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Abstract: Visually impaired visitors experience many limitations when visiting museum exhibits,
such as a lack of cognitive and sensory access to exhibits or replicas. Contemporary art is evolving
in the direction of appreciation beyond simply looking at works, and the development of various
sensory technologies has had a great influence on culture and art. Thus, opportunities for people
with visual impairments to appreciate visual artworks through various senses such as hearing, touch,
and smell are expanding. However, it is uncommon to provide an interactive interface for color
recognition, such as applying patterns, sounds, temperature, or scents. This review aims to convey
the visual elements of the work to the visually impaired through various sensory elements. In
addition, to open a new perspective on appreciation of the works, the technique of expressing the
color coded by integrating patterns, temperature, scent, music, and vibration was explored, and
future research topics were presented.
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1. Introduction

Around 1.3 billion people worldwide live with some form of blindness, and their
limited access to artwork cannot be ignored in a world of increasing inclusion. Museums
are obligated to accommodate people with varying needs, including people with visual
impairments [1]. Art is arguably one of the most intriguing creations of humanity, and as
such should be available to every person; accordingly, making visual art available to the
visually impaired has become a priority. However, for the visually impaired, visiting a
museum can feel alienating.

Therefore, it is necessary to expand research on universal exhibition art appreciation
assistance, exhibition contents, and art exhibition environment for the visually impaired.
In other words, the development of technology to interpret the context of artwork using
non-visual sensory forms such as sound, color, texture, and temperature is positive, and
through this, the visually impaired can open a new way to enjoy art and culture in social
and psychological aspects. For this reason, many studies have been conducted.

However, the use of vision and sound for interaction has dominated the field of
human–computer interaction for decades, even though humans have many more senses
for perceiving and interacting with the world. Recently, researchers have started trying
to capitalize on touch, taste, and smell when designing interactive tasks, especially in
gaming, multimedia, and art environments. The concept of multimodality, or commu-
nicating information by means of several sensations, has been of vital importance in the
field of human–computer interaction. More innovative approaches can be used, such as
multisensory displays that appeal to sight, hearing, touch, and smell [2]. The combination
of the strengths of several interfaces allows for a more efficient user–machine communi-
cation, which cannot be accomplished by means of a single interaction mode alone. The
combination of the strengths of various modes can make up for the lack of sense of vision
for the visually impaired. One way to cultivate social, cognitive, and emotional empathy
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is to appreciate artworks through multiple senses (sight, hearing, touch, smell, etc.) [3].
Based on such thoughts, multiple senses can work together to increase the experience of
the visually impaired allowing indirect sensing of the colors and images of the exhibits
through media such as sound, texture, temperature, and scent. These technologies not only
help the visually impaired enjoy the museum experience, but also allow sighted people to
view museum exhibits in a new way.

Museums are evolving to provide enjoyable experiences for everyone, moving beyond
audio guides to tactile exhibitions [4,5]. A previous study [6,7] reviewed the extent and
nature of participatory research and accessibility in the context of assistive technologies
developed for use in museums by people with sensory impairments or learning disabilities.
Some museums have successfully produced art replicas that can be tactilely experienced.
For example, the Metropolitan Museum of Art in New York has displayed replicas of
the artworks exhibited in the museum [8,9]. The American Foundation for the Blind
offered guidelines and resources for the use of tactile graphics for the specific case of
artworks [10]. The Art Institute of Chicago also uses 3D-printed copies of its collection to
support its curriculum for design students. Converting artworks into 2.5D or 3D allows
the visually impaired to enjoy them using touch, with audio descriptions and sound
effects provided to enhance the experience. In 2.5D printing, a relief model, a tactile
diagram of a computer-edited drawing, is printed onto microcapsule paper called swell
paper that enables the visually impaired to easily distinguish the texture and thickness of
lines [10]. Bas-relief tactile painting is a sculptural technique that produces specific shapes
that protrude on a plane [10]. The quality of the relief is measured using the perceived
quality of the represented 3D shape. Three-dimensional (3D)-printed artworks are effective
learning tools to allow people to experience objects from various perspectives, improving
the accessibility of art appreciation and visual descriptive skills of the visually impaired by
providing an interactive learning environment [11]. Such 3D printing technology improves
access to art by allowing the visually impaired to touch and imagine an artwork. For
example, the Belvedere Museum in Vienna used 3D printing technology to create a 3D
version of Gustav Klimt’s “The Kiss” [12] and the Andy Warhol Museum [13] released a
comprehensive audio guide that allows visitors to touch 3D replicas of artwork during an
audio tour.

Furthermore, colors should not be forgotten, because they retain a symbolic meaning,
even for children without sight. Color is an absolute element that gives depth, form, and
motion to a painting. Colors are expressed in such a way that different feelings can pop
out of objects. Layers of color can provide an infinite variety of sensory feelings and show
multi-layered diversity, liberating objects from ideas. According to the perception theorem,
viewers give meaning to a work according to their experiences, and therefore, color is not
an objective attribute, but a matter of perception that exists in the mind of the perceiver.
Therefore, this review also attempts to convey color to the visually impaired through
multiple sensory elements.

This review is organized as follows. In Section 2, some examples of multisensory art
reproduction in museums and the museum’s multi-sensory experiences of touch, smell, and
hearing will be addressed. In Section 3, we look at how to express colors through sound,
pictograms, and temperature. Section 4 will be dedicated to non-visual multi-sensory
integration. Finally, conclusions will be drawn in Section 5.

2. Multi-Sensory Experiences in Museums

Multi-sensory interaction aids learning, inclusion, and collaboration, because it ac-
commodates the diverse cognitive and perceptual needs of the visually impaired. Multiple
sensory systems are needed to successfully convey artistic images. However, few studies
have analyzed the application of assistive technologies in multisensory exhibit designs
and related them to visitors’ experiences. The museums of providing multiple senses that
are possible in the method of delivering art works appreciation considering the visually
impaired are Birmingham Museum of Art, Cummer Museum of Art and Garden, Finnish



Electronics 2021, 10, 470 3 of 37

National Gallery, The Jewish Museum, Metropolitan Museum of Art, Omero Museum,
Museum of Fine Art, Museum of Modern Art, Cooper Hewitt Smithsonian Design Mu-
seum, The National Gallery, Philadelphia Museum of Art, Queens Museum of Art, Tate
Modern, Smithsonian American Art Museum, and van Abbe Museum. They operate a
variety of tours and programs to allow the visually impaired to experience art. The monthly
tour provides an opportunity to touch the exhibits by providing sensory explanations and
tactile aids through audio. There are also braille printers, 3D printers, voice information
technology, tactile image-to-speech technology, color change technology, etc. in the form
of helping the audience to transform the work or appreciating the exhibition by carrying
auxiliary tools.

The “Eyes of the Mind” series at the Guggenheim Museum in New York also offered a
“sensory experience workshop” for museum visitors with visual impairment or low vision.
In addition to describing the artworks, it used the senses of touch and smell. In the visually
impaired, the sense of touch can stimulate neurons that are usually reserved for vision.
Neuroscience suggests that, with the right tools, the visually impaired can appreciate the
visual arts, because the essence of a picture is not vision but a meaningful connection
between the artist and the audience.

2.1. Tactile Perception of the Visually Impaired

The sense of touch is an important source of information when sight is absent. Ac-
cording to many studies, tactile spatial acuity is enhanced in blindness. Already in 1964,
scientists demonstrated that seven days of visual deprivation resulted in tactile acuity en-
hancement. There are two competing hypotheses on how blindness improves the sense of
touch. According to the tactile experience hypothesis, reliance on the sense of touch drives
tactile-acuity enhancement. The visual deprivation hypothesis, on the other hand, posits
that the absence of vision itself drives tactile-acuity enhancement. Wong et al. [14] tested
the participants’ ability to discern the orientations of grooved surfaces applied to the distal
pads of the stationary index, middle, and ring fingers of each hand, and then to the two
sides of the lower lip. A study comparing those hypotheses demonstrated that proficient
Braille readers—those who spend hours a day reading with their fingertips—have much
more sensitive fingers than sighted people, confirming the tactile experience hypothesis. In
contrast, blind and sighted participants performed equivalently on the lips. If the visual
deprivation hypothesis were true, blind participants would outperform sighted people in
all body areas [14].

Heller [15] reported two experiments on the contribution of visual experience to tactile
perception. In the first experiment, sighted, congenitally blind, and late blind individuals
made tactual matches to tangible embossed shapes. In the second experiment, the same
subjects attempted tactile identification of raised-line drawings. The three groups did
not differ in the accuracy of their shape matching, but both groups of blind subjects were
much faster than the sighted. Late (acquired) blind observers were far better than the
sighted or congenitally blind participants at tactile picture identification. Four of the
twelve pictures were correctly identified by most of the late blind subjects. The sighted
and congenitally blind participants performed at comparable levels in picture naming.
There was no evidence that visual experience alone aided the sighted in the tactile task
under investigation, because they performed no better than the early blind. The superiority
of the late blind suggests that visual exposure to drawings and the rules of pictorial
representation could help in tactile picture identification when combined with a history of
tactual experience [15].

2.2. Tactile Graphics and Overlays

Tactile graphics are made using raised lines and textures to convey drawings and
images by touch. Advances in low-cost prototyping and 3D printing technologies aim to
tackle the complexity of expressing complex images without exploration obstruction by
adding interactivity to tactile graphics. Thus, the combination of tactile graphics, interactive
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interfaces, and audio descriptions can improve accessibility and understanding of visual art
works for the visually impaired. Taylor et al. [16] presented a gesture-controlled interactive
audio guide based on low-cost depth cameras that can track hand gestures on relief
surfaces during tactile exploration of artworks. Conductive filament was used to provide
touchscreen overlays. LucentMaps developed by Götzelmann et al. [17] uses 3D-printed
tactile maps with embedded capacitive material that, when overlaid on a touchscreen
device, can generate audio in response to touch. They also provided the results of a
survey done with 19 visually impaired participants to identify their previous experiences,
motivations, and accessibility challenges in museums. An interactive multimodal guide
uses both touch and audio to take advantage of the strengths of each mode and provide
localized verbal descriptions.

While mobile screen readers have improved access to touchscreen devices for people
with visual impairments, graphical forms of information such as maps, charts, and images
are still difficult to convey and understand. The Talking Tactile Tablet developed by Landau
et al. [18] allows users to place tactile sheets on top of a tablet that can then sense a user’s
touches. The Talking Tactile Tablet holds tactile graphic sheets motionless against a high-
resolution touch-sensitive surface. A user’s finger pressure is transmitted through a variety
of flexible tactile graphic overlays to this surface, which is a standard hardened-glass touch
screen, typically used in conjunction with a video monitor for ATMs and other applications.
The computer interprets the user’s presses on the tactile graphic overlay sheet in the same
way that it does when a mouse is clicked while the cursor is over a particular region,
icon, or object on a video screen [18]. Table 1 summarizes a list of these projects and their
interaction technologies.

Table 1. Interactive Tactile Graphics and Multimodal Guide for educations and map explorations.

Author–Name Input Output Focus

Taylor et al. [16]

Touch
(Touchscreen)

Tactile overlay
Verbal descriptions

Map Exploration
Geography
Education

Gotzelmann et al. [17]
LucentMaps

Voice, Tactile overlay
Visual augmentation

Brule et al. [19] MapSense

Tokens (Capacitive)
Tactile overlay

Smell and taste infused
tangible tokens

Verbal descriptions

Landau et al. [18] The Talking
Tactile Tablet

Touch
(Surface)

Tactile overlay
Verbal descriptions

Map Exploration
Education and

Scientific Diagrams

Shen et al. [20] CamIO Touch
(Mounted camera)

Tactile graph
Tactile 3D Map
Tactile Object

Verbal descriptions

Access to 3D objects
Map Exploration

Access to appliances
Access to documents

Baker et al. [21] Tactile
Graphics with a Voice

Touch
(Wearable Camera)

Voice, Tactile graph
Verbal descriptions

STEM Education
Map Exploration

Fusco et al. [22] The Tactile
Graphics Helper

Touch
(Mobile Camera)

Holloway et al. [23]
Touch

(Embedded capacitive
sensors)

Tactile 3D Map
Verbal descriptions Map Exploration
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2.3. Interactive Tactile Graphics and 2.5D Models

In the last decades, researchers have explored the improvement of tactile graphics
accessibility by adding interactivity through diverse technologies. Despite the availability
of many research findings on tactile graphics and audio guides focused on map explo-
ration and STEM education, as described earlier, visually impaired people still struggle to
experience and understand visual art. Artists are still more concerned with accessibility
of reasoning, interpretation, and experience than providing access to visual information.
The visually impaired wish to be able to explore art by themselves at their own pace.
With these in mind, artists and designers can change the creative process to make their
work more inclusive. The San Diego Museum of Art Talking Tactile Exhibit Panel [24]
allows visitors to touch Juan Sánchez Cotán’s master still-life, Quince, Cabbage, Melon, and
Cucumber, painted in Toledo, Spain in 1602 [25]. If you touch one of these panels with your
bare hands or wearing light gloves, you can hear information about the touched part. This
is like tapping on an iPad to make something happen; but instead of a smooth, flat touch
screen, these exhibit panels can include textures, bas-relief, raised lines and other tactile
surface treatments. As you poke, pinch or prod the surface, the location and pressure
of your finger-touches are sensed, triggering audio description about the part that was
touched [25].

Volpe et al. [26] explored semi-automatic generation of 3D models from digital images
of paintings, and classified four classes of 2.5D models (tactile outline, textured tactile,
flat-layered bas-relief, and bas-relief) for visual artwork representation. An evaluation
with 14 blind participants indicated that audio guides are required to make the models
understandable. Holloway et al. [27] evaluated three techniques for visual artwork repre-
sentation: tactile graphics, 3D printing (sculpture model), and laser cut. Among them 3D
printing and laser cut were preferred by most participants to explore visual artworks. There
are projects that add interactivity to visual artwork representations and museum objects.
Anagnostakis et al. [28] used proximity and touch sensors to provide voice guidance on
museum exhibits through mobile devices. Reichinger et al. [29,30] introduced the concept
of a gesture-controlled interactive audio guide for visual artworks that uses depth-sensing
cameras to sense the location and gestures of the user’s hands during tactile exploration
of a bas-relief artwork model. The guide provides location-dependent audio descriptions
based on user hand positions and gestures. Vaz et al. [31] developed an accessible geo-
logical sample exhibitor that reproduces audio descriptions of the samples when picked
up. The on-site use evaluation revealed that blind and visually impaired people felt more
motivated and improved their mental conceptualization. D’Agnano et al. [32] developed
a smart ring that allows to navigate any 3D surface with fingertips and get in return an
audio content that is relevant in relation to the part of the surface while touching in that
moment. The system is made of three elements: a high-tech ring, a tactile surface tagged
with NFC sensors, and an app for tablet or smartphone. The ring detects and reads the
NFC tags and communicates in wireless mode with the smart device. During the tactile
navigation of the surface, when the finger reaches a hotspot, the ring identifies the NFC tag
and activates, through the app, the audio track that is related to that specific hotspot. Thus,
a relevant audio content relates to each hotspot.

Quero et al. [33–35] designed and implemented an interactive multimodal guide
prototype based on the needs found through our preliminary user study [33] and inspired
mainly in the related works Holloway et al. [27] and Reichinger et al. [30]. Table 2 compares
the main technical differences among the related works and their approach. The prototype
identifies tactile gestures that trigger audio descriptions and sounds during exploration of
a 2.5D tactile representation of the artwork placed on top of the prototype. The body of
work on interactive multimodal guide focused on artwork exploration is summarized in
Table 2.
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Table 2. Interactive multimodal guide for appreciating visual artwork and museum objects.

Author–Name Input Output Focus

Talking Tactile Exhibit Panel
[24,25] Touch Audio Descriptions Museum Object

Exploration

Halloway et al. [27]

Capacitive sensor board
connected to discrete copper
interaction points placed on

the surface of the model
Double tap and long tap
gestures on the surface

Audio Descriptions
Tactile 3D map model.
Improve Mobility and

Orientation

Anagnostakis et al. [28] Touch (PIR and touch sensors) Tactile Objects
Verbal descriptions Museum Object Exploration

Reichinger et al. [29,30] Touch (Camera)
Hand gestures (Camera)

Tactile bas-relief
Artwork Model

Verbal descriptions
Artwork exploration

Vaz et al. [31] Touch (Embedded capacitive
sensors)

Tactile Objects
Verbal descriptions

Museum Object
Exploration

D’Agnano et al. [32] Touch (Ring NFC reader) Tactile 3D model
Verbal descriptions

Archeological site exploration
Artwork exploration

Cavazos et al. [33–35]

Capacitive sensor connected
to conductive ink-based

sensors embedded under the
surface of the 2.5D model
Double tap and triple tap

gestures on the surface

Tactile bas-relief model
Audio Descriptions

Sound effects and Background
music

Artwork exploration

2.4. An Example of Interactive Multimodal Guide for Appreciating Visual Artwork

Cavazos et al. [33–35] developed an interactive multimodal guide that transformed
an existing flat painting into a 2.5D (relief form) using 3D printing technology that used
touch, audio description, and sound to provide a high level of user experience. Thus, the
visually impaired can enjoy it freely, independently, and comfortably through touch to
feel the artwork shapes and textures and to listen and explore the explanation of objects
of their interest without the need for a professional curator. The interactive multimodal
guide [35] complies with the following processes: (1) Create a 2.5D (relief) model of a
painting using image processing and 3D printing technologies (Figure 1); (2) 3D-print
the model. (3) use conductive paint (Figure 1) applied to objects in the artwork to create
the touch sensors such that a microcontroller can detect touch gestures that trigger audio
responses with different layers of information about the painting; (4) add color layers to
the model to the replicate original work; (5) place the interactive model into an exhibition
stand; (6) connect the model to a control board (Arduino and capacitive sensor MPR121); (7)
connect headphones to the control board; (8) touch to use; (9) engage in independent tactile
exploration while listening to mood-setting background music; (10) tap anywhere on the
artwork to listen to localized information, such as the name of an object, its color or shape,
its meaning, and so on; (11) double tap anywhere on the artwork to listen to localized
audio, such as the sound of leaves on a tree in autumn or the noise of a rural town at
night; (12) touch a physical button to hear a recorded track containing use instructions and
general information about the artwork, such as the painter’s historical and social context,
which is an essential part of understanding any work.
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Figure 1. Tactile 3-D printed reproductions in 2.5D model of works (courtesy of Luis Cavazos Quero,
Ph.D. student, Dept. of Electronic, Electronic, and Computer Engineering, SungkyunKwan University).

In BlindTouch project [35,36], gamification [37] is included to awaken other senses
and maximize enjoyment of the artwork. Through vivid visual descriptions, including
sound effects, viewers can maximize their sense of immersion in the space of the painting.
Each artwork was reproduced using materials that can recognize the timing of tactile
input, so that when a person taps part of the artwork with a fingertip once, they can
hear audio description about that part; if they tap twice, they can hear a sound effect
about that part. It directly informs the sound of objects expressed in the work of art and
informs viewers of what is depicted in the work with natural sound at the same time,
while the emotional side is transferred to the background music with feelings similar
to the emotion of the work, taking into consideration the musical instrument’s timbre,
minor/major, tempo, and pitch. Two-dimensional speaker placement provides more
detailed information on key objects such as perspective and directionality so that the
visually impaired can maintain the direction of sound through hearing to awaken the real
sense of space and to recognize sensory information about their direction. Furthermore, the
voice interactive multimodal guide prototype developed by Bartolome et al. [34] identifies
tactile gestures and voice commands that trigger audio descriptions and sounds while a
person with visual impairment explores a 2.5D tactile representation of the artwork placed
on the top surface of the prototype. The prototype is easy and intuitive, allowing users to
access only the information they want, reducing user fatigue.

As a preliminary study, BlindTouch [36] was intended to represent various visual
elements in the work such as ambient sounds that reflect periodic, seasonal, temporal, and
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regional information about the work as realistically as possible. In that first study, the
auditory interaction was applied to Vincent van Gogh’s 1889 work “The Starry Night”.
When users touch the BlindTouch painting three times, they hear a sound representing
the starlight and the sound of a tall cypress swaying in the wind. The sound of the wind
was played through two speakers to express the swirling movement of the wind, and the
moonlight and starlight in the sky at the top of the work were expressed as a twinkling
ringtone. The sounds of shaking leaves and grass bugs on a summer night were added. To
those sounds, background music was added with an atmosphere similar to the emotions
inspired by “The Starry Night”. To express the warmth coming from the village, an oboe
played a major scale, and a slightly fast, lyrical melody in the high pitch range of the piano
provided a cold feeling of dawn. The completed exhibition environment used six-channel
speakers arranged on flat plates, and the wind sounds were swirled between two speakers
to arouse a sense of space and enhance appreciation of the artwork through a sense of
three-dimensional sound. The blind user who experienced the exhibited work left the
following words. “I’m so happy that I can now tell my friends that I understand Starry
Night better through the blind touch. Thank you for making art more enjoyable. Especially
when I’m older, it’s so interesting because I can remember it in a different way.”

BlindTouch works were exhibited for three weeks at St. Mary’s School (a special
school for the visually impaired operated by a 65-year-old Catholic institution located in
Cheongju, Korea) for three weeks from October 12 to 30, 2020 [36]. A student, Geon Tak
(Figure 2), who especially liked “The Starry Night”, looks very satisfied.
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Hye-ryeon Jeon, a school art teacher who participated in this exhibition, left the
following word. “This BlindTouch study is amazing, especially by conducting research
focused on multi-sensory color coding, this barren realm that no one cares about. It seems
that visually impaired people will enjoy the richness of life with a very delicate study on
appreciation of the artworks.” Participants in the experiment responded to the sound that
expressed the wind in the work, “It feels like the wind is fighting with each other”; “The
sound is played from side to side to express the feeling of wind blowing”; “There is a lot
of wind and it feels cool and cold in the air.” They replied that the applied wind sound
was similar to the actual wind blowing and helped to remind them of it. In addition, the
use of two speakers to effectively express the swirling wind in the work received positive
reviews from participants. Additionally, while listening to the ambient sound of the stars
in the sky and the moon in the work, the participants of the experiment recalled the stars,
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saying, “I feel like a sparkling in a quiet place” and “There is a sound of something shining.”
However, there was an opinion that “when I first heard it, I didn’t know what it was, but
later I knew that it was the sound of a star,” and the sound was artificial and the expression
was insufficient to be reminiscent of a starry night sky. The participant in the experiment
who heard the sound of the cypress tree on the left side of the work replied, “The landscape
of grass bugs are crying and the tree next to it is swaying in the wind,” and responded that
it was a lonely atmosphere. He said that it helped to remind him of trees.

In addition, interviews were conducted with sighted people after appreciating the
work through sight and hearing. There were four participants in the experiment, two males
and two females in their 20s. The average age was 22.25 years (SD = 1.92). There was
an opinion that the ambient sounds of various objects in the work were reproduced, and
that they aroused interest, and the ability to appreciate the interaction through multiple
senses rather than a single sense led to a positive evaluation. When the background and
appropriate sound of the work were applied to a work of art, it helped both the visually
impaired and sighted people to appreciate the work, and users said that it is possible to
imagine the appearance, space, and situation of the work and induce a deeper atmosphere
and sensibility in it. Participants believed that appreciating works of art using multiple
senses can communicate deeply and provide a rich aesthetic experience. To understand
how educators perceived tactile art books and/or 3D printed replicas as a new experience
for children with visual impairments, their interactive experiences was evaluated with
those children. In this study, a high level of participation was observed from both teachers
and children. They admitted that they had not experienced any attempts to include
multisensory interactions. The visually impaired students enjoyed the BlindTouch works
displayed under the guidance of art teachers and returned to the art room to express their
feelings without hesitation. When the teacher talked about the atmosphere of the paintings
that the students completed by themselves, various reactions emerged.

Here are the works of three students who participated in the exhibition and art classes.
The basic information for the students who participated in the art activities is shown
in Table 3. Drawings using paints can be difficult for visually impaired students, but
teachers tried to induce pictorial expressions from visually impaired students by using
wheat flour paste. Students created works with a similar arrangement and composition
to the works they enjoyed, because their appreciation of the exhibition works was tactile,
and detailed information on the objects in those works could thus be obtained. The
students heard a story about Vincent van Gogh’s life and the characteristics of his paintings,
which let them express their appreciation in flour paste and paints as vivid as Vincent
van Gogh’s brushstrokes. The work below expresses the feeling of appreciation for “The
Starry Night” in paints and clay. The artworks use various expressions of the material
in “The Starry Night” to express the students’ experiences of touch and hearing with the
BlindTouch exhibition. The visually impaired students touched the objects in the exhibits
with their hands, and they received auditory information. Then they used their memories
to express their feelings. The three students who participated in the BlindTouch exhibition
were actively stimulated to express their emotions through the multi-sensory exhibition
experience, and during the art class activity, their emotions and feelings toward the subject
exhibition became abundant, giving them an opportunity to naturally express their feelings.
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Table 3. Students’ works that reflects personal impressions of the BlindTouch exhibit [36].

Name Year/Gender Disability and Expressive
Ability Characteristics Artwork Description

Seok Kang-hee High
school/Female

- Level 1 blind
- She thinks a lot and is

prudent in choosing
the subject matter or
expressing
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2.5. Immersive Interaction through Haptic Feedback

Tactile feedback can be classified into contact tactile and non-contact tactile. The
sunburn, snow, wind, and sensation of heat and humidity can be contact or non-contact.
Haptic experiences for improving immersive interaction through haptic feedback are
diverse and complex, and humans can perceive a variety of tactile sensations, including
the kinematic sensations of objects and skin feedback when users manipulate them.

Only few assistive technologies rely on tangible interaction (e.g., the use of physical
objects to interact with digital information [38]). For instance, McGookin et al. [39] used
tangible interaction for the construction of graphical diagrams: non-figurative tangibles
were tracked to construct graphs on a grid, using audio cues. Manshad et al. [40] proposed
audio and haptic tangibles for the creation of line graphs. Pielot et al. [41] used a toy duck
to explore an auditory map.

As digital interaction tools for introducing museum exhibits, Petrelli et al. [42] in-
troduced “Museum Mobile App”, “Touchable Replicas”, and “NFC Smart Cards with
Art Drawings”. Here, when the replica (tangible) is placed on the NFC reader on the
exhibition table, an introduction to the work is played on the multimedia screen. The NFC
smart card on which the artwork is drawn works likewise. As a result of surveying visitor
preferences for these three, it was found that they most preferred the use of replicas and
smart cards. Among the three modes, the proportion of participants who did not prefer
to use mobile apps was the highest. It is very noteworthy that this is because it interferes
with the enjoyment of participating in the exhibition (55%, N = 31) [42].

Information is typically integrated across sensory modalities when the sensory inputs
share certain common features. Cross-modality refers to the interaction between two
different sensory channels. Although many studies have been conducted on cross sensation
between sight and other senses, there are not many studies on cross sensation between non-
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visual senses [43]. The Haptic Wave [44] allows audio engineers with visual impairments
to “feel” the amplitude of sound, gaining salient information that sighted engineers get
through visual waveforms. If cross-modal mapping allows us to substitute one sensory
modality for another, we could map the visual aspects of digital audio editing to another
sensory modality. For example, if visual waveform displays allow sighted users to “see
the sound”, we could build an alternative interface for visually impaired users to “feel the
sound”. The demo will allow visitors, sighted or visually-impaired, to sweep backwards
and forwards through audio recordings (snippets of pop songs and voice recordings),
feeling sound amplitude through haptic feedback delivered by a motorized fader [44].
Gardner et al. [45] developed a waist belt with built-in sound, temperature, and vibration
patterns to provide a multisensory experience of specific artworks.

Brule et al. [19] created a raised-line overlaying multisensory interactive map on a
capacitive projected touch screen for visually impaired children after a five-week field
study in a specialized institute. Their map consists of several multisensory tangibles that
can be explored in a tactile way but can also be smelled or tasted, allowing users to interact
with them using touch, taste, and smell together. A sliding gesture in the dedicated menu
filters geographical information (e.g., cities, seas, etc.). Conductive tangibles with food
and/or scents are used to follow an itinerary. Double tapping on an element of the map
provides audio cues. Maps can be navigated in a tactile way, but consist of several different
sensory types that can smell or taste, allowing users to interact with the system through
three senses: tactile, taste, and smell. Multi-sensory interaction supports learning, inclusion,
and collaboration, because it accommodates the diverse cognitive and perceptual needs
of the blind. To analyze the data, the Grounded Theory [46] method was followed with
open-coded interviews transcriptions and observations. One observation of children using
a kinesthetic approach for learning and feedback from the teachers led to multi-sensory
tangible artefacts to increase the number of possible use cases and improve inclusivity.
Mapsense [19] consists of a touchscreen, a colored tactile map overlay, a loudspeaker, and
conductive tangibles. These conductive tangibles are detected by the screen as the tangible’s
touch events. Users could navigate between “points of interest”, “general directions”, and
“cities”. Once one of this type of information is selected (e.g., cities for example), MapSense
gives the city name through text-to-speech when it detects a double tap on a point of
interest. Children could also choose “audio discovery”, which triggered ludic sounds (e.g.,
the sound of a sword battles in the castle, of flowing waters where they were going to
take a boat, of religious songs for the abbey, etc.). Finally, when users activate the guiding
function, vocal indications (“left/right/top/bottom”) help the users move the tangibles
to their target. 3D printer PLA filament was used as material, and aluminum was added
around tangibles, as it is conductive, and could be detected when it touches a point of
interest in tactile map overlay [19].

Empathy is a communication skill by which one person can share another person’s
personal perceptions and experiences. A similar concept is rapport, which refers to under-
standing other people’s feelings and situations and forming a consensus (or trust) with
them. Empathy is an essential virtue in segmented modern society. Ambi, Figure 3, created
by Daniel Cho, RISD, Province, RI, USA, 2015, is a nonverbal (visual, tactile, or sound)
telepresence and communication tool used for promoting empathy and rapport between
family members and couples. Sensors recognize intuitive and non-verbal (visual, tactile, or
sound) signals and exchange empathetic emotions. Ambi’s proximity sensor recognizes a
person’s presence and emotional state and communicates it to another person. One way to
express affection is to wrap your hand around the Ambi’s waist. In addition, through the
non-visual sense of touch or sound, the visually impaired can share empathetic emotions
with the others. The constant and immediate tactile feedback of another’s presence and
nudges allows the visually impaired to have more intimate connection and non-verbal
communication with others that the video chat applications alone cannot provide.
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2.6. Smell

A tactile interaction created in 3D can be communicated through the touch of a
brush and an olfactory stimulus that matches the space in the work, allowing the visually
impaired to experience works of art through several senses [47]. Although many people
have considered the effects of adding scent to art and museum exhibits, the addition of this
normally unstimulated sense will not necessarily enhance the multisensory experience of
those who are exposed to it [48]. Nina Levent and Alvaro Pascual-Leone in their book “The
Multi-Sense Museum” [49] emphasized the use of forms such as smell, sound, and touch,
providing visual and other impaired customers with a more immersive experience and
a variety of sensory engagement. Although the use of congruent scents has been shown
to enhance people’s self-reported willingness to return to a museum [50], the appropriate
distribution of scent in/through a space faces significant challenges [49]. More than any
other sensory modality, olfaction contributes a positive (appetitive) or negative (aversive)
valence to an environment. Certain odors reproducibly induce emotional states [51].
Odor-evoked memories carry more emotional and evocative recollections than memories
triggered by any other cue [52].

Dobbelstein et al. [53] introduced a mobile scent operated device that connects to
a 3.5 mm audio jack and contains only one scent. Scent actuators that trigger mobile
notifications by touch screen input or incoming text message. The scent was less reliable
than the traditional vibrations or sound, but it was also perceived as less disruptive and
more pleasant. Individual scents can add anticipation and emotion to the moment of being
notified and entail a very personal meaning. For this reason, scent should not replace
other output modalities, but rather complement them to convey additional meaning (e.g.,
amplifying notifications). Scent can also be used to express a unique identity.

For Sound Perfume [54], a personal sound and perfume are emitted during interper-
sonal face-to-face interactions, whereas for light perfume [55], the idea was to stimulate two
users with the same visual and olfactory output to strengthen their empathic connection.

Additionally, picture books are also considered beneficial to children because they
provide a rich experience [56,57]. Some picture books offer multisensory experiences to
enrich learning and gratitude. For example, the Dorling Kindersley publishing house (https:
//www.dk.com/uk/ accessed on 30 November 2020) has introduced a variety of books that
children can touch, feel, scratch, and smell. These books have tactile textures in the pictures
and contain a variety of smells [56–58]. The MIT Media Lab has developed an interactive
pop-up book that combines material experimentation, artistic design, and engineering [59].
To improve the expression of movement, a study introduced continuous acoustic interaction
to augmented pop-up books to provide a different experience of storytelling. The mental
image of a blind person is a product of touch, taste, smell, and sound.

Edirisinghe et al. [60] introduced a picture book with multisensory interactions for
children with visual impairments and it was found to provide an exciting and novel
experience. It emits a specific odor through the olfactory device, which uses a commercially
available Scentee (https://scentee.com/ accessed on 30 November 2020) device to respond
to sounds. Children with visual impairments can smell and imagine broken objects. The

https://www.dk.com/uk/
https://www.dk.com/uk/
https://scentee.com/
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olfactory device is contained inside the page, and the fragrance is emitted from a small
hole in the center of the panel [60].

At the Cooper Hewitt Smithsonian Museum, chemist and artist Sissel Tolaas designed
a touch-activated map with fragrant paint. After analyzing the scent molecules of different
elements from within Central Park, Tolaas reproduced them as closely as possible, using a
“microencapsulation” process, containing them inside tiny capsules. She then mixed them
with a latex-based binder, creating a special paint that was applied to the wall of the Cooper
Hewitt, which can be activated by touch. When visitors go to the wall that has been painted
with the special paint, just by touching the wall they are able to break the capsules open and
release the scent: a scientifically advanced scratch-and-sniff sticker [61]. Using powdered
scents, incense, and spices, Ezgi Ucar stamped fragrances on different photos that form
part of a painting. She took inspiration from scratch-and-sniff stickers and used the same
method, allowing visitors to scratch and sniff some of the photographed parts of the
painting. The human sense of smell has been called the “poet of sensory systems”, because
it is deeply connected to structures in our brain that relate to our emotions, memories, and
awareness of the environment, which can be exploited to enhance user experiences.

Given the ability of smell to influence human experiences, multimodal interfaces are
increasingly integrating olfactory signals to create emotionally engaging experiences [62].
Sense of Agency [63] can be defined as “the sense that I am the one who is causing or
generating an action”. The sense of agency is of utmost importance when a person is
controlling an external device, because it influences their affect toward the technology and
thus their commitment to the task and its performance. Research into human–computer
interactions has recently studied agency with visual, auditory, haptic, and olfactory inter-
faces [64]. Jacobs et al. [65] showed that humans can define an arbitrary location in space
as a coordinate location on an odor grid.

2.7. Hearing (Sound)

Hopkin [66] confirmed that congenital blind or who lost their sight during the first
two years of life do indeed recognize changes in pitch more precisely than sighted people.
However, there were no significant differences in performance between sighted people
and people who had lost their sight after their first two years of life. These findings reveal
the brain’s capacity to reorganize itself early in life. At birth, the brain’s centers for vision,
hearing, and other senses are all connected. Those connections are gradually eliminated
during normal development, but they might be preserved and used in the early blind to
process sounds.

The Metropolitan Museum of Art in New York introduced the reproductions of sound-
sensitive art objects by attaching sound switches [67]. The switch plates were cut into
shapes based on the form of the major elements of the painting. When someone touches a
particular element, an ambient sound related to that element of the painting is produced.

The sense of immersion is improved for the viewer when an artwork is experienced
using more than one sense [68,69]. Visual images affect the sensibility of the viewer, con-
veying meaning, and sound affects the sensibility of the listener. Thus, the effect of a visual
image can be maximized by harmonizing the sensibility of the visual image with the ambi-
ent sounds. Research has shown that pairing music and visual art enhances the emotional
experience of the participant [70]. In the “Feeling Vincent Van Gogh” exhibition [71], a
variety of interactive elements were used to communicate artworks to viewers, who could
see, hear, and touch Van Gogh’s works and thus appreciate them through multiple senses.
Visitors could feel Van Gogh’s brush strokes on 3D reproductions of Sunflowers and listen
to a fragment of background sound through an audio guide [71]. The experience was
intended to stimulate a deep understanding of the work and provide a rich imaginative
experience. “Carrières de Lumières” in Levod Provence, France, and “Bunker de Lumières”
in Jeju, Korea [72], are immersive media art exhibitions that allow visitors to appreciate
works through light and music, providing an experience of immersing in art beyond sight.
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Every moment of seeing, hearing, and feeling an object or environment generates
emotions, which appear intuitively and immediately upon receiving sensory stimulation.
Sensibility is thus closely related to the five senses, of which the visual and auditory
are most important. Among sighted, hearing people, information from the outside is
accepted in the proportions of 60% visual; 20% auditory; and 20% touch, taste, and smell
together [73].

Sound can work together with sight to create emotion, allowing viewers to immerse
themselves in a space. Therefore, Jeong et al. [74] designed a soundscape of visual and
auditory interactions using music that matches paintings to induce interest and imagination
in visitors who are appreciating the artwork. That study connected painting and music
using a deep-learning matching solution to improve the accessibility of art appreciation and
construct a soundscape of auditory interactions that promote appreciation of a painting.
The multimodal evaluation provided an evaluation index to measure new user experiences
when designing other multisensory artworks. The evaluation results showed that the
background music previously used in the exhibit and the music selected by the deep-
learning algorithm were somewhat equal. Using deep-learning technology to match
paintings and music offers direction and guidelines for soundscape design, and it provides
a new, rich aesthetic experience beyond vision. In addition, the technical results of that
study were applied to a 3D-printed tactile picture, and then 10 visually impaired test
participants were evaluated in their appreciation of the artworks [74].

3. Coding Colors through Sound, Pictograms, Temperature, and Vibration

According to Merleau-Ponty (1945/2002), color was not originally used to show the
properties of known objects, but to express different feelings suddenly emerging from
objects. According to Jean-Paul Sartre’s aesthetics of absence, art is to lead to the world of
imagination through self-realization and de-realization of the world. Aesthetic pleasure
is caused by hidden impractical objects. What is real is the result of brushing, the thick
layer of paint on the canvas, the roughness of the surface, and the varnish rubbed over
the paint, which is not subject to aesthetic evaluation. The reason for feeling beauty is not
mimesis, color, or form. What is real is never beautiful, and beauty is a value that can
only be applied to the imaginary. Absence is a subject that transcends the world toward
the imaginary. When reading the artist’s work, the viewer feels superior freedom and
subjectivity. According to the theory of perception, viewers give meaning to the work
according to their experiences. Color is not an objective attribute, but a matter of perception
that exists in the mind of the perceiver. It is also known that emotions related to color are
highly dependent on individual preferences for the color and past experiences. Therefore,
color has historically and socially formed images, and these symbols are imprinted in our
minds, and when we see a color, we naturally associate the image and symbol of that color.
For example, we can look at such embodied images [75] of color in Vincent van Gogh’s
work. Vincent Van Gogh went to Arles in February 1888 in search of sunlight. There he
gradually fell in love with the yellow color. His signature yellow color is evident in his vase
with fourteen sunflowers. Gogh was drawn to the yellow color of the sunflower, which
represents warmth, friendship, and sunlight. He said to himself, “I try to draw myself by
using various colors at will, rather than trying to draw exactly what I see with my eyes.”
On the other hand, according to Goethe’s Color theory, yellow has a bright nature from
purity, giving a pleasant, cheerful, colorful, and soft feeling.

Synesthesia is a transition between senses in which one sense triggers another. When
one sensation is lost, the other sensations not only compensate for the loss, but the two
sensations are synergistic by adding another sensation to one [76]. For example, sight and
sound intermingle. Music causes a brilliant vision of shapes, numbers and letters appear as
colors. Weak synesthesia refers to the recognition of similarities or correspondences across
different domains of sensory, affective, or cognitive experience–for example, the similarity
between increasingly high-pitched sounds and increasingly bright lights (auditory pitch-
visual color lightness). Strong synesthesia, in contrast, refers to the actual arousal of
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experiences in another domain, as when musical notes evoke colors [76]. Synesthesia
artists paint their multi-sensory experiences. Vincent van Gogh’s work is known for being
full of lively and expressive movements, but his unique style must have a reason. Many
art historians believe that Vincent van Gogh has a form of synesthesia, the sense of color.
This is a sensational experience in which a person associates sound with color. This is
evident in the various letters Van Gogh wrote to his brother. He said, “Some artists have
tense hands in their paintings, which makes them sound peculiar to violins”, he said.
Van Gogh also started playing the piano in 1885, but he had a hard time holding the
instrument. He declared that the playing experience was overwhelming, as each note
evokes a different color.

The core of an artwork is its spirit, but grasping that spirit requires a medium that
can be perceived not only by the one sense intended, but also through various senses.
In other words, the human brain creates an image by integrating multiple nonvisual
senses and using a matching process with previously stored images to find and store new
things through association. So-called intuition thus appears mostly in synesthesia. To
understand as much reality as possible, it is necessary to experience reality in as many
forms as possible, so synesthesia offers a richer reality experience than the separate senses,
and that can generate unusually strong memories. For example, a method for expressing
colors through multiple senses could be developed.

The painter Wassily Kandinsky was also ruled by synesthesia throughout his life.
Kandinsky literally saw colors when he heard music, and heard music when he painted.
Kandinsky said that when observing colors, all the senses (taste, sound, touch, and smell)
are experienced together. Kandinsky believed abstract painting was the best way to repli-
cate the melodic, spiritual, and poetic power found in music. He spent his career applying
the symphonic principles of music to the arrangement of color notes and chords [77].

The art philosopher Nikolai Hartmann, in his book Aesthetics (1953), considered
auditory–visual–touch synesthesia in art. Taggart et al. [78] found thar synesthesia is seven
times more common among artists, novelists, poets, and creative people. Artists often
connect unconnected realms and blend the power of metaphors with reality. Synesthetic
metaphors are linguistic expressions in which a term belonging to a sensory domain is
extended to name a state or event belonging to a different perceptual domain. The origin of
synesthetic experience can be found in painting, poetry, and music (visual, literary, musical).
Synesthesia appears in all forms of art and provides a multisensory form of knowledge
and communication. It is not subordinated but can expand the aesthetic through science
and technology. Science and technology could thus function as a true multidisciplinary
fusion project that expands the practical possibilities of theory through art. Synesthesia is
divided into strong synesthesia and weak synesthesia [78].

Martino et al. [79] reviewed the effects of synesthesia and differentiated between
strong and weak synesthesia. Strong synesthesia is characterized by a vivid image in one
sensory modality in response to the stimulation of another sense. Weak synesthesia, on the
other hand, is characterized by cross-sensory correspondences expressed through language
or by perceptual similarities or interactions. Weak synesthesia is common, easily identified,
remembered, and can be manifested by learning. Therefore, weak synesthesia could be a
new educational method using multisensory techniques. Since synesthetic experience is
the result of unified sense of mind, all experiences are synesthetic to some extent. The most
prevalent form of synesthesia is the conversion of sound into color. In art, synesthesia and
metaphor are combined [79].

To some extent, all forms of art are co-sensory. Through art, the co-sensory experience
becomes communicative. The origin of co-sensory experience can be found in painting,
poetry, and music (visual, literary, musical) [80].

Today, the ultimate synesthetic art form is cinema. Regarding the senses, Marks [81]
wrote: In a movie, sight (or tactile vision) can be tactile. It is “like touching a movie with
the eye”, and further, “the eye itself functions like a tactile organ”.
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Colors can be expressed as embossed tactile patterns for recognition by finger touches,
and incorporated temperature, texture, and smell to provide a rich art experience to person
with visual impairments. The Black Book of Colors by Cottin [82] describes the experience
of a fictional blind child named Thomas, who describes color through association with
certain elements in his environment. This book highlights the fact that blind people can gain
experience through multisensory interactions: “Thomas loves all colors because he can hear,
touch, and taste them.” An accompanying audio explanation provides a complementary
way to explore the overall color composition of an artwork. When tactile patterns are used
for color transmission, the image can be comprehensively grasped by delivering graphic
patterns, painted image patterns, and color patterns simultaneously [83–85].

This suggests to us the possibility and the justification for developing a new way of
appreciating works in which the colors used in works are subjectively explored through the
non-visual senses. In other words, it can be inferred that certain senses will be perceived
as being correlated with certain colors and concepts through unconscious associations
constructed with the concepts. The following works were designed to prove this assump-
tion and to materialize it as a system for multisensory appreciation of artworks for the
visually impaired.

An experiment comparing the cognitive capacity for color codes named ColorPic-
togram, ColorSound, ColorTemp, ColorScent, and ColorVibrotactile found that users
could intuitively recognize 24 chromatic and five achromatic colors with tactile pictogram
codes [86], 18 chromatic and five achromatic colors with sound codes [87], six colors with
temperature codes [88], five chromatic and two achromatic colors with scent codes [89],
and 10 chromatic and three achromatic colors with vibration codes [90].

For example, Cho et al. [86] presented a tactile color pictogram system to communicate
the color information of visual artworks. The tactile color pictogram [86] uses the shape of
sky, earth, and people derived from thoughts of heaven, earth, and people as a metaphor.
Colors can thus be recognized easily and intuitively by touching the different patterns.
What the art teacher wanted to do most with her blind students was to have them imagine
colors using a variety of senses—touch, scent, music, poetry, or literature.

Cho et al. [87] expresses color using part of Vivaldi’s Four Seasons with different
musical instruments, intensity, and pitch of sound to express hue, color lightness, and
saturation. The overall color composition of Van Gogh’s “The Starry Night” was expressed
as a single piece of music that accounted for color using the tone, key, tempo, and pitch of
the instruments. Bartolome et al. [88] expresses color and depth (advancing and retreating)
as temperature in Marc Rosco’s work using a thermoelectric Peltier element and a control
board. It also incorporates sound. For example, tapping on yellow twice produces a
yellow-like sound expressed by a trumpet. Lee et al. [89] applied orange, menthol, and
pine to recognize orange, blue, and green as fragrances.

3.1. ColorPictogram

With tactile sense, visually impaired people can access their works more indepen-
dently, and have better tactile perception than non-visually impaired people. Baumgartner
et al. [91] found that visual experience is not necessary to shape the haptic perceptual
representation of materials. Color patterns are easy to understand and can be used even
among people who do not share a language and culture. Braille-type color codes have
been created for use on Braille devices [85]. Another method of expressing colors uses an
embossed tactile pattern that is recognized by touching it with a finger [86,92–95].

Using that method, it is possible to express the shape of an object through the color
pattern without deliberately creating the outline of a shape. The tactile color pictogram,
which is a protruding geometric pattern, is an ideogram designed to help person with
visual impairment to identify colors and interpret information through touch. Tactile
sensations, together with or as an alternative to auditory sensations, enable users to
approach artworks in a self-directed and attractive way that is difficult to achieve with
auditory stimulation alone.



Electronics 2021, 10, 470 17 of 37

Raised geometric patterns called tactile color pictograms are ideographic characters
designed to enable the visually impaired to interpret visual information through touch.
Cho et al. [86] developed three tactile color pictograms to code colors in the Munsell
color system; each color pattern consists of a basic cell size of 10 mm × 10 mm. In each
tactile color pictogram, these basic geometric patterns are repeated and combined to create
primary, secondary, and tertiary color pictograms of shapes indicating color hue, intensity,
and color lightness. Each tactile color pictogram represents 29 colors including six hues,
and these can be further expanded to represent 53 colors. For each of six colors (red, orange,
yellow, green, blue, and purple), vivid, light, muted, and dark colors can also be expressed,
along with five levels of achromatic color. These tactile color pictograms have a slightly
larger cell size compared to most currently used tactile patterns but have the advantage
of coding for more colors. Application tests conducted with 23 visually impaired adult
volunteers confirm the effectiveness of these tactile color pictograms.

As shown in Figure 4, the graphic of colors floating into the colorless paper with two
kinds of tactile color pictograms [86] represents the fact that although the artwork with the
patterns looks “colorless” to a visually unimpaired person, a person with visual imparity
can experience the full range and diversity of colors in the artworks.
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3.2. ColorSound

When using sound to depict color, touching a relief-shaped embossed outline area
transforms the color of that area into the sound of an orchestra instrument [96]. Palmer
et al. [97] explored the relationship between color and music as a cross-modal correlation
based on emotion. In “Barbiere et al. (2007), The color of music”, college students listened
to four song clips. Following each clip, the students indicated which color(s) corresponded
with the clip by distributing five points among eleven basic color names. Each song had
previously been identified as either a happy or sad song. Each participant listened to
two happy and two sad songs in random order. There was more agreement in color
choice for the songs eliciting the same emotions than for songs eliciting different emotions.
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Brighter colors such as yellow, red, green, and blue were usually assigned to the happy
songs, and gray was usually assigned to the sad songs. It was concluded that music–color
correspondences occur via the underlying emotion common to the two stimuli.

Color sound synthesis [98] starts with a single (monotonous) sine wave for gray,
changing in pitch according to color lightness. With red, a tremolo is created adding a
second sine wave, just a few Hertz apart. A beat of two very close frequencies (diff. < 5 Hz)
creates a tremolo effect. The more reds the color turns, the smaller the gap is tuned between
both frequencies, increasing in speed of the perceived tremolo. To simulate the visual
perception of warmth with yellow, the volume of bass is increased as well as the number
of additional sine waves (tuned to the frequencies of only the even harmonics of the
fundamental sine wave). The bass as well as the even harmonics are acoustically perceived
to be warm. The result sounds like an organ. The coldness of blue was originally planned to
be sonified, adding the odd harmonics, which would lead to a square wave, creating a cold
and mechanical sound. However, the sound so produced is too annoying to be used, so we
applied one of the Synthesis Toolkit’s pre-defined instrument models that can synthesize a
sound of a rough flute or wind. An increase in blue is represented by an increase of the
wind instrument’s loudness. Finally, to create an opponent sound characteristic to vibrant
red, we represent green, as a calm motion of sound in time using an additional sine wave
tuned to a classical third to the fundamental sine wave, forming a third chord, as well
as two further sine waves, one tuned almost like the fundamental sine, the other like the
second sine, far enough apart to create not the vibrant tremolo effect but a smooth pattern
of beats, moving slowly through time [98].

Cavaco et al. [99] mapped the hue value into the fundamental frequency, f0, of the syn-
thesized sound (which gives the perception of pitch). There is an inverse correspondence
between the sound’s pitch and color frequencies: when the color’s frequency decreases
from violet to red, the sound’s pitch increases (by increasing the f0) [100,101]. The synthe-
sized waveform starts off as a sinusoidal wave (i.e., a pure tone), but the final waveform
can be different from a pure tone, because the signal’s spectral envelope can be modified
by the other attributes (saturation and value). The signal’s spectral envelope (which is
related to the perception of timbre) is controlled by the attribute saturation. The shape of
the waveform can vary from a sinusoid (for the lowest saturation value) to a square wave
with energy only in the odd frequency partials (for the highest saturation value). Finally,
the attribute value (ranging from 0 to 1) is used to determine the intensity of the signal
(which gives the perception of loudness). All frequency partials are affected in the same
way, as the signal is multiplied by value [99].

Cho et al. [87] developed two sound codes (Table 4) to express vivid, bright, and dark
colors for red, orange, yellow, green, blue, and purple. Fast notes in a major key are yellow
or orange, and slow notes in a major key are blue and gray. Codes expressing vivid, bright,
and dark colors for each color (red, orange, yellow, green, blue, and purple) were used
in [86]. In this system, the shape of the work can only be distinguished by touching it with
a hand, but the overall color composition is conveyed as a single piece of music, thereby
reducing the effort required to recognize color from that needed to touch each pattern one
by one. Vivid colors and bright and dark colors were distinguished through a combination
of pitch, instrument tone, intensity, and tempo. High color lightness used a small, light,
particle-like melody and high-pitch sounds, and a bright feeling was emphasized by using
a melody of relatively fast and high notes. For low color lightness, a slow, dull melody
with a relatively low range was used to create a sense of separation and movement away
from the user. Beginning with Vivaldi’s Four Seasons, a melody that matches the color
lightness/saturation characteristics of each color was extracted from the theme melody of
each season. In the excerpts, the composition was changed, and the speed and semblance
were adjusted to clarify the distinction between saturation and color lightness. From the
classical music, a melody that fits the characteristics of each color (length: about 10 to 15 s)
has been excerpted [87].
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Table 4. Two sound coding colors with using instruments and classical melodies [86].

Colors Sound Coding Color:
Excerpts from Classical Music

Sound Coding Color:
Excerpts from Vivaldi: Four Seasons

Red Violin: High frequency banded string instrument
Tchaikovsky: Violin Concerto in D

Violin + Cello
Vivaldi: Four Seasons

Orange Viola: Stamitz: Viola Concerto in D Guitar
Vivaldi: Four Seasons

Yellow Trumpet: Haydn: Trumpet Concerto in E flat Trumpet + Trombone
Vivaldi: Four Seasons

Green Oboe: Woodwind instrument with reed
Rossini Variations for oboe

Clarinet + Bassoon
Vivaldi: Four Seasons

Blue Cello: Bach Cello Suite No. 1 in G Piano
Vivaldi Four Seasons

Purple Organ: Keyboard instrument with simultaneous expressions
Mozart: Eine Kleine Nachtmusik

Organ
Vivaldi: Four Seasons

3.2.1. Sound Color Code: Vivaldi Four Seasons

Each hue in [87] has its own unique tone using brass, woodwind, string, and keyboard
instruments, so it is classified by designating groups of instruments that are easy to
distinguish from one another. The characteristics of each instrument group’s unique tone
matched the color characteristics as much as possible. Red, a representative warm color,
is a string instrument group with a passionate tone (violin + cello). A group of brass
instruments with energy, as if bright light were expanding, is used to simulate yellow
bursts (trumpet + trombone). Orange is an acoustic guitar with a warm yet energetic tone.
Green is a woodwind instrument with a soft and stable tone to produce a comfortable and
psychologically stable feeling (clarinet + bassoon). Blue, a representative cold color, is a
piano, which has a dense and solid tone while feeling refreshing. Purple, which contains
both warm red and cold blue, is a pipe organ using brass tones.

3.2.2. Color Sound Code: Classical

In [87], musical instruments were classified for each color to ensure that they would
be easily distinguished from one another. Red, a representative warm color, is a violin
that plays a passionate and strong melody. A trumpet plays a high-pitched melody with
energy, as if a bright light were expanding, to simulate yellow bursts. Orange is a viola
playing a warm yet energetic melody. Green, which makes the eyes feel comfortable and
psychologically stable, is a fresh oboe that plays a soft melody. Blue, a representative cold
color, is a cello that plays a low, calm melody. Violet, where warm red and cold blue coexist,
is a pipe organ that plays a magnificent yet solemn melody. Each color of Marc Roscoe’s
works, Orange and Yellow (1956) and No. 6 Violet Green and Red (1951), is expressed with
these sound codes. Vivid, bright, and dark colors were distinguished using a combination
of pitch, instrument tone, intensity, and tempo.

3.2.3. ColorSound: The Starry Night

In [87], Vincent Van Gogh’s work “The Starry Night” was transformed into a single
song using the classical sound code just described. To express the highly saturated blue of
the night sky, which dominates the overall hue of the picture, a strong, clear melody in the
mid-range was excerpted from the Bach unaccompanied cello suite No. 1 to form the base
of the whole song; it is played repeatedly without interruption. To express the twinkling
bright yellow of the stars, a light particle-like melody was extracted from Haydn’s Trumpet
Concerto and played as a strong, clear melody in the midrange.

The painting was divided into four lines and worked with 16 bars per line, producing
a total of 68 bars played in 3 min and 29 s. The user experience evaluation rate from
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nine blind people was 84%, and the user experience scores from eight sighted participants
were 79% and 80% for the classical and Vivaldi schemes, respectively. After about 1 h of
practice, the cognitive success rate for three blind people was 100% for both the classical
and Vivaldi schemes.

3.3. ColorTemp

Recently, visual artworks have been reconstructed using 3D printers and various 3D
transformation technologies to help the visually impaired rely on their sense of touch
to appreciate works of art. However, while there is work in HCI on multimodality and
cross-modal association based on haptic interfaces, such as vibrotactile actuators, thermal
cues have not been researched to that extent. In that context [88,102], explored a way to
use temperature sensation to enhance the appreciation of artwork.

Bartolome et al. [88] designed, developed, and implemented a color-temperature
mapping algorithm to allow the visually impaired to experience colors through a different
sense. The algorithm was implemented in a tactile artwork system that allowed users to
touch the artwork. Temperature stimulation has some influence on image appreciation and
recognition. An image presented along with an appropriate temperature is perceived as an
augmented image by the viewer [103]. One VR device uses a small Peltier device to provide
a temperature stimulus to maximize the sense of the field [104]. Lee et al. [105] explored the
modal relationship between temperature and color focused on the spectrum of warm and
cold colors. Bartolome et al. [102] expresses color and depth (advancing and retreating)
as temperature in Marc Rosco’s work using a thermoelectric Peltier element and a control
board. An obvious way of conveying the warm or cold feeling of color to the visually
impaired is to have a finger touch the temperature generating device (e.g., Peltier devices
that are used in dehumidifiers and coolers) to identify the color. Temperature stimulation
has some influence on image appreciation and recognition. An image presented along with
an appropriate temperature is perceived as an augmented image by the viewer. Like sound,
temperature is a modality that the visually impaired can use to enhance their appreciation
of visual artwork. The modal relationship between temperature and color focused on the
spectrum of warm and cold colors, including 3D printing techniques, interactive narration,
tactile graphic patterns, and color-sensibility delivery through temperature. A temperature
generator using Peltier element allows the visually impaired to perceive the color and
depth in an artwork. The control unit, which controls the Peltier element, used an Arduino
mega board, and a motor driver controlled the forward and reverse currents to manage
the endothermic and heat dissipation of the Peltier element. Because constant voltage and
current are important in maintaining the temperature of a Peltier device, a multi-power
supply was used for stability. Twelve Peltier elements were densely placed in a 4 × 3 array,
on top of which a thick paper coated with conductive ink was coated inside each cell except
for the boundary of each cell. On top of that, relief-shaped artwork using swell paper was
placed. The artwork is divided into 4 × 3 cells, providing the matched temperature for
the color. The visually impaired feel a sense of temperature by touching the cell with their
fingers, and they can obtain color and depth information corresponding to the temperature.
Russian-born painter Marc Rothko is known for his color field works, Figure 5. If you
touch a part of the artwork twice, the color of that part can be recognized more clearly
through temperature and sound coding colors [36,88].
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Chromostereopsis [106] is a visual illusion whereby the impression of depth is con-
veyed in two-dimensional color images. In this system, red and yellow are conveyed with
warmth, and blue and green are conveyed with cold. Warm colors feel close, and cold
colors feel far away, so music can be used to reinforce the cross-modal correlation between
color and temperature. The thermoelectric element produced temperatures from 38 to
15 ◦C in 4◦ intervals, enabling six different colors or depths to be distinguished [102]. It is
difficult to distinguish between bright and dark colors with temperature, so musical notes
with different combinations of pitch, timbre, velocity, and tempo can be used to distinguish
vivid, light, and dark colors. Mapping the depth of field and color-depth to temperature
can help the visually impaired comprehend the depth dimension of an artwork through
touch. Iranzo et al. [102] developed an algorithm to map color-depth to temperature in two
different contexts: (1) artwork depth and (2) color-depth.

First, the temperature range was selected within a comfortable range. In general, the
visual perceived distance between the extreme depth levels in a piece will be assessed, and
the extreme temperatures will then be selected accordingly (higher temperature difference
for larger distances). However, to simplify the algorithm, the extreme depth levels can
consistently be linked to the extreme temperatures of 14 and 38 ◦C, regardless of their
perceived relative distances. Second, the total number of perceived depth levels is counted.
For example, an image with two people, one in front of the other, contains two depth
levels, front and back. Third, the temperature is equally divided into as many segments as
needed to assign a temperature to each depth level. The highest and lowest temperatures
are always assigned to the nearest and farthest depth levels, respectively.

Fourth, if the difference between the temperatures of two consecutive depth levels
is less than 3 ◦C, some of the levels can be clustered to make the temperature distinctions
between levels easier to feel. The prototype was designed, developed, and implemented
using an array of Peltier devices with relief-printed artwork on top. Tests with 18 sighted
users and six visually impaired users revealed an existing correlation between depth and
temperature and indicated that mapping based on that correlation is an appropriate way
to convey depth during tactile exploration of an artwork [102].

3.4. ColorScent

As seen in previous studies, the amount of color that can be expressed is very limited,
because the intensity of fragrance perception is poor. Scent acts as a good trigger for
memory and emotion, because it can mediate the exploration of works of art in terms of
general memory or emotion. Because smells and memories are connected in the brain,
memories can be recalled by smells, and smells can sometimes be evoked by memories.

De Valk et al. [107] conducted a study of odor–color associations in three distinct
cultures: the Maniq, Thai, and Dutch. These groups represent a spectrum in terms of
how important olfaction is in the culture and language. For example, the Maniq and Thai
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have elaborate vocabularies of abstract smell terms, whereas the Dutch have a relatively
impoverished language for olfaction that often refers to the source of an odor instead of the
scent itself (e.g., it smells like banana). Participants were tested with a range of odors and
asked to associate each with a color. They also found that across cultures, when participants
used source-based terms (i.e., words naming odor objects, such as “banana”), their color
choices reflected the color of the source more often than when they used abstract smell
terms such as “musty”. This suggests that language plays an important mediating role in
odor–color associations [107].

Gilbert et al. [108] confirmed that humans have a mechanism that unconsciously
associates specific scents with specific colors. For example, aldehyde C-16 and methyl
anthranilate are pink; bergamot oil is yellow; caramel lactone and star anise oil are brown;
cinnamic aldehyde is red; and civet artificial, 2-ethyl fenchol, galbanum oil, lavender oil,
neroli oil, olibanum oil, and pine oil are reminiscent of green. Repeated experiments that
produced similar results demonstrated that those results were not random. Also, of the
13 scents, civet was rated as the darkest, and bergamot oil, aldehyde c-16, and cinnamic
aldehyde were rated as the lightest [108].

Kemp et al. [109] found that the color lightness of a color was perceived to correlate
with the density of a fragrance and that strong scents are associated with dark colors.

Li et al. [110] developed the ColorOdor, an interactive device that helps the visually
impaired identify colors. In this method, the camera attached to the glasses worn by the user
recognizes the color, and the Arduino controls the piezoelectric transducer system through
Bluetooth to vaporize the liquid scent associated with the color. Although culture plays a
role in color–odor connection, user research showed color–odor mappings are (white, lily),
(black, ink), (red, rose), (yellow, lemon), (green, camphor leaves), (blue, blueberry), and
(purple, lavender). When a blind person touches the “white” part of the picture with a
finger, it sends a signal to the fragrance generator so that “lily” is emitted. The visually
impaired who knows that white and lily scent are related can know that the part is white
through lily scent. However, this study was not intended to allow the visually impaired
to appreciate works of art, and there is a limitation that the association of used fragrance
and color was not based on scientific experiments and results, but mostly due to subjective
selection of researchers. Nevertheless, the attempts of those who used scent to convey color
to the visually impaired offers us many implications [110].

Lee et al. [89] assumed that each scent has its own unconscious relationship with
color and concept, which the researchers called color directivity and concept directivity,
respectively. Through experiments, they found specific scents with color directivity and
concept directivity and then used those scents to successfully deliver information about
the colors used in artworks to the visually impaired. Another study on the transmission of
color information using scent found a scent with consistent color and concept orientation
and applied it to tactile paper, allowing the visually impaired to actively explore and be
immersed in the form and color of an artwork. Instead of understanding art appreciation
as an educational technique that unilaterally conveys the authority and interpretation of
third parties, such projects invite the visually impaired to directly experience artwork
through their own senses. In this case, a special ink scent was applied to the surface of
swell paper. After visually impaired students were exposed to the work, their degree of
comprehension was measured in terms of the accuracy of their scent–color recognition,
a usability evaluation, and an impression interview. In [89], scent is released when a
user rubs their finger over the area where the scent was applied to the painting in Tactile
Color Book. Unlike people with congenital blindness, people with an acquired visual
impairment retain the concept of color. When they smell something, they naturally associate
it with color through the memories associated with it. Sight and hearing do not have the
same powerful recall ability as smell. For the prototype, the scents of menthol, orange,
and pine were chosen to express blue, orange, and green, and the scents of rose, lemon,
grape, and chocolate were chosen to express red, yellow, purple and brown, respectively.
When smelling a particular scent, sensitivity decreases by 2.5% every second, with 70%
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disappearing within one minute. However, even under adaptive fatigue conditions, other
odors can be identified. On the paintings, the scents were arranged at intervals of 3 cm or
more to prevent mixing. The paintings in Tactile Color Book use the same perfumes used in
aromatherapy. In their experiments, color-concept directivities were found for the scent of
oranges (orange color), chocolate (dark brown), mint (blue), and pine (green). Orange scent
shows high saturation orange color directivity, and it shows concept directivity of bright,
extroverted, and strong stimulus. Chocolate scent showed brownish color directivity with
low color lightness, and showed concept directivity of roundness, lowness, warmth, and
introversion. Pine scent and menthol scent appeared in turquoise color in terms of color
directivity, but concept directivity menthol was found to have a greater association with the
concept of coolness. The rest of the scents used in the experiment did not show distinctly
significant and consistent characteristics in color directivity and concept directivity. Based
on the results of the experiment, the scent of orange is associated with orange, menthol is
blue, pine is green, and chocolate is brown colors, respectively, as shown in Table 5. Orange
has been shown to be bright, extroverted, and associated with strong stimuli (angled form,
high notes). This property is also generally applicable when describing the characteristics
of yellow and red. Considering that orange is a blend of these two colors, one can give
orange a universality that encompasses all three colors. Menthol and pine were similar in
color directivity; the concept of coolness was considered to be about 22% higher in menthol
than pine. Therefore, menthol was designated as blue, the color associated with coolness,
and pine was designated as green, respectively. Using this scent–color association, the scent
coding color is used in tactile textbooks for the visually impaired to appreciate artworks.
The test result showed a high color recognition rate, and a positive result was obtained
that induces subjective immersion in the artwork appreciation experience of the visually
impaired. Among visually impaired students, the color recognition accuracy was 94.3%,
and the usability evaluation score averaged 70 points. In the interviews, students said
that the system was intuitive and easy to learn. In addition, the students said that the
scents allowed them to better understand the content of the artwork. In the other scents,
except for the above four scents, rose, phoenix, apricot, strawberry, lemon, and apple, as a
result of the experiment, no significant color orientation or conceptual orientation could be
observed visually or numerically [89].

Table 5. Color directivity, concept directivity, and color matching of each scent [89].

Scent Color Directivity Concept Directivity Color Matching

Orange

Electronics 2021, 10, x FOR PEER REVIEW 24 of 38 
 

 

Book. Unlike people with congenital blindness, people with an acquired visual impairment 
retain the concept of color. When they smell something, they naturally associate it with 
color through the memories associated with it. Sight and hearing do not have the same 
powerful recall ability as smell. For the prototype, the scents of menthol, orange, and pine 
were chosen to express blue, orange, and green, and the scents of rose, lemon, grape, and 
chocolate were chosen to express red, yellow, purple and brown, respectively. When 
smelling a particular scent, sensitivity decreases by 2.5% every second, with 70% 
disappearing within one minute. However, even under adaptive fatigue conditions, other 
odors can be identified. On the paintings, the scents were arranged at intervals of 3 cm or 
more to prevent mixing. The paintings in Tactile Color Book use the same perfumes used 
in aromatherapy. In their experiments, color-concept directivities were found for the scent 
of oranges (orange color), chocolate (dark brown), mint (blue), and pine (green). Orange 
scent shows high saturation orange color directivity, and it shows concept directivity of 
bright, extroverted, and strong stimulus. Chocolate scent showed brownish color 
directivity with low color lightness, and showed concept directivity of roundness, lowness, 
warmth, and introversion. Pine scent and menthol scent appeared in turquoise color in 
terms of color directivity, but concept directivity menthol was found to have a greater 
association with the concept of coolness. The rest of the scents used in the experiment did 
not show distinctly significant and consistent characteristics in color directivity and 
concept directivity. Based on the results of the experiment, the scent of orange is associated 
with orange, menthol is blue, pine is green, and chocolate is brown colors, respectively, as 
shown in Table 5. Orange has been shown to be bright, extroverted, and associated with 
strong stimuli (angled form, high notes). This property is also generally applicable when 
describing the characteristics of yellow and red. Considering that orange is a blend of these 
two colors, one can give orange a universality that encompasses all three colors. Menthol 
and pine were similar in color directivity; the concept of coolness was considered to be 
about 22% higher in menthol than pine. Therefore, menthol was designated as blue, the 
color associated with coolness, and pine was designated as green, respectively. Using this 
scent–color association, the scent coding color is used in tactile textbooks for the visually 
impaired to appreciate artworks. The test result showed a high color recognition rate, and 
a positive result was obtained that induces subjective immersion in the artwork 
appreciation experience of the visually impaired. Among visually impaired students, the 
color recognition accuracy was 94.3%, and the usability evaluation score averaged 70 
points. In the interviews, students said that the system was intuitive and easy to learn. In 
addition, the students said that the scents allowed them to better understand the content 
of the artwork. In the other scents, except for the above four scents, rose, phoenix, apricot, 
strawberry, lemon, and apple, as a result of the experiment, no significant color orientation 
or conceptual orientation could be observed visually or numerically [89].  

Table 5. Color directivity, concept directivity, and color matching of each scent [89]. 

Scent Color Directivity Concept Directivity Color Matching 

Orange 

 

Angular, Very bright, 
Very extravert, 
Very high note 

Orange 
(Red, Yellow) 

Angular, Very bright,
Very extravert,
Very high note

Orange
(Red, Yellow)

Chocolate

Electronics 2021, 10, x FOR PEER REVIEW 25 of 38 
 

 

Chocolate 

 

Rounded, Low, Warm, 
Introvert Brown 

Menthol 

 

Angular, Very cool, 
Bright Blue 

Pine 

 

Angular, High (position), 
Cool Green 

Nehmé et al. [111] investigated odor–color associations and based on the three tested 
populations like French–Lebanese–Taiwanese, odor–color associations could be affected 
by the function of odors in different countries. Culture induced experiences influence the 
perception of odors familiarity, which will affect the prevalence of either perceptive 
(intensity, irritancy, and hedonics) or semantic processing of these associations. According 
to Stevenson et al. [112], color brightness correlates with perceptual attributes of odors 
(odors that are more irritating, intense, and unpleasant are associated with brighter colors) 
and semantic attributes (more familiar and identifiable odors are associated with more 
saturated colors).  

Maric et al. [113] presented their French participants with 16 odorants including 
caramel, cucumber, lavender, lemon, lime, mint chlorophyll, mirabelle plum (at low and 
high intensity), orange blossom, peppermint, rose, pineapple, shallot, smoked, violet, and 
wild strawberry. Two pairs of similar odorants (namely lemon/lime and peppermint/mint 
chlorophyll) were included in the hope of teasing out the finer nuances of odor–color 
matching. The participants had to pick one of 24 color patches varying in terms of their 
hue, saturation, and brightness for each odor. They also rated the odorants on 11-point 
scales in terms of their intensity, pleasantness, familiarity, and edibility. Significantly non-
random color matches (with two to six of the colors) were reported for all of the odorants. 
Of interest, subsequent data analysis highlighted a significant positive relationship 
between the rated pleasantness of the odorants and both the lightness and saturation 
(chroma) of the color chosen, with more pleasant odors matched to colors with higher 
lightness and saturation. They [113] were chosen to cover of the four basic groups: flower 
(floral odors), sweet (fruits and candies odors), bad (smoked odors), and nature (plant 
odors). Fifteen food and floral natural aromas were selected as olfactory stimuli: lavender, 
orange blossom, rose, and violet as floral odors; caramel, mirabelle plum, pineapple, and 
wild strawberry as sweet odors; smoked as bad odor; cucumber, lemon, lime, mint 
chlorophyll, peppermint, and shallot as nature odors. Fourteen odors had the same 
aromatic intensity (fixed by our supplier). The same odor of mirabelle plum (a small yellow 
plum, specialty of the French region of Lorraine) was presented twice; that is to say with 
two different aromatic intensities (at low and high intensity). Sixteen olfactory stimuli were 
thus prepared by injecting 1 mL of each odorant into a small piece of carded cotton that 
was previously placed into a small opaque glass bottle. No salient visual cues were 
therefore available to participants [113].  

Kim [114] showed that compared with the oriental and fresh families, the floral and 
woody families showed more distinguishable opposite patterns in both hue and tone 

Rounded, Low, Warm,
Introvert Brown

Menthol

Electronics 2021, 10, x FOR PEER REVIEW 25 of 38 
 

 

Chocolate 

 

Rounded, Low, Warm, 
Introvert Brown 

Menthol 

 

Angular, Very cool, 
Bright Blue 

Pine 

 

Angular, High (position), 
Cool Green 

Nehmé et al. [111] investigated odor–color associations and based on the three tested 
populations like French–Lebanese–Taiwanese, odor–color associations could be affected 
by the function of odors in different countries. Culture induced experiences influence the 
perception of odors familiarity, which will affect the prevalence of either perceptive 
(intensity, irritancy, and hedonics) or semantic processing of these associations. According 
to Stevenson et al. [112], color brightness correlates with perceptual attributes of odors 
(odors that are more irritating, intense, and unpleasant are associated with brighter colors) 
and semantic attributes (more familiar and identifiable odors are associated with more 
saturated colors).  

Maric et al. [113] presented their French participants with 16 odorants including 
caramel, cucumber, lavender, lemon, lime, mint chlorophyll, mirabelle plum (at low and 
high intensity), orange blossom, peppermint, rose, pineapple, shallot, smoked, violet, and 
wild strawberry. Two pairs of similar odorants (namely lemon/lime and peppermint/mint 
chlorophyll) were included in the hope of teasing out the finer nuances of odor–color 
matching. The participants had to pick one of 24 color patches varying in terms of their 
hue, saturation, and brightness for each odor. They also rated the odorants on 11-point 
scales in terms of their intensity, pleasantness, familiarity, and edibility. Significantly non-
random color matches (with two to six of the colors) were reported for all of the odorants. 
Of interest, subsequent data analysis highlighted a significant positive relationship 
between the rated pleasantness of the odorants and both the lightness and saturation 
(chroma) of the color chosen, with more pleasant odors matched to colors with higher 
lightness and saturation. They [113] were chosen to cover of the four basic groups: flower 
(floral odors), sweet (fruits and candies odors), bad (smoked odors), and nature (plant 
odors). Fifteen food and floral natural aromas were selected as olfactory stimuli: lavender, 
orange blossom, rose, and violet as floral odors; caramel, mirabelle plum, pineapple, and 
wild strawberry as sweet odors; smoked as bad odor; cucumber, lemon, lime, mint 
chlorophyll, peppermint, and shallot as nature odors. Fourteen odors had the same 
aromatic intensity (fixed by our supplier). The same odor of mirabelle plum (a small yellow 
plum, specialty of the French region of Lorraine) was presented twice; that is to say with 
two different aromatic intensities (at low and high intensity). Sixteen olfactory stimuli were 
thus prepared by injecting 1 mL of each odorant into a small piece of carded cotton that 
was previously placed into a small opaque glass bottle. No salient visual cues were 
therefore available to participants [113].  

Kim [114] showed that compared with the oriental and fresh families, the floral and 
woody families showed more distinguishable opposite patterns in both hue and tone 

Angular, Very cool,
Bright Blue



Electronics 2021, 10, 470 24 of 37

Table 5. Cont.

Scent Color Directivity Concept Directivity Color Matching
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Nehmé et al. [111] investigated odor–color associations and based on the three tested
populations like French–Lebanese–Taiwanese, odor–color associations could be affected
by the function of odors in different countries. Culture induced experiences influence
the perception of odors familiarity, which will affect the prevalence of either perceptive
(intensity, irritancy, and hedonics) or semantic processing of these associations. According
to Stevenson et al. [112], color brightness correlates with perceptual attributes of odors
(odors that are more irritating, intense, and unpleasant are associated with brighter colors)
and semantic attributes (more familiar and identifiable odors are associated with more
saturated colors).

Maric et al. [113] presented their French participants with 16 odorants including
caramel, cucumber, lavender, lemon, lime, mint chlorophyll, mirabelle plum (at low and
high intensity), orange blossom, peppermint, rose, pineapple, shallot, smoked, violet, and
wild strawberry. Two pairs of similar odorants (namely lemon/lime and peppermint/mint
chlorophyll) were included in the hope of teasing out the finer nuances of odor–color
matching. The participants had to pick one of 24 color patches varying in terms of their hue,
saturation, and brightness for each odor. They also rated the odorants on 11-point scales in
terms of their intensity, pleasantness, familiarity, and edibility. Significantly non-random
color matches (with two to six of the colors) were reported for all of the odorants. Of
interest, subsequent data analysis highlighted a significant positive relationship between
the rated pleasantness of the odorants and both the lightness and saturation (chroma) of
the color chosen, with more pleasant odors matched to colors with higher lightness and
saturation. They [113] were chosen to cover of the four basic groups: flower (floral odors),
sweet (fruits and candies odors), bad (smoked odors), and nature (plant odors). Fifteen
food and floral natural aromas were selected as olfactory stimuli: lavender, orange blossom,
rose, and violet as floral odors; caramel, mirabelle plum, pineapple, and wild strawberry as
sweet odors; smoked as bad odor; cucumber, lemon, lime, mint chlorophyll, peppermint,
and shallot as nature odors. Fourteen odors had the same aromatic intensity (fixed by
our supplier). The same odor of mirabelle plum (a small yellow plum, specialty of the
French region of Lorraine) was presented twice; that is to say with two different aromatic
intensities (at low and high intensity). Sixteen olfactory stimuli were thus prepared by
injecting 1 mL of each odorant into a small piece of carded cotton that was previously
placed into a small opaque glass bottle. No salient visual cues were therefore available to
participants [113].

Kim [114] showed that compared with the oriental and fresh families, the floral and
woody families showed more distinguishable opposite patterns in both hue and tone
parameters: the floral family with brighter warm colors, and the woody family with darker
(or stronger) cool colors. The warm colors strongly evoked the floral family, while the cool
colors did the fresh family. The brighter (darker) their lightness values become, the more
the floral (woody) scents are associated.

Adams [115] showed that the odorants were assigned significantly different values on
these line scales. Therefore, for example, the brightest and lightest odorants were lemon,
apple, and peach, whereas the dimmest and darkest odorants were coffee, cinnamon, and
chocolate (making one wonder whether these mappings may have been driven by the color
of the source objects). As has been documented previously, robust shape associations were
also documented in response to the odorants.
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Russian composer Scriabin talked about fragrances synchronized with the lighting
score that he had designed for his tone poem Prometheus: Poem of Fire [116].

3.5. ColorVibrotactile

Research on diversifying cognitive patterns is being actively conducted to deliver
meaningful information using vibrational tactile sensation [117,118]. Among the vibrational
and tactile studies, Cappelletti et al. [90] compared two solutions. A firstly devised solution
consisted in the most similar setting to the one of color: the superposition of three signals
(vibrations) at different frequencies. Single frequencies—well in the 50 to 300 Hz range
of skin sensibility—were not distinguished. It turned out that amplitude could be much
better discriminated than frequency. The second solution was for all to have the same
frequency, but each can independently be modulated in amplitude. Just three levels of
amplitude are admitted at the present stage of the research: Low (L), Medium (M), and
High (H), corresponding to signals of 0 v, 0 mA; 0.7 v, 30 mA; and 1.4 v, 60 mA, respectively,
all at 75 Hz. The RGB color model is an additive color model in which red, green, and blue
light are added together in various ways to reproduce a broad array of colors. Thus, with
the RGB color model, color is encoded as a triple of vibrations. The corresponding color
codes are black (L, L, L); dark red (M, L, L); red (H, L, L); orange (H, M, L); yellow (H, H,
L), dark green (L, M, L); green (L, H, H); sky-blue (L, H, H); blue (L, L, H); dark-blue (L, L,
M); violet (H, L, H); grey (M, M, M); white (H, H, H). The choice was made in order to have
a palette of well-distinguishable colors with definite names. The experiments, performed
on subjects with different sight histories, are satisfying [90].

Brewster’s Tacton [119] links specific tactile signal patterns and specific meanings to
deliver specific information to users by playing the corresponding tactile pattern during
interaction. The more the recognition rate of feeling, the change of vibration is getting
better. In the range of 100–160 Hz, the change of vibration was most sensitively recognized,
and in the range of 160–315 Hz, it was found that the perception of change gradually
became dull. However, simply distinguishing colors by varying the intensity of vibrations
is likely to prevent users from finding a correlation between colors and vibrations. All of
the subjects answered that it was difficult to semantically connect color and vibration. If
instead of converting colors into emotions, they were converted in other ways to create
vibrating tactile sensations, it could be possible to realize more clear tactile sensations of
colors [119].

Maclean and Enriquez [120] studied semantic tactile messages, called haptic icons,
created by changing signals in the dimensions of frequency, amplitude, and waveform
(sine, square, and triangle). Subjects were able to consistently distinguish between the
two dimensions of the data: frequency and waveform. The frequency range of 10–20 Hz
was optimal for the user to recognize the signal. The initial experiment used 36 stimuli,
combining three wave shapes (sine, square, and sawtooth), four frequencies (0.5, 5, 20,
and 100 Hz) and three amplitudes (12.3, 19.6, and 29.4 mNm), each with duration of 2 s.
All force magnitudes are scaled as torque values in peak-to-peak mNm. Effect of shape–
smooth vs. jerky: there is a clear separation between the sine and the square/sawtooth
wave shapes. This is likely due to the discontinuity of the square and sawtooth waves
relative to the smooth derivatives of the sine wave. However, separations between smooth
and discontinuous shapes diminish with frequency; experience with the stimuli confirms
that these shape differences were indeed less perceptible at higher frequencies. While still
most important, frequency does not dominate other parameters to the same extent [120].

Another potential issue is the extent to which this kind of coding is intuitive, given the
perceptual tendency to link vibrotactile frequency to luminance rather than hue in sighted
individuals [121].

Saket et al. [122] conducted an experiment to understand how mobile phone users
perceive the urgency of ten simple vibration alerts that were created from four basic
signals: short on, short off, long on, and long off. The short and long signals correspond
to 200 and 600 ms, respectively. To convey the level of urgency of notifications and help
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users prioritize them, the design of mobile phone vibration alerts should consider that
the gap length preceding or succeeding a signal, the number of gaps in the vibration
pattern, and the vibration’s duration affect an alert’s perceived level of urgency. Their
study specifically shows that shorter gap lengths between vibrations (200 vs. 600 ms),
a vibration pattern with one gap instead of two, and shorter vibration all contribute to
making the user perceive the alert as more urgent. A vibration pattern is defined as an
arrangement of the simplest repeatable alternating sequence of an actuator’s on and off
state, with specific lengths (short and long) assigned to each state. They limited the variable
of short to 200 ms and long to 600 ms, without any median values due to its susceptibility
to detection errors. Participants could differentiate vibrotactile signals with extreme values
well but were less able to do so with median values. We used four basic types of signal to
form distinguishable vibration patterns: short on, short off, long on, and long off. In order
to produce unique repeatable sequences, an equal number of on and off signals must be
alternated in arrangements that do not replicate any other sequence. Two pairs of such
signals form additional 16 patterns. An initial test confirmed that the ten patterns were
distinguishable, while those that were comprised of three pairs of on–off signals were hard
to distinguish. Thus, they did not consider patterns consisting of three or more pairs of
on–off signals in the study. Three underlying factors contribute to users’ perceived urgency
of vibration alerts: gap length is the strongest factor, followed by number of gaps, and
finally vibration length. Experiment results and qualitative analysis reveal that the short
on signal is highly susceptible to varying perceptions of its level of urgency, depending on
the length of the gaps that precede and succeed it. A gap length of 200 ms between short
on signals heightens perceived urgency, because the short and sharp pulse is delivered in a
stronger manner. On the other hand, a 600 ms gap length preceding or succeeding a short
on signal diminishes its strength, making the pulse feel weaker [122].

3.6. ColorPoetry

In poetry, synesthesia refers specifically to figurative language that includes a mixing
of senses. For example, saying “he wore a loud yellow shirt” is an example of synesthesia,
as it mixes visual imagery (yellow) with auditory imagery (loud). Here is another example
“The Loudness of Color by Jennifer Betts”:

The music of white dances softly around
The soft silence and blue are bound
Purple is calm, the sound soft and sweet
The color lightness of a rainbow is a hypnotic beat
In yellow, the silence is loud
While red is a yell, robust and proud

A poem is a piece of writing that has features of both speech and song, whereas the
poetry is the art of creating these poems. Throughout the poem, seeing and hearing are
used to understand color. Red does not actually yell, but many would describe it as loud.
Using sound to describe color makes it fun and interesting for the reader. The art of writing
poetry about paintings is known as ekphrasis, which means a verbal description of a visual
art. Cho [123] introduced a style of painting incorporating the meaning of poetry motivated
by “poetry-based paintings”. Poems can be created from paintings by applying the same
techniques in the opposite direction. Poets have been inspired by works of art. Korean artist
Lee Jing (1581–1674 or after) had an outstanding capacity to make “poetry-based paintings”,
demonstrating the patterns and trends of paintings in the period [124]. The characteristics
of Lee’s poetry-based paintings can be summarized as follows. At first, it is clear that
the main objects of his poetry-based paintings were the poems of the scholars. Secondly,
the poems portrayed the social aspect as well as describing the romantic expressions of
individual emotions. Thirdly, the poetry-based paintings were mainly ordered by the
royal family and power elites of the society. Fourth, many paintings are divisional in the
composition of picture and poem. Last, the main themes of the poetry-based painting are
landscape and four honorable plants.
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Audio or verbal description on an artwork generally attempts to explain the painting
without expressing the individual subjectivity. When making visual art accessible to
the visually impaired, it is not enough to describe the colors and situations portrayed,
because that objective information does not attach to anything in their experience. Using
expressions that contain the sensibility of poems, color, and situation can be matched with
the parts of each painting.

4. Multisensory Integration

Multisensory (or multimodal) integration is an essential part of information process-
ing by which various forms of sensory information, such as sight, hearing, touch, and
proprioception (also called kinesthesia, the sense of self-movement and body position), are
combined into a single experience [125,126].

Information is typically integrated across sensory modalities when the sensory inputs
share certain common features. Cross-modality refers to the interaction between two
different sensory channels. Cross-modal correspondence is defined as the surprising
associations that people experience between seemingly unrelated features, attributes, or
dimensions of experience in different sensory modalities. Although many studies have
been conducted on the cross sensation between the sight and other senses, there are not
many studies on the cross sensation between the non-visual senses.

Through the investigation of weak synesthesia that is perceived at the same time by
intersecting various senses such as hearing, touch, smell, etc., it explores other sensory
information that can be connected with specific form and color information in sight. In
this task so far, efforts have been made to create different single-mode sensory perceptions
for color. A mapping technology that can be easily recognized by expressing colors as
temperature, sound, and scent was designed and tested. However, while this helps visually
impaired users perceive and understand colors in completely different ways, it becomes
necessary to integrate all perceptual sensations into a single multi-sensory system, where
all the senses are perfectly connected and interchanged.

Making art accessible to the visually impaired requires the ability to convey explicit
and implicit visual images through non-visual forms. It argues that a multi-sensory system
is needed to successfully convey artistic images. It also designed a poetic text audio
guideline that blends sounds and effects called “sound painting” to translate the work into
an ambiguous artistic sound text [127].

Testing was conducted to extend the results from previous work into a complete multi-
sensory color experience system. The relationships between color–temperature/color–
sound have been studied through existing research, and through this, visually impaired
people feel or perceive color through temperature or sound. However, the connection
between temperature and sound is unclear. When appreciating works using both tempera-
ture and sound, we need to explore whether temperature and sound interfere with each
other, causing confusion in color perception, or synergize with each other to positively
affect color perception.

4.1. Temperature and Sound

Wang et al. [128] explored the putative existence of cross-modal correspondences
between sound attributes and beverage temperature. An online pre-study was conducted
first to determine whether people would associate the auditory parameters of pitch and
tempo with different imagined beverage temperatures. The same melody was manipulated
to create a matrix of 25 variants with five different levels of both pitch and tempo. The
participants were instructed to imagine consuming hot, room-temperature, or cold water
and then to choose the melody that best matched their imagined drinking experience.
The results revealed that imagining drinking cold water was associated with significantly
higher pitches than drinking both room-temperature and hot water and with a significantly
faster tempo than drinking room-temperature water. Next, the online study was replicated
with participants in a lab tasting samples of hot, room-temperature, and cold water while
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choosing a melody that best matched their actual drinking experience. Those results
confirmed that, compared with room-temperature and hot water, the experience of drinking
cold water was associated with significantly higher pitches and a faster tempo [128]. One
potential explanation for those results is emotional associations [129]. Evidence already
exists for cross-modal correspondences between sound and smell [130] and between sound
and taste [131] that are mediated by emotion, and both fast tempo and high pitch [132] are
associated with increased arousal. The experience of drinking cold water might therefore be
associated with a fast tempo and high pitches because it is deemed arousing and refreshing.
Hot water, on the other hand, could be associated with soothing, calming warm beverages
such as tea. This was especially true in the main study, where the hot water was served
at 45 ◦C, a comfortable drinking temperature. It would be interesting to ask participants
in an online study to associate pitch and tempo with both extremely hot water (around
boiling, at 100 ◦C) and a comfortable 45 ◦C. One might expect the very hot (hence arousing)
water to be associated with a faster tempo and higher pitches than the comfortably warm
water. Of course, to truly verify the emotional association hypothesis, a future study would
need gather information about the emotions that participants associate with each beverage
sample [128].

Brunstrom et al. [133] explored oral temperature (e.g., of a beverage), a multi-sensory
structure that includes odor and sound in addition to tactile and oral sensations. Successful
mappings between temperature and color and then sound and color have been designed
and tested. However, although such mapping does help the visually impaired to appreciate
and understand colors in a new way, it is important to integrate those perceptual mappings
into single multisensory system in which all those perceptual sensations can be perfectly
linked and interchanged. In other words, a system is needed to enable the interactions
of color, temperature, and sound to work together and give both sighted and visually
impaired users the chance to experience “colors” through different perceptual sensations,
thereby expanding their experience of colors and what they involve [133].

Cho et al. [87] investigated what color-directed sound have. Melodies with differ-
ent pitch, tone, velocity, and tempo can be used as color sound codes to easily express
the color lightness level. It is necessary to explore the cross-mode relationship between
sound and temperature in order to express the color more concisely and perceptibly by
integrating sound and temperature simultaneously. Two different coding color schemes
with combining temperature and sound are suggested, for example:

(1) Celsius temperature represents six colors (e.g., 38—red, 34—orange, 30—yellow,
26—purple, 22—green, 14—blue), and three sound codes with different pitch and tempo
(Table 4) represent three levels of color lightness.

(2) Isaac Newton’s RYB color model consists of red, orange, yellow, green, blue,
violet, red-orange (warmer red), red-violet (cooler red), yellow-orange (warmer yellow),
yellow-green (cooler yellow), blue-violet (warmer blue), and blue-green (cooler blue). The
color hue is expressed as sound (like in Table 4) and the warm and cold colors as two
temperatures (e.g., 34 and 22 degrees Celsius). High color lightness (light), medium color
lightness (muted) and low color lightness (dark) can be coded with temperatures like 14,
30, and 38 degrees Celsius, respectively. Combining temperature and sound in this way
makes it simpler and easier to identify more colors, including warm/cool colors.

4.2. Temperature and Scent

Wnuk et al. [134] investigated the bases of those cross-modal associations, suggesting
several possibilities, including universal forces (e.g., perception), and culture-specific forces
(e.g., language and cultural beliefs). They examined odor–temperature associations in three
cultures—Maniq, Thai, and Dutch—that differ with respect to their cultural preoccupation
with odors, their odor lexicons, and their beliefs about the relationship between odors
(and odor objects) and temperature. Their analysis revealed cross-modal associations that
could not be explained by language but could be the result of cultural beliefs. Another
possibility is that odor–temperature associations do not depend on cultural beliefs but are
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universal, perhaps due to shared physiology. It is often assumed that odors are associated
with hot and cold temperatures because odor processing can trigger thermal sensations,
such as the connection between coolness and mint. They found that menthol (peppermint)
and cineole (eucalyptus) were consistently matched with the temperature term “cool”.
Laska et al. [135] also found that menthol (peppermint) and cineol (eucalyptus) consistently
match the temperature conditions (cooling) [134].

Madzharov et al. [136] pretested six essential oils, three of which we expected to be
perceived as warm scents (warm vanilla sugar, cinnamon pumpkin, and spice) and three
as cool scents (eucalyptus–spearmint, peppermint, and winter wonderland). Following an
established procedure (see Krishna, Elder, and Caldara 2010), 33 participants evaluated each
scent on perceived temperature and liking (“smells like a cool/warm scent”, seven-point
scales). Of the six scents, cinnamon and vanilla were rated as the warmest, and peppermint
was rated as the coolest. Cinnamon and peppermint were significantly different on the
temperature dimension, as were vanilla and peppermint. According to Mackenzie [137],
cinnamon and vanilla not only taste good to many people, but the scent of cinnamon or
vanilla can invoke a warm, comforting feeling [136].

As shown in Table 5, orange and chocolate were used to easily express the color
lightness level, and chocolate and menthol to express the temperature “warm/cool”,
respectively. It is necessary to explore the cross-mode relationships between scent and
temperature, and scent and color lightness to express the color in terms of warm/cool and
light/muted/dark. The following color-coding scheme with integrating temperature and
scent is suggested.

Celsius (◦C) temperature represents six colors (e.g., 38—red, 34—orange, 30—yellow,
26—purple, 22—green, 14—blue), and scents like orange and pine can convey two levels of
color lightness (light/dark) (Table 5). Finally, warm and cold colors can be expressed by
scents like chocolate and menthol.

Note that the six color hues cannot be expressed as scent since only four colors are
associated with scent, as shown in Table 5. Combining temperature and scent in this way
makes it simpler and easier to convey more colors, including warm/cool colors.

4.3. Scent and Sound

Researchers have started to document the existence of cross-modal correspondences
between olfactory and auditory stimuli. For instance, Belkin [138] and Piesse [139]
showed that people matched a series of different odors with sounds that differed in
pitch. Piesse [139] introduces the idea that Olfaction can be described in ways that correlate
to the musical notes on a diatonic scale. Those results were extended by [140,141], who
found that people tended to match certain odors with the timbres of musical instruments.

Crisinel et al. [141] found that odors were preferentially matched to musical features:
for example, the odors of candied orange and iris flower were matched to significantly
higher pitches than the odors of musk and roasted coffee. Meanwhile, the odor of crème
brûlée was associated with a more rounded shape than the musk odor. Moreover, by si-
multaneously testing cross-modal correspondences between olfactory stimuli and matches
in two other modalities, they were able to compare the ratings associated with each corre-
spondence. Stimuli judged as happier, more pleasant, and sweeter tended to be associated
to both higher pitch and a more rounded shape, whereas other ratings seemed to be
more specifically correlated with the choice of either pitch or shape. Odors rated as more
arousing tended to be associated with the angular shape, but not with a particular pitch;
odors judged as brighter were associated with higher pitch and, to a lesser extent, rounder
shapes [141]. The emotional (hedonic) similarity between olfactory and auditory informa-
tion could be crucial to both cross-modal correspondences and multisensory information
processing [142].

Currently, Touch the Sound [143] and Perfumery Organ [144] are cross-sensory media
works, but research on color expression is extremely rare. In Perfumery Organ [144],
the fragrance is scented when played on the piano using the “incense” that connects the
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fragrance and sound devised by the perfumer Septimus Piesse [139], who matches “do
(C4)” with rose, “le (C4)” with violet, and “mi (C4)” with acacia.

In Table 5, orange and chocolate can be used to easily express the color lightness
level, and chocolate and menthol to express the temperature “warm/cool”, respectively.
It is necessary to explore the cross-modal relationships between scent and sound, and
between scent and color lightness to express the color in terms of “warm/cool” and
“light/muted/dark” and make it more easily perceptible. For example, the following
color-coding scheme with integrating scent and sound is suggested.

Six colors can be expressed with sounds (Table 4). Scents of orange and pine convey
two levels of brightness (brightness/darkness) (Table 5). Finally, scents like chocolate and
menthol convey warm and cold colors (Table 5). Combining scent and sound in this way
can make it simpler and easier to convey more colors, including warm/cool colors.

4.4. Scent and Shape

Odors rated as more arousing tended to be associated with the angular shape, but not
with a particular pitch; odors judged as brighter were associated with higher pitch and, to
a lesser extent, rounder shapes [140].

Humans do not arbitrarily attach sounds to shapes, as can be seen in the Kiki/Bouba
effect [145,146]. Köhler [145] found that 95–98% assigned the name “bouba” to the rounded
shape and “kiki” to the jagged shape, Figure 6.
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Adeli et al. [147] investigated the cross-modal correspondences between musical tim-
bre and shapes. One hundred and nineteen subjects (31 females and 88 males) participated
in the online experiment. Subjects included 36 claimed professional musicians, 47 claimed
amateur musicians, and 36 claimed non-musicians. Thirty-one subjects have also claimed
to have synesthesia-like experiences. Subjects have strongly associated soft timbres with
blue, green or light gray rounded shapes, harsh timbres with red, yellow or dark gray sharp
angular shapes. This is consistent with Kiki–Bouba experiment where subjects mostly
chose a jagged shape for Kiki and a rounded shape for Bouba [145–148]. It is also consistent
with Parise’s findings [148] where subjects associated sine waves (soft sounds) with a
rounded shape and square waves with a sharp angular shape [147].

Hanson-Vaux et al. [149] investigated how children relate emotions to smells and
3D shapes. Fourteen participants (ages 10–17 years) performed a cross-modal association
task that gave emotional character to the transformation of the “kiki”/“bouba” stimulus
presented as a 3D type model with lemon and vanilla flavors. The results of the study
confirmed the association between the combination of the angular shape (“kiki”) and
the stimulating lemon scent, the round shape (“bouba”) and the soothing vanilla scent.
This expands the new results for the cross-mode response in terms of stimuli (3D rather
than 2D shapes), samples (children), and delivered content compared to previous studies.
We explored how these findings could contribute to the design of more comprehensive
interactive multi-sensory technology.

Metatla et al. [150] investigated cross-modal associations between 20 odors (a selection
of those commonly found in wine) and visual shape stimuli in a sample of 25 participants
(mean age of 21 years). Two of the odors were found to be significantly associated with an
angular shape (lemon and pepper) and two others with a rounded shape (raspberry and
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vanilla). Principal component analysis indicated that the hedonic value and intensity of
odors are important in this cross-modality association, with more unpleasant and intense
smells associated with more angular forms.

Lee et al. [89] investigated cross-modal associations between scents and visual shape
stimuli like “kiki” and “bouba”. The participants of the experiment were visually presented
at the same time a paper with an angular shape and a rounded shape that corresponds to
the words “kiki” and “bouba”, respectively. The results of the study (Table 5) confirmed the
association of the angular shape (“kiki”) with the stimulating menthol, pine, and orange
scents (associated with blue, green, and orange colors), and the round shape (“bouba”) with
the soothing chocolate scent (associated with brown). There was no significant difference
in sharpness between menthol, pine and orange.

In summary, red and yellow are associated with “kiki” and blue and green with
“bouba” [149]. Lemon is associated with an angular shape and vanilla with a rounded
shape [149,150]. From [147–150], we can conjecture red and yellow are associated with
lemon scent, and blue and green are associated with vanilla. From [89], orange, menthol,
and pine scents correspond to orange, blue, and green that are associated with an angular
shape. Additionally, chocolate scent corresponds to brown, which is associated with a
rounded shape. Therefore, the results of research on the relationship between fragrance
and shape might differ according to the cultural background of the participants.

5. Conclusions

In this review, a holistic experience using synesthesia acquired by people with visual
impairment was provided to convey the meaning and contents of the work through rich
multi-sensory appreciation. In addition, pictograms, temperatures, scents, music, and
new forms incorporating them were explored to find a new way of conveying colors in
artworks to the visually impaired. A method that allows people with visual impairments
to engage in artwork using a variety of senses, including touch and sound, helps them
to appreciate artwork at a deeper level than can be achieved with hearing or touch alone.
The development of such art appreciation aids for the visually impaired will ultimately
improve their cultural enjoyment and strengthen their access to culture and the arts.

The development of this new concept of post-visual art appreciation aids ultimately
expands opportunities for the non-visually impaired as well as the visually impaired
to enjoy works of art at the level of weak synesthesia and breaks down the boundaries
between the disabled and the non-disabled in the field of culture and arts. It is made
through continuous efforts to enhance accessibility. In addition, the developed multi-
sensory expression and delivery tool can be used as an educational tool to increase product
and artwork accessibility and usability through multi-modal interaction. Schifferstein [151]
observed that vivid images occur in all sensory modalities. The quality of some types of
sensory images tends to be better (e.g., vision, audition) than of others (e.g., smell and taste)
for sighted people. The quality of visual and auditory images did not differ significantly.
Therefore, training these multi-sensory experiences introduced in this paper may lead to
more vivid visual imageries or seeing with the mind’s eye.

Author Contributions: Conceptualization: J.D.C.; methodology: J.D.C.; validation: J.D.C.; formal
analysis: J.D.C.; investigation: J.D.C.; resources: J.D.C.; data curation: J.D.C.; writing—original
draft preparation: J.D.C.; writing—review and editing: J.D.C.; visualization: J.D.C.; supervision:
J.D.C.; project administration and funding acquisition: J.D.C. The author has read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Science Technology and Humanity Converging Research
Program of the National Research Foundation of Korea, grant number 2018M3C1B6061353.

Conflicts of Interest: The author declares that he has no conflict of interest.



Electronics 2021, 10, 470 32 of 37

References
1. Making Museums Accessible to Those with Disabilities. January 2020. Available online: https://www.museumnext.com/article/

making-museums-accessible-to-those-with-disabilities (accessed on 30 November 2020).
2. Obrist, M.; Gatti, E.; Maggioni, E.; Vi, C.T.; Velasco, C. Multisensory Experiences in HCI. Ieee Multimed. 2017, 24, 9–13. [CrossRef]
3. Davis, M.H. A multidimensional approach to individual differences in empathy. Jsas Cat. Sel. Docu-Ments Psychol. 1980, 10, 85.
4. Coates, C. Best Practice in making Museums more Accessible to Visually Impaired Visitors. 2019. Available online: https:

//www.museumnext.com/article/making-museums-accessible-to-visually-impaired-visitors/ (accessed on 30 November 2020).
5. Samantha Silverberg. A New Way to See: Looking at Museums through the Eyes of The Blind. 2019. Available online:

https://www.pressreleasepoint.com/new-way-see-looking-museums-through-eyes-blind (accessed on 30 November 2020).
6. Vaz, R.; Freitas, D.; Coelho, A. Blind and Visually Impaired Visitors’ Experiences in Museums: Increasing Accessibility through

Assistive Technologies. Int. J. Incl. Mus. 2020, 13, 57–80.
7. Carrizosa, H.G.; Sheehy, K.; Rix, J.; Seale, J.; Hayhoe, S. Designing technologies for museums: Accessibility and participation

issues. J. Enabling Technol. 2020, 14, 31–39. [CrossRef]
8. Hayhoe, S. Blind Visitor Experiences st Art Museums; Rowman & Littlefield: Lanham, MD, USA, 2017.
9. Jadyn, L. Multisensory Met: The Development of Multisensory Art Exhibits. Available online: http://www.fondazionemarch.

org/multisensory-met-the-development-of-multisensory-art-exhibits.php (accessed on 30 November 2020).
10. Axel, E.S.; Levent, N.S. Art Beyond Sight: A Resource Guide to Art, Creativity, and Visual Impairment; American Foundation for the

Blind: Arlington County, VA, USA, 2003.
11. Wilson, P.F.; Griffiths, S.; Williams, E.; Smith, M.P.; Williams, M.A. Designing 3-D Prints for Blind and Partially Sighted Audiences

in Museums: Exploring the Needs of Those Living with Sight Loss. Visit. Stud. 2020, 23, 1–21. [CrossRef]
12. Klimt’s ’Kiss’, made with 3D Printer, to Touch and Feel. 2016. Available online: https://phys.org/news/2016-10-klimt-3d-

printer.html (accessed on 13 February 2021).
13. Morelli, L. Designing an Inclusive Audio Guide Part 2: Tactile Reproductions. 2016. Available online: https://www.warhol.org/

designing-an-inclusive-audio-guide-part-2-tactile-reproductions/ (accessed on 13 February 2021).
14. Wong, M.; Gnanakumaran, V.; Goldreich, D. Tactile spatial acuity enhancement in blindness: Evidence for experience-dependent

mechanisms. J. Neurosci. 2011, 31, 7028–7037. [CrossRef]
15. Heller, M.A. Picture and Pattern Perception in the Sighted and the Blind: The Advantage of the Late Blind. Perception 1989, 18,

379–389. [CrossRef]
16. Taylor, B.; Dey, A.; Siewiorek, D.; Smailagic, A. Customizable 3D Printed Tactile Maps as Interactive Overlays. Proceedings of

18th International ACM SIGACCESS Conference on Computers and Accessibility, Reno, NV, USA, 24–26 October 2016; pp. 71–79.
17. Götzelmann, T. Visually Augmented Audio-Tactile Graphics for Visually Impaired People. Acm Trans. Access. Comput. 2018, 11,

1–31. [CrossRef]
18. Landau, S.; Gourgey, K. Development of a talking tactile tablet. Inf. Technol. Disabil. 2001, 7, 4.
19. Brule, E.; Bailly, G.; Brock, A.; Valentin, F.; Denis, G.; Jouffrais, C. MapSense: Multi-Sensory Interactive Maps for Children Living

with Visual Impairments. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA,
USA, 7–12 May 2016; pp. 445–457.

20. Shen, H.; Edwards, O.; Miele, J.; Coughlan, J.M. CamIO: A 3D Computer Vision System Enabling Audio/Haptic Interaction with
Physical Objects by Blind Users; Association for Computing Machinery: New York, NY, USA, 2013.

21. Baker, C.M.; Milne, L.R.; Drapeau, R.; Scofield, J.; Bennett, C.L.; Ladner, R.E. Tactile Graphics with a Voice. Acm Trans. Access.
Comput. 2016, 8, 1–22. [CrossRef]

22. Fusco, G.; Morash, V.S. The tactile graphics helper: Providing audio clarification for tactile graphics using machine vision. In
Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, Lisbon, Portugal, 26–28
October 2015; pp. 97–106.

23. Holloway, L.; Marriott, K.; Butler, M. Accessible maps for the blind: Comparing 3D printed models with tactile graphics. In
Proceedings of the 2018 Chi Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018;
pp. 1–13.

24. Talking Tactile Exhibit Panels. Available online: http://touchgraphics.com/portfolio/exhibit-panels/ (accessed on 13 February 2021).
25. San Diego Museum of Art Talking Tactile Exhibit Panels. Available online: http://touchgraphics.com/portfolio/sdma-exhibit-

panel/ (accessed on 13 February 2021).
26. Volpe, Y.; Furferi, R.; Governi, L.; Tennirelli, G. Computer-based methodologies for semi-automatic 3D model generation from

paintings. Int. J. Comput. Aided Eng. Technol. 2014, 6, 88. [CrossRef]
27. Holloway, L.; Marriott, K.; Butler, M.; Borning, A. Making Sense of Art: Access for Gallery Visitors with Vision Impairments. In

Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12.
28. Anagnostakis, G.; Antoniou, M.; Kardamitsi, E.; Sachinidis, T.; Koutsabasis, P.; Stavrakis, M.; Vosinakis, S.; Zissis, D. Ac-Cessible

Museum Collections for The Visually Impaired: Combining Tactile Exploration, Audio Descriptions and Mobile Gestures. In
Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct,
Florence, Italy, 6–9 September 2016; pp. 1021–1025.

29. Reichinger, A.; Carrizosa, H.G.; Wood, J.; Schröder, S.; Löw, C.; Luidolt, L.R.; Schimkowitsch, M.; Fuhrmann, A.; Maierhofer, S.;
Purgathofer, W. Pictures in Your Mind. Acm Trans. Access. Comput. 2018, 11, 1–39. [CrossRef]

https://www.museumnext.com/article/making-museums-accessible-to-those-with-disabilities
https://www.museumnext.com/article/making-museums-accessible-to-those-with-disabilities
http://doi.org/10.1109/MMUL.2017.33
https://www.museumnext.com/article/making-museums-accessible-to-visually-impaired-visitors/
https://www.museumnext.com/article/making-museums-accessible-to-visually-impaired-visitors/
https://www.pressreleasepoint.com/new-way-see-looking-museums-through-eyes-blind
http://doi.org/10.1108/JET-08-2019-0038
http://www.fondazionemarch.org/multisensory-met-the-development-of-multisensory-art-exhibits.php
http://www.fondazionemarch.org/multisensory-met-the-development-of-multisensory-art-exhibits.php
http://doi.org/10.1080/10645578.2020.1776562
https://phys.org/news/2016-10-klimt-3d-printer.html
https://phys.org/news/2016-10-klimt-3d-printer.html
https://www.warhol.org/designing-an-inclusive-audio-guide-part-2-tactile-reproductions/
https://www.warhol.org/designing-an-inclusive-audio-guide-part-2-tactile-reproductions/
http://doi.org/10.1523/JNEUROSCI.6461-10.2011
http://doi.org/10.1068/p180379
http://doi.org/10.1145/3186894
http://doi.org/10.1145/2854005
http://touchgraphics.com/portfolio/exhibit-panels/
http://touchgraphics.com/portfolio/sdma-exhibit-panel/
http://touchgraphics.com/portfolio/sdma-exhibit-panel/
http://doi.org/10.1504/IJCAET.2014.058012
http://doi.org/10.1145/3155286


Electronics 2021, 10, 470 33 of 37

30. Reichinger, A.; Fuhrmann, A.; Maierhofer, S.; Purgathofer, W. A Concept for Reuseable Interactive Tactile Reliefs. Computers Helping
People with Special Needs; Miesenberger, K., Bühler, C., Penaz, P., Eds.; Springer International Publishing: Cham, Switzerland, 2016;
pp. 108–115.

31. Vaz, R.; Fernandes, P.O.; Veiga, A.C.R. Designing an Interactive Exhibitor for Assisting Blind and Visually Impaired Visitors in
Tactile Exploration of Original Museum Pieces. Procedia Comput. Sci. 2018, 138, 561–570. [CrossRef]

32. D’Agnano, F.; Balletti, C.; Guerra, F.; Vernier, P. Tooteko: A case study of augmented reality for an accessible cultural heritage.
Digitization, 3D printing and sensors for an audio-tactile experience. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40,
207.

33. Quero, L.C.; Bartolomé, J.I.; Lee, S.; Han, E.; Kim, S.; Cho, J. An Interactive Multimodal Guide to Improve Art Accessibility for
Blind People. In Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility, Galway,
Ireland, 22–24 October 2018; pp. 346–348.

34. Bartolome, J.I.; Quero, L.C.; Kim, S.; Um, M.-Y.; Cho, J. Exploring Art with a Voice Controlled Multimodal Guide for Blind People.
In Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction, Tempe, AZ, USA,
17–20 March 2019; pp. 383–390.

35. Cavazos Quero, L.; Bartolomé, L.C.; Cho, J.D. Accessible Visual Artworks for Blind and Visually Impaired People: Com-paring a
Multimodal Approach with Tactile Graphics. Electronics 2021, 10, 297. [CrossRef]

36. Cho, J.D. Art Touch: Multi-sensory Visual Art Experience Exhibition for People with Visual Impairment. J. Korean Soc. Exhib. Des.
Stud. 2020, 34. Available online: http://kiss.kstudy.com/thesis/thesis-view.asp?key=3845460 (accessed on 13 February 2021).

37. Furini, M.; Mirri, S.; Montangero, M. Gamification and Accessibility. In Proceedings of the 2019 16th IEEE Annual Consumer
Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; pp. 1–5.

38. Ullmer, B.; Ishii, H. Emerging frameworks for tangible user interfaces. Ibm Syst. J. 2000, 39, 915–931. [CrossRef]
39. McGookin, D.; Robertson, E.; Brewster, S. Clutching at Straws: Using Tangible Interaction to Provide Non-Visual Access to

Graphs. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, GA, USA, 10–15 April
2010; pp. 1715–1724.

40. Manshad, M.S.; Pontelli, E.; Manshad, S.J. Trackable Interactive Multimodal Manipulatives: Towards a Tangible User Environment
for the Blind. In Proceedings of the Constructive Side-Channel Analysis and Secure Design, Darmstadt, Germany, 3–4 May 2012;
pp. 664–671.

41. Pielot, M.; Henze, N.; Heuten, W.; Boll, S. Tangible User Interface for the Exploration of Auditory City Maps. In Constructive
Side-Channel Analysis and Secure Design; Springer International Publishing: New York, NY, USA, 2007; Volume 4813, pp. 86–97.

42. Petrelli, D.; O’Brien, S. Phone vs. Tangible in Museums: A Comparative Study. In Proceedings of the CHI18 ACM CHI Conference
on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; p. 112.

43. Spence, C. Crossmodal correspondences: A tutorial review. Atten. Percept. Psychophys. 2011, 73, 971–995. [CrossRef] [PubMed]
44. Tanaka, A.; Parkinson, A. Haptic wave: A cross-modal interface for visually impaired audio producers. In Proceedings of the

2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 2150–2161.
45. Gardner, J.A.; Bulatov, V. Scientific Diagrams Made Easy with IVEOTM. Computers Helping People with Special Needs; Miesenberger,

K., Klaus, J., Zagler, W.L., Karshmer, A.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1243–1250.
46. Goulding, C. Grounded Theory: A Practical Guide for Management, Business and Market Researchers; Sage: Newcastle upon Tyne, UK,

2002.
47. Spence, C. Scenting the Anosmic Cube: On the Use of Ambient Scent in the Context of the Art Gallery or Museum. i-Perception

2020, 11, 2041669520966628. [CrossRef] [PubMed]
48. Elgammal, I.; Ferretti, M.; Risitano, M.; Sorrentino, A. Does digital technology improve the visitor experience? A comparative

study in the museum context. Int. J. Tour. Policy 2020, 10, 47–67. [CrossRef]
49. Drobnick, J. The museum as a smellscape. In Multisensory Museum: Cross-Disciplinary Perspective on Touch, Sound, Smell, Memory

and Space; Levent, N., Pascual-Leone, A., Eds.; Rowman and Littlefield: Lanham, MD, USA, 2014; pp. 177–196.
50. Vega-Gómez, F.I.; Miranda-Gonzalez, F.J.; Mayo, J.P.; González-López Óscar, R.; Pascual-Nebreda, L. The Scent of Art. Perception,

Evaluation, and Behaviour in a Museum in Response to Olfactory Marketing. Sustainability 2020, 12, 1384. [CrossRef]
51. Seubert, J.; Rea, A.F.; Loughead, J.; Habel, U. Mood induction with olfactory stimuli reveals differential affective responses in

males and females. Chem. Senses 2009, 34, 77–84. [CrossRef]
52. Herz, R.S. The Role of Odor-Evoked Memory in Psychological and Physiological Health. Brain Sci. 2016, 6, 22. [CrossRef]
53. Dobbelstein, D.; Herrdum, S.; Rukzio, E. Inscent: A Wearable Olfactory Display as An Amplification for Mobile Notifica-Tions. In

Proceedings of the 2017 ACM international Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017.
54. Choi, Y.; Cheok, A.D.; Roman, X.; Sugimoto, K.; Halupka, V. Sound Perfume: Designing a Wearable Sound and Fragrance

Media for Face-To-Face Interpersonal Interaction. In Proceedings of the 8th International Conference on Advances in Computer
Entertainment Technology, Lisbon, Portugal, 8–11 November 2011.

55. Choi, Y.; Parsani, R.; Roman, X.; Pandey, A.V.; Cheok, A.D. Light Perfume: Designing a Wearable Lighting and Ol-Factory
Accessory for Empathic Interactions. In Advances in Computer Entertainment; Springer: Berlin, Germany, 2012; pp. 182–197.

56. Whitehurst, G.J.; Falco, F.L.; Lonigan, C.J.; Fischel, J.E.; DeBaryshe, B.D.; Valdez-Menchaca, M.C.; Caulfield, M. Accelerating
language development through picture book reading. Dev. Psychol. 1988, 24, 552. [CrossRef]

http://doi.org/10.1016/j.procs.2018.10.076
http://doi.org/10.3390/electronics10030297
http://kiss.kstudy.com/thesis/thesis-view.asp?key=3845460
http://doi.org/10.1147/sj.393.0915
http://doi.org/10.3758/s13414-010-0073-7
http://www.ncbi.nlm.nih.gov/pubmed/21264748
http://doi.org/10.1177/2041669520966628
http://www.ncbi.nlm.nih.gov/pubmed/33282169
http://doi.org/10.1504/IJTP.2020.107197
http://doi.org/10.3390/su12041384
http://doi.org/10.1093/chemse/bjn054
http://doi.org/10.3390/brainsci6030022
http://doi.org/10.1037/0012-1649.24.4.552


Electronics 2021, 10, 470 34 of 37

57. Bara, F. Exploratory Procedures Employed by Visually Impaired Children During Joint Book Reading. J. Dev. Phys. Disabil. 2013,
26, 151–170. [CrossRef]

58. DeBaryshe, B.D. Joint picture-book reading correlates of early oral language skill. J. Child Lang. 1993, 20, 455–461. [CrossRef]
59. Monache, S.D.; Rocchesso, D.; Qi, J.; Buechley, L.; De Götzen, A.; Cestaro, D. Paper Mechanisms for Sonic Interaction. In

Proceedings of the Sixth International Conference on Information and Communication Technologies and Development, Cape
Town, South Africa, 11–14 November 2012; p. 61.

60. Edirisinghe, C.; Podari, N.; Cheok, A.D. A multi-sensory interactive reading experience for visually impaired children; a user
evaluation. Pers. Ubiquitous Comput. 2018, 1–13. [CrossRef]

61. Palmer, A. Can Smell Be a Work of Art? Scent Artist Sissel Tolaas Uses Chemistry to Explore the Malodorous, Yet Beautiful, Scent
of Decay in Central Park. February 2016. Available online: https://www.smithsonianmag.com/smithsonian-institution/can-
you-smell-work-art-180958189/ (accessed on 30 November 2020).

62. Vlek, R.; van Acken, J.P.; Beursken, E.; Roijendijk, L.; Haselager, P. BCI and a User’s Judgment of Agency. In Brain-Computer-
Interfaces in Their Ethical, Social and Cultural Contexts; Springer: Dordrecht, The Netherlands, 2014; pp. 193–202.

63. Cornelio, P.; Maggioni, E.; Brianza, G.; Subramanian, S.; Obrist, M. SmellControl: The Study of Sense of Agency in Smell. In
Proceedings of the 2020 International Conference on Multimodal Interaction, Utrecht, The Netherlands, 25–29 October 2020;
pp. 470–480.

64. Haggard, P. Sense of agency in the human brain. Nat. Rev. Neurosci. 2017, 18, 196–207. [CrossRef]
65. Jacobs, L.F.; Arter, J.; Cook, A.; Sulloway, F.J. Olfactory Orientation and Navigation in Humans. PLoS ONE 2015, 10, e0129387.

[CrossRef]
66. Hopkin, M. Tone Task Proves Blind Hear Better—Early vision loss leads to keener hearing. Engl. Sci. Technol. Learn. 2004, 5.

[CrossRef]
67. McElligott, J.; Van Leeuwen, L. Designing Sound Tools and Toys for Blind and Visually Impaired Children. In Proceedings

of the Conference on Interaction Design and Children Building a Community—IDC ’04, MD, USA, 1–3 June 2004; pp. 65–72.
Available online: https://dl.acm.org/doi/abs/10.1145/1017833.1017842 (accessed on 30 November 2020).

68. Culbertson, H.; Schorr, S.B.; Okamura, A.M. Haptics: The Present and Future of Artificial Touch Sensation. Annu. Rev. Control
Robot. Auton. Syst. 2018, 1, 385–409. [CrossRef]

69. Vi, C.T.; Ablart, D.; Gatti, E.; Velasco, C.; Obrist, M. Not just seeing, but also feeling art: Mid-air haptic experiences integrated in a
multisensory art exhibition. Int. J. Hum. -Comput. Stud. 2017, 108, 1–14. [CrossRef]

70. Baumgartner, T.; Lutz, K.; Schmidt, C.F.; Jäncke, L. The emotional power of music: How music enhances the feeling of affective
pictures. Brain Res. 2006, 1075, 151–164. [CrossRef]

71. Feeling Van Gogh, Van Gogh Museum, Amsterdam. Feel, Smell and Listen to the Sunflowers. Available online: https://www.
vangoghmuseum.nl/en/visit/whats-on/feeling-van-gogh (accessed on 30 November 2020).

72. Carrières de Lumières (France) and Bunker de Lumières (Korea). Available online: https://carrieres-lumieres.com
(accessed on 30 November 2020).

73. Cytowic, R.E. Touching tastes, seeing smells–and shaking up brain science. Cerebrum 2002, 4, 7–26.
74. Jeong, H.; Kim, Y.; Kim Cho, J.D. Subjective Conformity Assessment of Matching between Artwork and Classical Music using

Deep Learning based Imaginary Soundscape. In Proceedings of the International Conference on Convergence Technology, Jeju,
Korea, 8–10 July 2020.

75. Shapiro, L.; Stolz, S.A. Embodied cognition and its significance for education. Theory Res. Educ. 2018, 17, 19–39. [CrossRef]
76. Brang, D.; Ramachandran, V.S. How do Crossmodal Correspondences and Multisensory Processes Relate to Synesthesia? In

Multisensory Perception; Elsevier: Amsterdam, The Netherlands, 2020; pp. 259–281.
77. Marks, L.E. Weak synesthesia in perception and language. In The Oxford Handbook of Synesthesia; Simner, J., Hubbard, E.M., Eds.;

Oxford University Press: Oxford, UK, 2013; pp. 761–789.
78. Taggart, E. Synesthesia Artists Who Paint Their Multi-Sensory Experience. Available online: https://mymodernmet.com/

synesthesia-art/ (accessed on 13 February 2021).
79. Martino, G.; Marks, L.E. Synesthesia: Strong and Weak. Curr. Dir. Psychol. Sci. 2001, 10, 61–65. [CrossRef]
80. Lawrence, E. Marks the Unity of the Senses/Interrelationships Among the Modalities, Series in Cognition and Perception; Academic Press:

New York, NY, USA, 1978.
81. Marks, U. Laura, the Skin of the Film: Intercultural Cinema, Embodiment, and the Senses; Duke University Press: Durham, NC, USA,

2000; p. 162.
82. Cottin, M.; Faria, R.; Amado, E. The Black Book of Colors; Groundwood Books Ltd.: Toronto, ON, Canada, 2008.
83. Sathian, K.; Stilla, R. Cross-modal plasticity of tactile perception in blindness. Restor. Neurol. Neurosci. 2010, 28, 271–281.

[CrossRef]
84. Vinter, A.; Orlandi, O.; Morgan, P. Identification of Textured Tactile Pictures in Visually Impaired and Blindfolded Sighted

Children. Front. Psychol. 2020, 11, 345. [CrossRef]
85. Taras, C.; Ertl, T. Interaction with Colored Graphical Representations on Braille Devices. In Proceedings of the International

Conference on Universal Access in Human-Computer Interaction, San Diego, CA, USA, 19–24 July 2009; pp. 164–173.
86. Cho, J.D.; Quero, L.C.; Bartolomé, J.I.; Lee, D.W.; Oh, U.; Lee, I. Tactile colour pictogram to improve artwork appreciation of

people with visual impairments. Color Res. Appl. 2021, 46, 103–116. [CrossRef]

http://doi.org/10.1007/s10882-013-9352-2
http://doi.org/10.1017/S0305000900008370
http://doi.org/10.1007/s00779-018-1127-4
https://www.smithsonianmag.com/smithsonian-institution/can-you-smell-work-art-180958189/
https://www.smithsonianmag.com/smithsonian-institution/can-you-smell-work-art-180958189/
http://doi.org/10.1038/nrn.2017.14
http://doi.org/10.1371/journal.pone.0129387
http://doi.org/10.1038/news040712-9
https://dl.acm.org/doi/abs/10.1145/1017833.1017842
http://doi.org/10.1146/annurev-control-060117-105043
http://doi.org/10.1016/j.ijhcs.2017.06.004
http://doi.org/10.1016/j.brainres.2005.12.065
https://www.vangoghmuseum.nl/en/visit/whats-on/feeling-van-gogh
https://www.vangoghmuseum.nl/en/visit/whats-on/feeling-van-gogh
https://carrieres-lumieres.com
http://doi.org/10.1177/1477878518822149
https://mymodernmet.com/synesthesia-art/
https://mymodernmet.com/synesthesia-art/
http://doi.org/10.1111/1467-8721.00116
http://doi.org/10.3233/RNN-2010-0534
http://doi.org/10.3389/fpsyg.2020.00345
http://doi.org/10.1002/col.22567


Electronics 2021, 10, 470 35 of 37

87. Cho, J.D.; Jeong, J.; Kim, J.H.; Lee, H. Sound Coding Color to Improve Artwork Appreciation by People with Visual Impairments.
Electronics 2020, 9, 1981. [CrossRef]

88. Bartolome, J.D.I.; Quero, L.C.; Cho, J.; Jo, S. Exploring Thermal Interaction for Visual Art Color Appreciation for the Visually
Impaired People. In Proceedings of the International Conference on Electronics, Information, and Communication, (ICEIC),
Barcelona, Spain, 19–22 January 2020; pp. 1–5.

89. Lee, H.; Cho, J.D. A Research on Using of Color-Concept Directed Scent for Visually Impaired Individuals to Appreciate Paintings.
Sci. Emot. Sensib. 2020, 23, 73–92. [CrossRef]

90. Cappelletti, L.; Ferri, M.; Nicoletti, G. Vibrotactile color rendering for the visually impaired within the VIDET project. Photonics
East (Isamvvdciemb) 1998, 3524, 92–97. [CrossRef]

91. Baumgartner, E.; Wiebel, C.B.; Gegenfurtner, K.R. A comparison of haptic material perception in blind and sighted individuals.
Vis. Res. 2015, 115, 238–245. [CrossRef] [PubMed]

92. Shin, J.; Cho, J.D.; Lee, S. Please Touch Color: Tactile-Color Texture Design for The Visually Impaired. In Proceedings of the
Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020.

93. Ramsamy-Iranah, S.; Rosunee, S.; Kistamah, N. Application of assistive tactile symbols in a ’Tactile book’ on color and shapes for
children with visual impairments. Int. J. Arts Sci. 2017, 10, 575–590.

94. Stonehouse, P. Tactile Colours. (n.d.). Retrieved August. 2020. Available online: http://cpwstonehouse.com/tactile-colours/
(accessed on 13 February 2021).

95. Shin, J.; Cho, J.; Lee, S. Tactile-Color System for Accessibility of Color Education: 2.5D UV Printed Supplementary Material
for Visually Impaired Students. In Proceedings of the International Conference on Ubiquitous Information Management and
Commu-nication, Seoul, Korea, 4–6 January 2021.

96. Deville, B.; Bologna, G.; Vinckenbosch, M.; Pun, T. See Color: Seeing Colours with an Orchestra. In Computer Vision;
Springer International Publishing: Berlin, Germany, 2009; pp. 251–279.

97. Palmer, S.E.; Schloss, K.B. An ecological valence theory of human color preference. Proc. Natl. Acad. Sci. USA 2010, 107, 8877–8882.
[CrossRef]

98. Banf, M.; Blanz, V. Sonification of Images for The Visually Impaired Using a MultiLevel Approach. In Proceedings of the 4th
Augmented Human International Conference on—AH ’13, Stuttgart, Germany, 7–8 March 2013; pp. 162–169.

99. Cavaco, S.; Henriques, J.T.; Mengucci, M.; Correia, N.; Medeiros, F. Color Sonification for the Visually Impaired. Procedia Technol.
2013, 9, 1048–1057. [CrossRef]

100. Datteri, D.L.; Howard, J.N. The sound of color. In Proceedings of the International Conference on Music Perception and Cognition
(ICMPC), Sapporo, Japan, 25–29 August 2008; pp. 767–771.

101. Firth, I. On the linkage of musical keys to colors. Specul. Sci. Technol. 1981, 4, 501–508.
102. Bartolomé, J.I.; Cho, J.D.; Quero, L.C.; Jo, S.; Cho, G. Thermal Interaction for Improving Tactile Artwork Depth and Color-Depth

Appreciation for Visually Impaired People. Electronics 2020, 9, 1939. [CrossRef]
103. Akazue, M.; Halvey, M.; Baillie, L.; Brewster, S. The Effect of Thermal Stimuli on the Emotional Perception of Images. In

Proceedings of the CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery (ACM),
San Jose, CA, USA, 8–13 May 2016; pp. 4401–4412.

104. Peiris, R.L.; Peng, W.; Chen, Z.; Chan, L.; Minamizawa, K. Thermovr: Exploring Integrated Thermal Haptic Feedback with Head
Mounted Displays. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA,
6–11 May 2017; pp. 5452–5456.

105. Lee, W.; Lim, Y.K. Explorative research on the heat as an expression medium: Focused on interpersonal com-munication. Pers.
Ubiquitous Comput. 2012, 16, 1039–1049. [CrossRef]

106. Luo, R. Encyclopedia of Color Science and Technology; Springer: Berlin, Germany, 2016.
107. De Valk, J.M.; Wnuk, E.; Huisman, J.L.A.; Majid, A. Odor–color associations differ with verbal descriptors for odors: A comparison

of three linguistically diverse groups. Psychon. Bull. Rev. 2016, 24, 1171–1179. [CrossRef] [PubMed]
108. Gilbert, A.N.; Martin, R.; Kemp, S.E. Cross-Modal Correspondence between Vision and Olfaction: The Color of Smells. Am. J.

Psychol. 1996, 109, 335. [CrossRef] [PubMed]
109. Kemp, S.E.; Gilbert, A.N. Odor Intensity and Color Lightness Are Correlated Sensory Dimensions. Am. J. Psychol. 1997, 110,

35–46. [CrossRef]
110. Li, S.; Chen, J.; Li, M.; Lin, J.; Wang, G. Color Odor: Odor Broadens the Color Identification of The Blind. In Proceedings of

the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017;
pp. 2746–2751.

111. Nehmé, L.; Barbar, R.; Maric, Y.; Jacquot, M. Influence of odor function and color symbolism in odor–color as-sociations:
A French–Lebanese–Taiwanese cross-cultural study. Food Qual. Prefer. 2016, 49, 33–41. [CrossRef]

112. Stevenson, R.J.; Rich, A.; Russell, A. The Nature and Origin of Cross-Modal Associations to Odours. Percept. 2012, 41, 606–619.
[CrossRef]

113. Maric, Y.; Jacquot, M. Contribution to understanding odour–colour associations. Food Qual. Prefer. 2013, 27, 191–195. [CrossRef]
114. Kim, Y.-J. Can eyes smell? cross-modal correspondences between color hue-tone and fragrance family. Color Res. Appl. 2011, 38,

139–156. [CrossRef]

http://doi.org/10.3390/electronics9111981
http://doi.org/10.14695/KJSOS.2020.23.4.73
http://doi.org/10.1117/12.333672
http://doi.org/10.1016/j.visres.2015.02.006
http://www.ncbi.nlm.nih.gov/pubmed/25711976
http://cpwstonehouse.com/tactile-colours/
http://doi.org/10.1073/pnas.0906172107
http://doi.org/10.1016/j.protcy.2013.12.117
http://doi.org/10.3390/electronics9111939
http://doi.org/10.1007/s00779-011-0424-y
http://doi.org/10.3758/s13423-016-1179-2
http://www.ncbi.nlm.nih.gov/pubmed/27783225
http://doi.org/10.2307/1423010
http://www.ncbi.nlm.nih.gov/pubmed/8837406
http://doi.org/10.2307/1423699
http://doi.org/10.1016/j.foodqual.2015.11.002
http://doi.org/10.1068/p7223
http://doi.org/10.1016/j.foodqual.2012.05.001
http://doi.org/10.1002/col.20717


Electronics 2021, 10, 470 36 of 37

115. Adams, C.; Doucé, L. What’s in a scent? Meaning, shape, and sensorial concepts elicited by scents. J. Sens. Stud. 2017, 32, e12256.
[CrossRef]

116. Runciman, J.F. Noises, Smells and Colours. Music. Q. 1915, 1, 149–161. [CrossRef]
117. Dobrzynski, M.K.; Mejri, S.; Wischmann, S.; Floreano, D. Quantifying Information Transfer Through a Head-Attached Vibrotactile

Display: Principles for Design and Control. Ieee Trans. Biomed. Eng. 2012, 59, 2011–2018. [CrossRef] [PubMed]
118. Sherrick, C.E.; Cholewiak, R.W.; Collins, A.A. The localization of low-and high-frequency vibrotactile stimuli. J Acoust. Soc. Am.

1990, 88, 169–179. [CrossRef]
119. Brewster, S.A.; Brown, L.M.; Brewster, S.A.; Brown, L.M. Tactons: Structured Tactile Messages for Non-Visual Information Display.

In Proceedings of the Australasian User Interface Conference, Dunedin, New Zealand, 18–22 January 2004; pp. 15–23.
120. MacLean, K.; Enriquez, M. Perceptual design of haptic icons. In Proceedings of the EuroHaptics, Dublin, Ireland, 6–9 July 2003;

pp. 351–363.
121. Morioka, M.; Griffin, M.J. Perception Thresholds for Vertical Vibration at The Hand, Seat and Foot. In Proceedings of the European

Acoustic Association forum Acusticum, Budapest, Hungary, 29 August–2 September 2005; pp. 1577–1582.
122. Saket, B.; Prasojo, C.; Huang, Y.; Zhao, S. Designing an effective vibration-based notification interface for mobile phones. In

Proceedings of the Conference on Internet Measurement Conference; Association for Computing Machinery (ACM), Barcelona,
Spain, 23–25 October 2013; p. 149.

123. Cho, D. A Study on Danwon Kim Hongdo’s Painting of Shieuido. Korean Soc. Sci. East. Art 2017, 37, 208–240. [CrossRef]
124. Cho, I.H. A Study on the Poetry-based-Paintings of Lee Jing. Dongak Art Hist. 2011, 12, 103–124.
125. Calvert, G.; Spence, C.; Stein, B.E. The Handbook of Multisensory Processes; MIT Press: Cambridge, MA, USA, 2004.
126. Haverkamp, M. Synesthetic Design: Handbook for a Multi-Sensory Approach; Walter de Gruyter: Berlin, Germany, 2012.
127. Neves, J. Multi-sensory approaches to (audio) describing the visual arts. Monti. Monogr. De Traducción E Interpret. 2012, 4, 277–293.

[CrossRef]
128. Wang, Q.; Janice Spence, C. The Role of Pitch and Tempo in Sound-Temperature Crossmodal Correspondences. Multisens. Res.

2017, 30, 307–320. [CrossRef]
129. Levitan, C.A.; Charney, S.; Schloss, K.B.; Palmer, S.E. The Smell of Jazz: Crossmodal Correspondences Between Music, Odor, and

Emotion. In Proceedings of the CogSci, Pasadena, CA, USA, 22–25 July 2015; pp. 1326–1331.
130. DeRoy, O.; Crisinel, A.-S.; Spence, C. Crossmodal correspondences between odors and contingent features: Odors, musical notes,

and geometrical shapes. Psychon. Bull. Rev. 2013, 20, 878–896. [CrossRef]
131. Wang, Q.J.; Wang, S.; Spence, C. Turn up the taste: Assessing the role of taste intensity and emotion in mediating crossmodal

correspondences between basic tastes and pitch. Chem. Senses 2016, 41, 345–356. [CrossRef] [PubMed]
132. Van Der Zwaag, W.; Gentile, G.; Gruetter, R.; Spierer, L.; Clarke, S. Where sound position influences sound object representations:

A 7-T fMRI study. NeuroImage 2011, 54, 1803–1811. [CrossRef] [PubMed]
133. Brunstrom, J.M.; Macrae, A.W.; Roberts, B. Mouth-State Dependent Changes in the Judged Pleasantness of Water at Different

Temperatures. Physiol. Behav. 1997, 61, 667–669. [CrossRef]
134. Wnuk, E.; De Valk, J.M.; Huisman, J.L.A.; Majid, A. Hot and Cold Smells: Odor-Temperature Associations across Cultures. Front.

Psychol. 2017, 8, 1373. [CrossRef]
135. Laska, M. Perception of trigeminal chemosensory qualities in the elderly. Chem. Senses 2001, 26, 681–689. [CrossRef]
136. Madzharov, A.V.; Block, L.G.; Morrin, M. The cool scent of power: Effects of ambient scent on consumer pref-erences and choice

behavior. J. Mark. 2015, 79, 83–96. [CrossRef]
137. Mackenzie, C. How to Make Your Home Smell Like Cinnamon or Vanilla. Available online: https://www.hunker.com/12392677

/how-to-make-your-home-smell-like-cinnamon-or-vanilla (accessed on 13 February 2021).
138. Belkin, K.; Martin, R.; Kemp, S.E.; Gilbert, A.N. Auditory Pitch as a Perceptual Analogue to Odor Quality. Psychol. Sci. 1997, 8,

340–342. [CrossRef]
139. Piesse, G.W.S. The Art of Perfumery and the Methods of Obtaining the Odours of Plants; Longmans, Green, and Company: Harlow,

UK, 1879.
140. Crisinel, A.-S.; Spence, C. A Fruity Note: Crossmodal associations between odors and musical notes. Chem. Senses 2011, 37,

151–158. [CrossRef] [PubMed]
141. Crisinel, A.-S.; Jacquier, C.; DeRoy, O.; Spence, C. Composing with Cross-modal Correspondences: Music and Odors in Concert.

Chemosens. Percept. 2013, 6, 45–52. [CrossRef]
142. Velasco, C.; Balboa, D.; Marmolejo-Ramos, F.; Spence, C. Crossmodal effect of music and odor pleasantness on olfactory quality

perception. Front. Psychol 2014, 5, 1352. [CrossRef] [PubMed]
143. Jagiełło, K. Sound Cloud. Available online: https://soundcloud.com/kjagielo (accessed on 13 February 2021).
144. Perfumery Organ, Tasko Inc. Available online: https://www.ntticc.or.jp/en/archive/works/perfumery-organ/ (accessed on 13 February 2021).
145. Köhler, W. Gestalt Psychology: An Introduction to New Concepts in Modern Psychology; Liveright Pub. Corp.: New York, NY,

USA, 1947.
146. Ramachandran, V.S.; Hubbard, E.M. Synaesthesia: A window into perception, thought and language. J. Conscious. Stud. 2001, 8,

3–34.
147. Adeli, M.; Rouat, J.; Molotchnikoff, S. Audiovisual correspondence between musical timbre and visual shapes. Front. Hum. Neurosci.

2014, 8, 352. [PubMed]

http://doi.org/10.1111/joss.12256
http://doi.org/10.1093/mq/I.2.149
http://doi.org/10.1109/TBME.2012.2196433
http://www.ncbi.nlm.nih.gov/pubmed/22547452
http://doi.org/10.1121/1.399937
http://doi.org/10.19078/ea.2017.37.9
http://doi.org/10.6035/MonTI.2012.4.12
http://doi.org/10.1163/22134808-00002564
http://doi.org/10.3758/s13423-013-0397-0
http://doi.org/10.1093/chemse/bjw007
http://www.ncbi.nlm.nih.gov/pubmed/26873934
http://doi.org/10.1016/j.neuroimage.2010.10.032
http://www.ncbi.nlm.nih.gov/pubmed/20965262
http://doi.org/10.1016/S0031-9384(96)00517-3
http://doi.org/10.3389/fpsyg.2017.01373
http://doi.org/10.1093/chemse/26.6.681
http://doi.org/10.1509/jm.13.0263
https://www.hunker.com/12392677/how-to-make-your-home-smell-like-cinnamon-or-vanilla
https://www.hunker.com/12392677/how-to-make-your-home-smell-like-cinnamon-or-vanilla
http://doi.org/10.1111/j.1467-9280.1997.tb00450.x
http://doi.org/10.1093/chemse/bjr085
http://www.ncbi.nlm.nih.gov/pubmed/21852708
http://doi.org/10.1007/s12078-012-9138-4
http://doi.org/10.3389/fpsyg.2014.01352
http://www.ncbi.nlm.nih.gov/pubmed/25506332
https://soundcloud.com/kjagielo
https://www.ntticc.or.jp/en/archive/works/perfumery-organ/
http://www.ncbi.nlm.nih.gov/pubmed/24910604


Electronics 2021, 10, 470 37 of 37

148. Parise, C.V.; Spence, C. Audiovisual crossmodal correspondences and sound symbolism: A study using the implicit association
test. Exp. Brain Res. 2012, 220, 319–333. [CrossRef]

149. Hanson-Vaux, G.; Crisinel, A.-S.; Spence, C. Smelling Shapes: Crossmodal Correspondences Between Odors and Shapes.
Chem. Senses 2013, 38, 161–166. [CrossRef]

150. Metatla, O.; Maggioni, E.; Cullen, C.; Obrist, M. Like Popcorn Crossmodal Correspondences between Scents, 3D Shapes and
Emotions in Children. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Scotland, UK,
4–9 May 2019; pp. 1–13.

151. Schifferstein, H.N.J. Comparing Mental Imagery across the Sensory Modalities. Imagin. Cogn. Pers. 2009, 28, 371–388. [CrossRef]

http://doi.org/10.1007/s00221-012-3140-6
http://doi.org/10.1093/chemse/bjs087
http://doi.org/10.2190/IC.28.4.g

	Introduction 
	Multi-Sensory Experiences in Museums 
	Tactile Perception of the Visually Impaired 
	Tactile Graphics and Overlays 
	Interactive Tactile Graphics and 2.5D Models 
	An Example of Interactive Multimodal Guide for Appreciating Visual Artwork 
	Immersive Interaction through Haptic Feedback 
	Smell 
	Hearing (Sound) 

	Coding Colors through Sound, Pictograms, Temperature, and Vibration 
	ColorPictogram 
	ColorSound 
	Sound Color Code: Vivaldi Four Seasons 
	Color Sound Code: Classical 
	ColorSound: The Starry Night 

	ColorTemp 
	ColorScent 
	ColorVibrotactile 
	ColorPoetry 

	Multisensory Integration 
	Temperature and Sound 
	Temperature and Scent 
	Scent and Sound 
	Scent and Shape 

	Conclusions 
	References

