
power is not available each time. So, one solution is to use space solar power system to get
energy from space. Solar Power Satellite (SPS) will receive power from sun and transmit to
rectenna on ground in form of microwaves [1–4].

Many designs of SPS have been studied, and one of them is Tethered SPS, as shown
in Figure 1 [5–7]. Its size is 2.375 km × 2.5 km, and rectenna of 3.5 km diameter will
provide 1 GW power. Tethered SPS will use power generation and transmission modules
with size of 0.5 m × 0.5 m and 23,750,000 modules will be required. SPS will be installed
in geostationary equatorial orbit (GEO) to transmit power continuously. Microwave
frequency for SPS is selected in range of 1–6 GHz, considering antenna size and atmospheric
attenuation. There is no frequency band allocated for microwave power transfer (MPT) in
the current basic study phase, so industrial, scientific, and medical (ISM) bands at 2.45 GHz
and 5.8 GHz have been mostly studied for SPS. Interference may occur between power
signal and pilot signal, so different frequencies must be used for power signal and pilot
signal [4]. For power signal, 5.8 GHz is proposed because antenna size will be small, and
there has been accelerated progress in C-band RF technologies. For pilot signal, 2.45 GHz
ISM band is proposed, being in range of 1–6 GHz [7–10]. Precise beam control accuracy of
MPT is required for the SPS [11,12]. Beam pointing error of MPT should be less than 10%
of the beam-width [12]. Flexible structures will be used for large array antenna system, and
space environment conditions will deform antenna system [13–15].
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Figure 1. Tethered Solar Power Satellite (SPS).

Several types of methods have been studied to do MPT for SPS. The most studied meth-
ods are hardware retrodirective and software Retrodirective method [13,15–21]. Hardware
Retrodirective method uses pilot signals from rectenna, and a power signal is generated
by reflecting back or by phase conjugation of pilot signal. In Reference [13], hardware
retrodirective method is demonstrated to correct antenna deformation, but accuracy of
the method is not discussed. Hardware retrodirective method is complex and also not
flexible regarding frequency selection [16]. Software Retrodirective method uses direction
finding methods for angle of arrival detection of pilot signal and beam forming is done
with phased array antennas. In Reference [15,20], an experiment is performed to correct
antenna deformation with software retrodirective method and 0.15◦ root-mean square
(RMS) accuracy is achieved. Synchronization will be required among 23,750,000 antenna
modules of SPS with using software retrodirective method. This method uses rotating
element electric field vector method (REV) for synchronization among antenna modules
and for rectification of antenna deformation. REV method uses long processing time to
perform the said operations.

Deep Neural Network (DNN)-based auto-encoders used for end-to-end learning of
simultaneous wireless information and microwave power transfer (SWIPT) is a solution to
do communication and power transfer simultaneously [22,23]. Currently, power transfer
by SWIPT method is being studied to do wireless charging of batteries for wireless devices.
To the best of author’s knowledge, data is not reported about transmitting high power
microwave by using this method.

Previously studied methods, as mentioned above have limitations regarding solving
the issues of MPT for SPS. Digital retrodirective method is proposed in this paper to re-
solve issue of frequency selection, synchronization and deformation of antenna. Digital
signal processing (DSP) is used to achieve flexibility regarding frequency of MPT. Need of
synchronization is removed by making antennas independent. The issue of antenna defor-
mation is solved by measuring phase change of pilot signal for the deformation, and beam
forming is done by phase conjugation of the pilot signal. The algorithm of the proposed
method is also evaluated by comparing with REV method for antenna deformation.

The remainder of this paper is organized as follows. Section 2 represents concept of
digital retrodirective method. The algorithm for digital retrodirective method is discussed
and working of the DSP circuit is also described. Section 3 shows experimental setups and
configurations for forward and backward deformations. Section 4 describes results and
discussion for the experiment, and Section 5 provides brief conclusion.



Electronics 2021, 10, 498 3 of 13

2. Digital Retrodirective Method

Figure 2 represents concept of digital retrodirective method. Pilot signal is sent from
rectenna towards retrodirective array. Retrodirective array consists of pilot signal receiving
antennas (RX) and power signal transmitting antennas (TX). φr1 is phase of pilot signal,
received by RX1 and φr2 is phase of pilot signal, received by RX2. Phase detection of pilot
signal is performed by DSP circuit. Then, DSP circuit performs beam forming for power
signal by phase conjugation of pilot signal and considering frequency of power signal.
Phase of the power signal (φt) is determined by Equation (1):

φt = − ft

fr
φr, (1)

where f t is frequency of the transmitted power signal, and f r is frequency of received pilot
signal. Power signals with phase φt1 and φt2 are radiated by power signal transmitting
antennas TX1 and TX2, respectively. To depict configuration for deformation, RX2 and
TX2 antennas are deformed from their original position. Each set of pilot signal and
power signal transmitting antenna is working independently without synchronization
among them.

Figure 2. Digital Retrodirective method concept.

Figure 3 shows algorithm for digital retrodirective method. For no deformation case
and deformation case, phase of pilot signal is determined. Then, power signal for required
frequency is generated. Phase of the power signal is determined by converting phase of
pilot signal to the power signal frequency, as shown by Equation (1). After that, Conjugation
for the power signal phase is performed, and power beam is transmitted.

Details of DSP circuit are shown in Figure 4. DSP circuit has analog front-end, analog-
to-digital conversion, and digital signal processing. Software defined radio (SDR) hardware
is used for analog front-end and analog-to-digital conversion. Received pilot signal is
amplified by low noise amplifier (LNA) and downconverted to baseband in-phase (I) and
quadrature-phase (Q) components by mixer. I/Q components are filtered by low pass
filter (LPF) and then digitized by analog-to-digital converter (ADC). Digitized I/Q data is
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downconverted by digital downconverter (DDC) and passed to the host computer over a
standard gigabit Ethernet connection.

Figure 3. Digital Retrodirective algorithm.

Figure 4. Digital Signal Processing (DSP) circuit.

For power signal transmission, I/Q baseband components with conjugate phases are
generated by host PC and fed to digital up converter (DUC). After digital upconversion,
digital-to-analog converter (DAC) converts the signal to analog. Then, LPF reduces high
frequency components in the signal and mixer upconverts the signal to user-specified RF
frequency.

The area within the dotted line indicates processing with field programmable gate
array (FPGA), and it is controlled by LabVIEW software. LabVIEW performs phase
detection of the pilot signal and generates power signal with phase conjugation.

There is a concern that aliasing can occur when using different frequencies for power
signal and pilot signal. It is described in Section 1 that 5.8 GHz and 2.45 GHz frequencies
are proposed for power signal and pilot signal, respectively. Aliasing can take place when
reconstructing power signal from samples of the pilot signal. In the proposed method,
power signal is generated by SDR hardware and phase information of pilot signal is used
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for getting phase of power signal, as given in Equation (1) and represented by Figures 2–4.
So, aliasing will not occur for the proposed method with using different frequencies for
power signal and pilot signal.

3. Experimental Setup

Bistatic radiation pattern measurement is performed for evaluation of digital retrodi-
rective method, as shown in Figure 5. Retrodirective array is installed on turn table in
anechoic chamber, and horn antenna is fixed. The horn antenna sends pilot signal, and it is
received by pilot signal receiving antennas. Then, retrodirective array moves on turn table,
and power signal transmitting antennas send power signal to horn antenna. Radiation
pattern is measured for the power signal, received by horn antenna.

Figure 5. Bistatic radiation pattern measurement.

Detailed setup configuration for digital retrodirective experiment is depicted in
Figure 6. Considering the case of the Tethered SPS, 2.45 GHz and 5.8 GHz frequencies
are used for pilot signal and power signal, respectively. A two and forty-five hundredths
gigahertz pilot signal is sent from signal generator (SG) to horn antenna. The horn antenna
radiates pilot signal towards retrodirective array. Four sets of pilot signal receiving and
power signal transmitting antennas are used for retrodirective array. Antennas are working
independently, so this small scale demonstration can determine the usefulness of proposed
method for SPS. Half wavelength dipole antennas are used to receive pilot signal. Right-
hand circular polarized patch subarray antennas are used to transmit power signal. For
SDR hardware, two USRP 2943 are used. Power signal is received by horn antenna, and
radiation pattern analysis is performed by network analyzer and spectrum analyzer.

Figure 7 shows retrodirective array setup with patch subarray antennas and dipole
antennas. Each patch subarray is working independently with respective dipole antenna.
Spacing between each patch subarray is 1.3λ, and spacing between elements of a subarray
is 0.65λ. For no deformation case, antennas are in original position. Forward and backward
deformation cases are represented in Figure 8 and Figure 9 respectively. One patch with
respective dipole antenna is deformed in forward and backward direction.
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Figure 6. Digital Retrodirective method experimental setup.

Figure 7. Patch subarrays with dipole antennas.

Figure 8. Forward antenna deformation configuration.
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Figure 9. Backward antenna deformation configuration.

4. Results and Discussion
4.1. No Deformation Case

Digital retrodirective method is confirmed for beam forming towards 0◦ and 5◦. Pilot
signal is sent towards 0◦ and 5◦ positions of retrodirective array. Figure 10 represents
radiation pattern of power signal for 0◦ beam forming. Radiation pattern is measured
from −30◦ to 30◦. Three decibels beam-width is 9.8◦ and side lobe level is −13 dB. The
measured pattern, especially the main lobe matches those simulated closely. Simulations
are performed by using CST software. Figure 11 shows radiation pattern of power signal for
5◦ beam forming. Half power beam-width is 9.5◦, and side lobe level is −12 dB. Simulated
and measured results are in good agreement and represent that digital retrodirective
method is performing well.

Figure 10. No deformation with Digital Retrodirective method for pilot signal from 0◦.
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Figure 11. No deformation with Digital Retrodirective method for pilot signal from 5◦.

4.2. Deformation Case

For deformation cases, analysis is performed for phase change of pilot signal with
deformation. Figure 12 depicts comparison between theoretical data and measured data.
Theoretical data is obtained by Equation (2):

∆φ =
2π∆x

λ
, (2)

where ∆φ shows phase change of pilot signal by deformation, and ∆x represents dimension
for deformation. Then, 0.2λ, 0.4λ, 0.5λ, 0.6λ, and 0.8λ deformation cases are compared.
Theoretical and measurement data is correlated in Figure 12.

Figure 12. Deformation analysis for phase.
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DSP circuit, as shown in Figure 4, has ADC component, and it generates main quanti-
zation error. Analysis is performed to measures phase change error and power signal beam
pointing error. Phase measurement error for antenna deformation cases is represented in
Table 1, and RMS error for phase change is 3.495◦. Power signal beam pointing RMS error
is calculated by Equation (3) [12,24]:

∆θ =
2λ

πd cos θ, M1.5 δφ, (3)

where ∆θ is beam pointing RMS error, d is spacing between antenna subarray, M is number
of elements in the array, and δφ is phase RMS error. For M = 4, θ = 0◦, d = 1.3λ, δφ = 3.495◦,
∆θ was determined as 0.21◦ RMS. Beam width of power signal beam is 9.8◦ and 10% of
beam-width is 0.98◦. So, beam pointing error by digital retrodirective method satisfies
accuracy requirement for SPS. Each subarray is working independently and will be working
in the same manner for SPS. Probability density distribution for phase change error is also
represented in Figure 13.

Table 1. Root-mean square (RMS) phase error measurement.

Deformation (λ) Phase Error (Deg)
0.2 1.8
0.4 4.31
0.5 5
0.6 3
0.8 2.3

3.495 (RMS)

Figure 13. Probability density function of phase error.

Further, 0.5λ deformation case produces maximum phase change of pilot signal. So,
radiation patterns with 0.5λ case are analyzed. Figure 14 represents radiation pattern
for 0.5λ forward deformation case. With retrodirective plot is measured data for digital
retrodirective method with deformation. Simulation plot is simulated data for the defor-
mation with digital retrodirective method. Without retrodirective pattern is when digital
retrodirective method is not used for deformation. Simulated and measured data with
retrodirective method are in good agreement. Without retrodirective plot shows that main
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lobe is directed to −8◦, and side lobe level is −3 dB. So, the effect of deformation is resolved
by using the digital retrodirective method.

Figure 14. Forward deformation with digital Retrodirective method.

Figure 15 represents comparison of digital retrodirective method and REV method for
antenna deformation. We compare the 0.5λ deformation case, and the radiation pattern
shows that both methods are in good agreement with the simulation. REV method takes
long time for the process, so digital retrodirective method has advantage over REV method
to correct radiation pattern for antenna deformation.

Figure 15. Comparison of Digital Retrodirective method with REV method.
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Figure 16 represents radiation pattern for 0.5λ backward deformation case. With
retrodirective plot correlates with the simulation, having beam-width of 9.7◦ and side
lobe level of −12 dB. Without retrodirective pattern has −5.1◦ main lobe direction of and
−3.4 dB side lobe level. Figure 17 depicts comparison of digital retrodirective method for
no deformation and deformation case. Pilot signal is sent from 5◦, and measured patterns
are compared. Both plots are in good agreement, and this shows that effect of antenna
deformation is resolved successfully by digital retrodirective method.

Experimental results of digital retrodirective method show that appropriate radiation
patterns are obtained for no deformation and deformation cases.

Figure 16. Backward deformation with Digital Retrodirective method.

Figure 17. Comparison of no deformation and deformation case.
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5. Conclusions

This paper presented digital retrodirective method to perform MPT for SPS. Four
dipole antennas received pilot signal from the rectenna, and four patch subarrays transmit-
ted power signal towards rectenna. DSP circuit was used for pilot signal phase detection
and power signal beam forming with phase conjugation. Digital retrodirective method’s
algorithm performed well for correction of antenna deformation effect. Each subarray
worked independently with respective dipole antenna, and synchronization was not re-
quired for beam forming. Phase change measurement error was 3.495◦ RMS, and beam
pointing error was 0.21◦ RMS. Comparison was also done for antenna deformation and no
deformation cases. REV method was also in correlation with digital retrodirective method.
This study suggests that the proposed method is suitable to resolve issues of beam forming
for SPS.
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