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Abstract: This paper introduces an adaptive method for detecting front vehicles under complex
weather conditions. In the field of vehicle detection from images extracted by cameras installed
in vehicles, backgrounds with complicated weather, such as rainy and snowy days, increase the
difficulty of target detection. In order to improve the accuracy and robustness of vehicle detection
in front of driverless cars, a cascade vehicle detection method combining multifeature fusion and
convolutional neural network (CNN) is proposed in this paper. Firstly, local binary patterns, Haar-
like and orientation gradient histogram features from the front vehicle are extracted, then principal-
component-analysis dimension reduction and serial-fusion processing are performed on the input
image. Furthermore, a preliminary screening is conducted as the input of a support vector machine
classifier based on the acquired fusion features, and the CNN model is employed to validate cascade
detection of the filtered results. Finally, an integrated data set extracted from BDD, Udacity, and
other data sets is utilized to test the method proposed. The recall rate is 98.69%, which is better than
the traditional feature algorithm, and the recall rate of 97.32% in a complex driving environment
indicates that the algorithm possesses good robustness.

Keywords: vehicle detection; multifeature fusion; convolutional neural network; cascade method;
autonomous driving

1. Introduction

In recent years, advanced driver-assistance systems (ADAS) and autonomous driving
are becoming more and more important to reduce traffic accidents. As a key technology
of intelligent vehicles, vehicle detection has attracted widespread attention from plenty
of institutes and automobile technology companies [1]. Among vehicle detection, vehicle
detection based on vision has always been a research hotspot. Efficient feature-extraction
methods and reasonable detection algorithms can greatly improve the performance of
vehicle detection.

Vehicle-detection algorithms are commonly divided into traditional methods based
on model, optical flow, feature classification, and deep learning.

In the vehicle detection based on optical flow, Batavia used implicit optical-flow
method to detect vehicles on highways and city streets [2]. This method could not identify
the optical flow when the running speed of the system reached 8–15 frames/second. Then,
the pyramid model in Lucas–Kanade (l–k) optical flow [3] was used to calculate feature
points in vehicle detection. The authors of [4] performed vectorized clustering of optical-
flow field based on Lucas–Kanade calculation, which effectively removed the wrong optical
flow. Although the optical-flow method can perform effective detection in some specific
scenes, it is susceptible to weather changes, strong-light conditions, camera jitter, and
various noises.

In the model-based vehicle-detection algorithm, giving consideration to the accuracy
and real-time performance of vehicle detection, Hu proposed a method of background area
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determination through threshold value and vehicle detection based on single Gaussian
background model [5] which possessed a certain robustness. A method based on splitting
the Gaussian model (GM) is extended [6]. However, the hybrid Gaussian model cannot
effectively extract the vehicle profile when the vehicle and the background are close to each
other. Therefore, Yang, H. and Qu, S. [7] subtracted background with “lowrank + sparse”
decomposition. However, the model-based vehicle-detection algorithm struggles to per-
form fast matching due to the large amount of stored information and the long time spent
in the matching algorithm [8].

In order to further improve the performance of vehicle detection, feature-based vehicle
detection including single-feature-based vehicle detection and multi-feature-based vehicle
detection has gradually become one of the research hotspots among traditional methods.

In vehicle detection based on single feature, features such as symmetry, color, edge,
shadow, and texture were utilized for vehicle detection successively. Symmetrical features
of vehicles were used for vehicle detection [9–11], but the lack of obvious symmetrical
features was always a difficulty in this feature detection. Li et al. extracted vehicle
features on the basis of reducing dimensions in the color space and conducted training and
classification with Bayes classifier [12]. This method got a detection rate of 63.05% for static
vehicle targets. However, the influence of lighting, reflection, and other factors as well as
poor real-time performance makes the method based on color more difficult. In addition,
in order to improve the accuracy of vehicle detection, many researchers introduced vehicle
shadows, vertical and horizontal edges, and texture features to their literature successively.
Edge features based on vertical and horizontal were used for discontinuity detection of
vehicle-edge areas [13]. However, the result of edge detection was deeply affected by
binarization threshold and other parameters, and inappropriate parameters reduce the
adaptability of edge detection.

Therefore, in order to improve the performance of vehicle detection with single
features, feature-extraction methods based on scale invariant feature transform (SIFT),
Haar, orientation gradient histogram feature (HOG), and other descriptive operators have
been successively applied to vehicle detection.

Han utilized SIFT [14] for vehicle detection, which is mainly used in images with
relatively obvious features and attained good applicability to size and rotation changes. In
the Haar-like feature-based detection, Haar-like feature, local binary patterns (LBP), and
the Adaboost algorithm [15–17] are successively adopted to detect vehicles in front of the
road. However, it is easy to cause false detection for vehicles at a long distance. Moreover,
it is also likely to cause misjudgment of the classifier in the vehicle-detection video when
complex buildings appear. In addition, though the detection method based on support
vector machine (SVM) combined with directional gradient histogram features has been
applied in different scenes, this algorithm requires some amounts of calculation, and the
accuracy of single-feature detection is low [18,19].

Throughout the current traditional vehicle-detection methods, the vehicle-detection
method based on single-vehicle features can quickly determine the vehicle area, although
these methods can only describe a certain feature. Therefore, a higher false-detection rate
would occur when single feature is applied to vehicle detection.

For the sake of improvement of the accuracy and robustness, a large number of re-
searchers have carried out vehicle-detection research based on multiple features. Vehicle
shadow and symmetry are combined [20] to perform vehicle detection in real time. How-
ever, false detection and missed detection are likely to occur under bad weather conditions.
In order to improve the accuracy of vehicle detection, Ma et al. combined local information
by SIFT and global features extracted by principal component analysis (PCA) using a
multiple-kernel framework with a SVM classifier [21], which has good effect compared to
the traditional single feature. In terms of feature extraction based on descriptive operators,
Haselhoff et al. proposed vehicle detection based on Haar-like features and triangular
features [22]. However, the small number of extracted vehicle features would result in
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high false-detection rate and omission ratio. Since the detected-vehicle distance is less than
70 m, it is difficult to meet the requirements of assisted-driving safety.

Among the vehicle-detection methods based on vision, the vehicle detection method
based on multifeature fusion has an obvious improvement in accuracy compared to tradi-
tional methods based on single feature, although the detection performance of this method
is limited by the fact that the recall rate and detection rate cannot be taken into account at
the same time.

However, with the rise of deep-learning technology in recent years, target-detection
algorithms based on deep learning have made great progress. The vehicle-detection method
based on deep learning is gradually being used more often. The advanced method can be
mainly divided into two categories.

One is the candidate box-based detection algorithm represented by region-based
convolutional networks (R-CNN) [23], spatial pyramid pooling in deep convolutional
networks (SPPnet) [24], Fast R-CNN [25], and Faster R-CNN [26]. R-CNN [23] improves
the original target-detection algorithm under the VGG-16 network model, the accuracy
rate on VOC2007 data set is 66%, but the speed is very slow, and the memory consumption
is large. The main reason is that the candidate box is completed by the selective-search
algorithm with a lower speed, and the convolutional network computation is repeated. The
authors of [24] proposed the region of interest (ROI) pooling layer structure. Girshick [25]
inserts the ROI pooling layer before the full connection layer, thus eliminating the need for
image cropping, which solves the problem that candidate block subgraphs must be clipped
and scaled to the same size. Then, the authors of [26] further optimized Fast R-CNN by
adding region proposal networks (RPN). The RPN layer is used to generate candidate
boxes, and softmax is used to judge whether candidate boxes are the foreground or the
background. Next, the bounding-box regression is used to adjust the position of candidate
boxes, and finally, the feature submaps are obtained, which makes Fast R-CNN faster and
more accurate.

The other is the regression-based detection algorithm represented by You Only Look
Once (YOLO) [27] and single-shot multibox detector (SSD) [28]. YOLO [27] is a one-stage
target-detection algorithm, which completes object positioning and classification together
and regresses the position and category of bounding box in one output layer. On a Titan
graphics card, the algorithm FPS reached 45, achieving real-time detection. A single-shot
multibox detector model [28] balances the advantages and disadvantages of YOLO and
Faster R-CNN. Faster R-CNN has a higher accuracy mean average precision, a lower
misdetection rate and a lower recall rate, but a slower speed. On the contrary, YOLO is fast,
but the accuracy and missed detection rate are low.

Although the abovementioned detection methods are improved in recall rate com-
pared to traditional methods, there are still several problems that have not been solved
yet [29]. First, the training process of the model is relatively complex, and a large number
of hyper-parameters need to be optimized manually, and the convergence speed of the
detection model is relatively slow. Second, the detection speed is usually slow for the
detection algorithm with high recall rate. Third, the recall rate is difficult to meet the
relevant requirements for the algorithm with fast detection speed.

In order to improve the accuracy and robustness of vehicle detection, this paper proposes
a method for vehicle detection. First, LBP, Haar-like, and HOG feature-extraction methods
are used to extract vehicle features. After that normalization processing, PCA dimension
reduction and serial-fusion processing are successively conducted to the extracted features.
Next, the vehicle classifier based on SVM is trained by using the fused multifeature data.
Then, the vehicle classifier based on multifeature fusion is utilized to identify the vehicle for
the first time. Finally, in order to improve the robustness and accuracy of vehicle detection in
complex environments further, a cascade vehicle-detection method based on convolutional
neural network (CVDM-CNN) is proposed based on SVM classification.
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2. Multifeature-Fusion-Based SVM Screening

In the vehicle detection based on vision, as the image acquired by the vehicle camera
contains a lot of feature information, single feature cannot represent the main information
of the vehicle and meet the requirements of vehicle-identification accuracy. In order to
improve the accuracy of vehicle detection effectively and accurately, we present a novel
pre-screening method based on multifeature fusion.

2.1. Front Vehicle-Feature Extraction

Many research institutions have done a lot of research on vehicle detection based on
vehicle characteristics. Symmetrical features of vehicles [30], edge features [31], shadow
features [32], directional gradient histogram features [32], LBP features [33], Haar-like
features [34], and false alarms from shadow features [35] have been used for vehicle
detection successively.

Vehicle detection based on a single feature has different degrees of potential when the
vehicle is in complex environment such as light change and shadow overlap. Therefore, in
order to adapt to different driving environments and improve the accuracy of vehicle detection,
forward vehicle detection based on HOG, Haar-like, and LBP feature-fusion is proposed.

2.1.1. HOG Feature Extraction

Orientation gradient histogram feature is to use the knowledge of statistics to calculate
and statisticize the gradient in different directions of the image block to form the gradient
histogram feature. In order to carry out vehicle detection based on multiple features,
firstly, HOG feature extraction is needed for the vehicle-detection range. HOG feature is
an operator that characterizes a target in the field of machine vision. Figure 1 shows the
formation of HOG feature below.

HOG processing is as follows:
In order to reduce the adverse effect of illumination change on image detection,

image graying and normalization processing are indispensable. The commonly used three
methods of image grayscale are:

1. Component method: one of the three components of R, G, and B of color image is
taken as the grayscale image Gray value: Gray = B or Gray = G or Gray = R.

2. Maximum method: the maximum value of the R, G, and B components of the color
image is taken as the grayscale value of the grayscale imageMax (R, Max (G, B)).

3. Weighted average method: R, G, and B components of the color image are weighted
and average with different weights. Human eyes are most sensitive to green and least
sensitive to blue. Image graying Formula (1) is shown as follows:

Gray = 0.299R + 0.587G + 0.114B (1)

The local area of the surface exposure is a relatively large proportion in the image
texture intensity. Therefore, the influence of local shadow and uneven illumination can
be effectively reduced by normalization. In the gamma space, the dynamic range will be
reduced, the contrast of the image will be reduced, and the gray value of the image will
be increased, which make the image brighter overall when the gamma <1. When gamma
>1, the dynamic range is reduced within the region of the reduced gray value, the contrast
of the image is reduced, the gray value of the image is reduced, and the overall image is
faded. The local area of the surface exposure is relatively large proportion in the image
texture intensity. Therefore, the influence of local shadow and uneven illumination can be
effectively reduced by normalization. The Gamma-correction diagram is shown in Figure 2.
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Figure 2. Gamma-correction diagram.

Gamma-compression formula is shown in Formula (2):

I(x, y) = I(x, y)gamma (2)

In the formula, gamma = 1/2.
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After image graying and normalization processing, in order to calculate the vehicle
characteristic gradient, it is necessary to calculate the gradient direction value of each pixel.
The gradient of pixel point (x, y) in the image is shown in Formula (3):

Gx(x, y) = H(x + 1, y)− H(x− 1, y)
Gy(x, y) = H(x, y + 1)− H(x, y− 1)

(3)

where Gx(x, y), Gx(x, y) and H(x, y) respectively represent the horizontal gradient, vertical
gradient, and pixel value at the input pixel point (x, y).

In order to calculate the magnitude and direction of the gradient of pixel points, the
operator [−1,0,1] is usually used to carry out convolution calculation on the original image
to obtain the gradient component in the x direction. Then the convolution computation
is performed by the operator [−1,0,1] to obtain the gradient component in the y direction.
Finally, the gradient size and direction of the pixel point can be obtained as shown in
Formula (4):

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2

α(x, y) = tan−1
(

Gy(x,y)
Gx(x,y)

) (4)

In order to facilitate the statistical analysis of the calculated feature gradient and
reduce the sensitivity of vehicle posture and appearance, the image needs to be segmented
into “cell”.

Assuming that the pixel of each cell is 6 × 6, if the histogram of nine bins is used to
calculate the information of these cells, the cell is divided into nine blocks with different
directions, as shown in Figure 3.
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In Figure 3, the gradient direction of each pixel is 0–20 degrees. Add one to the first bin
count of the histogram. Then, each pixel point in the cell is weighted and projected as shown
above. Finally, the histogram of gradient direction of the whole image can be obtained.

In order to count the segmented cells and reduce the impact of light changes, block
synthesis, and normalization processing of cells are employed as shown in Figure 4. The
parameters of the feature-description operator in this paper are set as 3 × 3 cells/interval,
6 × 6 pixels/cell, and nine histogram channels.

Finally, in order to obtain the HOG feature of the vehicle, all blocks need to be
processed in series. For the image of sample data 64 × 64, it is assumed that 8 × 8 pixels
constitute a cell, and a block is composed of 2 × 2 cells. Each cell has nine dimensional
features, and each block has 4 × 9 = 36 dimensional features. For the data images obtained
from the vehicle camera, assume that each block is used as the detection window to extract
features from the regions of dynamic interest, and four pixels are used as the step length.
The number of detection windows in the horizontal direction is: (64 − 16)/8 + 1 = 7, and
the detection window in the vertical direction is the same as above.

Therefore, the number of detection window features of 64 × 64 is: 36 × 7 × 7 = 1764.
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2.1.2. LBP Feature Extraction

The local-binary-patterns operator is an effective texture-description operator, which has
the remarkable advantages of invariance on rotation and gray. The basic idea is to use the
gray value of its center pixel as the threshold and compare it with its neighborhood binary
code to describe the local texture features. According to the LBP proposed by Song et al. [33],
LBP characteristics of vehicles in the vehicle-detection range are extracted. In the statistical
histogram based on LBP feature, the local binary mode feature image is divided into N
regional blocks, and the histogram of local binary patterns (LBPH) is obtained by extracting
the histogram of each regional block in a series. The local binary mode is shown in Figure 5.
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The calculation steps of LBP are as follows:
Calculate LBP characteristic image:

LBP(xc, yc ) =
n−1

∑
p=0

2ps
(
ip − ic

)
(5)

where, (xc, yc) is the pixel of the regional center point, ic is the gray value of the central
pixel, and ip is the gray value of the neighborhood pixel. n is the total number of pixels in
the neighborhood. s(x) is shown as follows:

s(x) =
{

1, x ≥ 0
0, else

(6)

Then, LBP feature image is processed by block processing. In this article, LBP feature
images are segmented into 64 blocks of 8× 8 size. After that, we calculate the LBPH of each
feature image and then normalize the LBPH to 1 × NumPatterns. Finally, we arranged
each LBPH in order of its space to form the LBP characteristic vector of the image, the size
of which is 1 × (NumPatterns × 64).

In order to improve the computational efficiency of LBP feature extraction and ensure
the accuracy of vehicle detection, the eigenvalue of equivalent-feature pattern is adopted
in this paper, and the eigenvalue is set to 59, namely NumPatterns = 59. Therefore, the total
dimension of the feature vector of the image is 59 × 64 = 3776.
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2.1.3. Haar-Like Feature Extraction

Haar-like feature refers to the value of the rectangular feature (the sum or the difference
of all pixel gray values inside two or more rectangles of the same shape and size on the
image). License plates, taillights, and rear windshields have prominent rectangular features
and obvious gray difference from the surrounding area for vehicles. Therefore, in order to
improve the adaptability of feature templates, the feature template shown in Figure 6 is
selected in this paper for Haar-like feature calculation.

 
Figure 6. Haar-like feature templates.

As the size of the image acquired by the detection window is 64 × 64, the number
of features of the image exceeds the number of pixels. Therefore, in order to reduce the
amount of computation of eigenvalues each time and improve the detection speed, this
paper used integral images to calculate eigenvalues, as shown in Figure 7.
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As shown in Figure 7 of the integral region, the gray value of OX1 AY1 region is
Sum1, the gray value of OX1CY2 region is Sum2, the gray value of OX2BY1 region is Sum3,
the gray value of OX2DY2 region is Sum4, and the gray value of ABCD region is V. The
calculation Formula (7) is as follows:

V = (Sum4 + Sum1 ) − ( Sum2 + Sum3) (7)

2.2. Feature Dimension Reduction and Fusion Processing

Because vehicle-detection method based on a single feature is likely to cause vehicle
missed detection and false detection, vehicle detection research based on HOG, LBP, and
Haar-like features fusion is carried out in order to improve the accuracy and robustness of
vehicle detection.

However, as multifeature fusion will increase the total dimension of vehicle features
and reduce the vehicle-detection rate, vehicle-dimension-reduction processing is required
in order to reduce the calculation amount of vehicle detection and ensure the real-time
performance of vehicle detection.



Electronics 2021, 10, 481 9 of 19

2.2.1. Feature Dimension Reduction

PCA [36] uses orthogonal transformation to transform correlated variables in the data
set into unrelated principal-component components, so as to delete noise in the data set
and achieve the purpose of dimensionality reduction. PCA has the advantage of using
fewer data dimensions to retain more original data-point characteristics. Therefore, in
order to reduce vehicle-feature dimensions and retain as many vehicle features as possible,
PCA dimension-reduction processing is adopted.

PCA achieves the effect of dimension reduction for the data by calculating the eigen-
vectors corresponding to the maximum eigenvalue of the covariance matrix of the data set
to find the directions with the maximum data variance. The analysis results of PCA for
HOG, LBP, and Haar-like features can be seen in Figure 8.
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Figure 8. Characteristic dimension analysis. (a) Retained information and eigenvector analysis of HOG after PCA,
(b) retained information and eigenvector analysis of Harr after PCA, (c) retained information and eigenvector analysis of
local binary pattern (LBP) after principal component analysis (PCA).

The vehicle images from the front view, rear view, and side view are taken as positive
samples, while signs, buildings, roads, and sky are taken as negative samples. Then HOG,
LBP, and Haar-like features extracted from the data of positive and negative samples
were respectively taken as inputs to obtain corresponding eigenvalues and corresponding
feature spaces.
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According to Mao [36], when calculating B1, · · · , Bn, p = 0.1 is used in this paper. If
Bt ≥ p(≤ 1t ≤ n), extract the first principal components α1, · · · , αt. The dimensionless feature
data can be obtained by projecting the above features into the corresponding feature subspace.

HOG, LBP, and Haar-like features extracted from positive and negative samples were
analyzed respectively to obtain the feature vector dimension of PCA.

The analysis results show that HOG, LBP, and Haar-like features can ensure good
accuracy when information is retained in a proportion of 0.71, 0.73, and 0.86, respectively,
according to which we select the information dimension characteristics for vehicle detection.

2.2.2. Feature Fusion

In order to improve the accuracy of vehicle detection further, feature-level fusion
processing for the vehicle characteristics is conducted after PCA dimensionality-reduction
processing. The fusion refers to the concatenation of a single feature of all sublevels, and
finally the fusion feature obtained is the sum of the dimensions of all sublevel features.

For the acquired vehicle image features, the obtained-feature matrix is transformed
into feature vectors first, then all feature vectors are serialized, and the calculation Formula (8)
is shown as follows:

γ = α + β (8)

In the above equation, γ is the feature after fusion, and α and β are the subfeatures
before fusion. The extracted HOG, LBP, and Haar-like features are fused visually, as shown
in Figure 9.
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Figure 9. Feature-fusion process.

2.3. Design and Training of Classifier

After obtaining the characteristics of the required samples, corresponding classifiers
should be built to select and identify the extracted vehicle characteristics. SVM classifier, with
the ability to catch key samples and eliminate redundant samples, is adopted to detect and
classify vehicles in front. The detection and classification process is shown in Figure 10.

The SVM classifier training process is as follows:
After obtaining the positive and negative sample data sets respectively, a linear kernel

function is taken as the kernel due to its relative advantages after relevant tests [37], and
a SVM vehicle-classifier model based on multiple features is established. In addition,
the algorithm performs traversal parameter combination through GridSearchCV and
determines the best effect parameters through five-fold crossvalidation.

After a training data set of positive and negative samples as the input of support
vector-machine classifier, finally, a classifier model with excellent classification performance
is obtained, and the receiver operating characteristic curve (ROC) of the model is shown in
Figure 11.
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The area enclosed by the curve is defined as AUC (area under curve). The larger the
area of AUC, the better the effect of the classifier. According to the above experimental
results, the AUC enclosed by LBP, HOG, Haar-like, and multifeature ROC was 0.969, 0.976,
0.913, and 0.992.

The results show that the multifeature fusion-classifier model has a relatively excellent
classification performance.

2.4. Experimental Test and Results

To verify the proposed algorithm, we use the function interface of Python 3.5 related
libraries (numpy, cv2, matplotlib, and sklearn) to carry out corresponding tests on the
above training algorithm under the compiling environment of Spyder (Anaconda). The
relevant configuration of the PC used during the test was Inter Core (TM) I7-8700 CPU
3.20 GHz and 16 GB of memory. The related process of the detection is shown in Figure 12.

2.4.1. Experimental Evaluation

In order to make a reasonable and effective evaluation of the test results, the test
results were counted and compared with other methods. Then, the accuracy and omission
rate were employed to evaluate and analyze the detection results.
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Intersection over union (IoU) was employed to measure the coincidence degree of
the same area in the evaluation of target detection. The IoU ratio refers to the ratio of
intersection and union. Its definition is shown in Formula (9).

IoU =
D ∩ G
D ∪ G

(9)

where D represents the predicted region and G represents the marked region. The predic-
tion is considered correct when the intersection ratio is greater than 0.5.

True positive (TP), false negative (FN), and false positive (FP) are commonly used in-
dicators in the evaluation of machine learning [38]. According to these indicators, precision
P, omission rate O and error rate R are calculated respectively, the P, O, and R are defined
as follows.

P = TP/(TP + FP) (10)

R = 1−TP/(TP + FP) (11)

O = 1−TP/(TP + FN) (12)Electronics 2021, x, x FOR PEER REVIEW 12 of 20 
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Figure 11. Receiver operating characteristic curve (ROC) of the model. (a) HOG-ROC (area = 0.976), (b) LBP-ROC (area =
0.969), (c) Haar-ROC (area = 0.913), (d) multifeature-ROC (area = 0.992).
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2.4.2. Test Results

Based on some data collected from BDD [39], Udacity, and the network, this paper
selected 1200 pieces of data in good driving environments and complex driving environ-
ments, with the size of 1280 × 720 to train the classifier and 600 pieces each to test the
vehicle detection classifier.

Moreover, in order to verify the performance of this algorithm, the detection results
of multifeature-fusion algorithm and the current mainstream detection algorithm are
compared (Tables 1 and 2).

Table 1. Detection performance under good weather conditions (five-fold crossvalidation set).

Methods Precision Error Rate Omission Rate

HOG+SVM [40] 90.47% 9.53% 5.42%
HOG-LBP+SVM [41] 96.64% 3.36% 2.74%

Haar-like+Adaboost [42] 93.50% 6.50% 6.75%
multi-feature fusion algorithm (Ours) 97.81% 2.19% 2.15%

Table 2. Detection performance under complex weather conditions (five-fold crossvalidation set).

Methods Precision Error Rate Omission Rate

HOG+SVM [40] 84.45% 15.55% 7.05%
HOG-LBP+SVM [41] 92.42% 7.58% 3.64%

Haar-like+Adaboost [42] 89.21% 10.79% 7.92%
multi-feature fusion algorithm (Ours) 95.73% 4.27% 3.06%

The parameters of gridsearchCV are shown below:
GridSearchCV (estimator = classifier, param_grid = parameters, scoring = ‘accuracy’,

cv = 10, n_jobs = −1), parameters = [{‘C’: [1, 10, 100, 1000], ‘kernel’: [‘linear’]}, ‘gamma’:
[0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9]}], accuracy =
accuracy_score (y_test, y_pred), classifier = svc (kernel = ’linear’, gamma = 0.7), the best
parameters of classifier is: ’C’: 1, ’gamma’: 0.7

The detection results of test set are shown in Figures 13 and 14.
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As can be seen from Tables 1 and 2, compared with the detection methods in litera-
ture [40–42], the multifeature-fusion vehicle-detection method used in this paper possesses
the best accuracy in vehicle detection in a good driving environment, and the omission
rate is relatively reduced at only 2.15%.

From Figures 13 and 14, the multifeature vehicle-detection method shows good de-
tection performance in a good traffic environment, such as light in good condition, the
highway, simple tunnel, etc. While in complex traffic scenes such as bad lighting conditions,
blizzard, rainy day, the vehicle-detection classifier tends to produce misjudgment, which
causes error rate to rise, because these environments are prone to contain some similar
texture with cars and contour features of illusion. However, compared with other methods,
the test method shows better stability.

3. Cascade Vehicle Detection Based on CNN

Based on the test results above, in the good driving environment, multifeature method
proposed presents a good detection performance. However, in heavy snow, rainy days and
other environments, it is easy to generate false features such as car texture and contour,
which makes the vehicle-detection classifier misjudge.

Therefore, in order to improve the accuracy and robustness of vehicle detection further,
a cascading-detection architecture based on CNN is established through which nonvehicle
windows are excluded using SVM, and the remaining detection windows are identified
based on CNN model (as shown in Figure 15).
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3.1. VGG16 Neural-Network-Model Construction

The structure of the convolutional neural network includes input layer, multilayer
convolutional layer, pooling layer, full connection layer, and output layer. Compared with
other convolutional-neural-network models, VGG16 [43] possesses the advantages of few
parameters, simple calculations, and high accuracy. Therefore, in order to improve the
accuracy and real-time performance of vehicle-validation cascade detection, this paper
constructed VGG16 for cascade-verification detection.

VGG16 network structure has a total of 16 layers, which is mainly composed of 13 convo-
lutional layers and three full-connection layers. The convolutional-neural-network architecture
adopts the structure: CNN = convolution + convolution + convolution + pooling. With the
capability to reduce the number of parameters, VGG16 not only prevent overfitting but also
make the network deep enough. The network structure can reduce the computation complexity
well because the pooling operation does not participate in the parameter computation.

Therefore, after obtaining the screening windows of SVM, VGG16 will be used for
cascade detection of those vehicle windows whose prediction probability is between the
boundary threshold to further improve the accuracy of detection.
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3.2. Design of Cascade-Detection Confidence of Vehicles

Before cascade-vehicle detection, in order to further improve the accuracy and robust-
ness of vehicle detection, this paper selects the detection window based on multifeature-
fusion vehicle detection and uses probability-prediction function to predict the features in
the detection window, that is, the confidence of the detection window.

Under different probability predicted values, the results of vehicles and nonvehicle
targets detected by the test images are different, and with the continuous improvement of
probability-predicted values (confidence), the accuracy of vehicle detection will be relatively
improved, but the omission rate of vehicles will also increase. Therefore, in order to reduce
omission rate of vehicles and ensure vehicles recall rate in complex traffic environment
at the same time, we need to verify the determination of cascade confidence probability
forecast. According to the different test, this article chose 0.88 as preliminary vehicle
recognition based on feature fusion of confidence, and relevant probability-prediction
results shown in Figure 16, as follows.
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Figure 16. Confidence level effect. (a) Confidence = 0.85, the detection windows are too large to contain unnecessary
information like the 2nd window from left (b) Confidence = 0.88, the detection windows are appropriate and contain the
vehicles without omission (c) Confidence = 0.90. The 2nd car from left is not detected since confidence is too high.

CNN validation cascade classifier proposed is tested with the integrated data set
which is mainly divided into good weather (600 pieces), rainy, and night data sets (600
pieces). Vehicle-detection method based on multifeature fusion SVM and CVDM-CNN
are compared in the test. The experimental results are shown in Tables 3 and 4, and the
detection effect is shown in Figures 17 and 18.

Table 3. Detection performance under good driving environment.

Methods Precision Error Rate Omission Rate

multi-feature fusion
algorithm 97.81% 2.19% 2.15%

CVDM-CNN 98.69% 1.31% 1.37%

Table 4. Detection performance under complex driving environment.

Methods Precision Error Rate Omission Rate

multi-feature fusion
algorithm 95.73% 4.27% 3.06%

CVDM-CNN 97.32% 2.68% 2.07%
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As can be seen in Tables 3 and 4, compared with the multifeature-fusion algorithm
proposed in this paper under the good environment and complex environment, the cascade
method omission rate is reduced by 0.78% and 0.99%, respectively. The recall is also
improved by 0.88% and 1.59%, indicating that cascade-vehicle detection based on CNN
method shows good robustness and accuracy.

4. Conclusions

To improve the accuracy and robustness of vehicle detection in complex driving
environment, a cascade vehicle detection method base on CNN is presented.

After LBP, Haar-like, and HOG features extraction, PCA dimension reduction and
feature fusion processing are carried out for vehicle detection range. Then, the detection
range is filtered by SVM classifier based on multifeature fusion, and the filtered detection
box is taken as the input of CNN detection, and the cascade detection is put forward.

In order to verify the accuracy and robustness of the method used, and the recall
of this article reached 98.69% in a good driving environment. In addition, when the
detection is in a complex driving environment, the false-detection rate and omission rate
of the cascade vehicle-detection method based on CNN decreased by 1.37% and 0.7%,
respectively. Compared with other mainstream vehicle-detection methods, the cascade
vehicle-detection algorithm shows good accuracy and better robustness.
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