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Abstract: This study proposes a knowledge-based neural fuzzy controller (KNFC) for mobile robot
navigation control. An effective knowledge-based cultural multi-strategy differential evolution
(KCMDE) is used for adjusting the parameters of KNFC. The KNFC is applied in PIONEER 3-DX
mobile robots to achieve automatic navigation and obstacle avoidance capabilities. A novel escape
approach is proposed to enable robots to autonomously avoid special environments. The angle
between the obstacle and robot is used and two thresholds are set to determine whether the robot
entries into the special landmarks and to modify the robot behavior for avoiding dead ends. The
experimental results show that the proposed KNFC based on the KCMDE algorithm has improved
the learning ability and system performance by 15.59% and 79.01%, respectively, compared with the
various differential evolution (DE) methods. Finally, the automatic navigation and obstacle avoidance
capabilities of robots in unknown environments were verified for achieving the objective of mobile
robot control.

Keywords: neural fuzzy controller; mobile robot control; differential evolution; cultural algorithm;
obstacle configuration

1. Introduction

Neural fuzzy controllers have attracted considerable attention in control engineering.
Neural networks and the fuzzy logic controller learning ability of human thinking and
inference are combined to automatically adjust the controller parameters of neural fuzzy
learning algorithms to obtain superior capacity and robot control results [1–3]. In neural
fuzzy controller parameter learning, the back propagation algorithm [4,5] is widely used.
This algorithm is based on the steepest descent technique for obtaining an error function,
and it can achieve fast convergence to the optimal local optimum. Thus, the global optimal
solution may not be determined.

Recently, some scholars have proposed evolutionary learning algorithms with neural
fuzzy controllers to solve the problem of parameter optimization. Genetic and particle
swarm optimization (PSO) algorithms are well-known algorithms that can mimic human
physiological functions and simulate biological behavior, respectively [6]. Genetic and
PSO algorithms exhibit a good global solution for space exploration capability; however,
the best solution can fall in the local optima and the premature convergence problem
still persists [7]. Many evolutionary algorithms have been increasingly researched over
the past few decades, such as evolutionary programming algorithms and evolutionary
strategies [8–10]. However, in the implementation of evolutionary algorithms, the user
must not only determine its coding mode but also select the methods of setting appropriate
parameters. Therefore, the aforementioned methods can involve high computation cost, a
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long computation time, trial and error, and numerous operator adjustments. To overcome
these problems, many scholars have actively studied evolutionary algorithms of parameters
and operator adaptability [11,12]. In the literature, different methods of adaptation by
categorizing the parameter have been proposed [13,14]. To avoid local optimization and
enhance global optimization search ability, the differential evolution (DE) algorithm is
an excellent option. Storn and Price [15] proposed the DE algorithm, which is not only
a direct and parallel search method but also an easy application of optimized search
technology. The DE algorithm provides better results than the genetic algorithm and other
traditional methods [16]. Many studies have proved its advantages, and it has been widely
used in practice [17,18]. Three key parameters, namely the population size, mutation rate
adjustment factor, and crossover rate, can considerably influence the DE. To successfully
solve the problems of specific applications, considerable time is required to determine the
most suitable evolution strategy and adjust its parameters through trial and error. Qin
et al. [19] proposed the self-adaptive DE algorithm to reduce the time spent determining the
most suitable strategy. In addition, Reynolds proposed a cultural algorithm (CA) [20]. This
algorithm is a self-evolutionary algorithm and can retrieve relevant information from the
problem field for evolution. The CA has two main parts, namely the population and belief
spaces [21]. The population space consists of feasible solutions of the problem. This space
could be any population-based evolutionary algorithm to be optimized. The belief space is
similar to an information database that can store individual experience and indirectly allow
other individuals to use this information as a learning reference. In the CA, information
is shared by an individual with the entire population. In contrast to other evolutionary
algorithms, an individual can only share information with its offspring in the CA. The
population and belief spaces should be able to achieve information exchange through a
communication protocol. This protocol consists of acceptance and influence functions. The
acceptance function is a method to add the individual experience of the overall space to
the belief space. The influence function is the feedback of individual information from the
belief space to the population space. In some optimization problems [22,23], to capture
useful information in order to evolve has proven to be very efficient and can considerably
reduce costs.

In this study, a knowledge-based neural fuzzy controller (KNFC) is proposed for
mobile robot navigation control. An effective knowledge-based cultural multi-strategy
differential evolution (KCMDE) is used for adjusting the parameters of KNFC. The KNFC
is applied in PIONEER 3-DX mobile robots to achieve automatic navigation and obstacle
avoidance capabilities. A novel escape approach is proposed to enable robots to au-
tonomously avoid special environments. The angle between the obstacle and robot is used
and two thresholds are set to determine whether the robot entries into special landmarks
and to modify the robot behavior for avoiding dead ends. Finally, the automatic navigation
and obstacle avoidance capabilities of robots in unknown environments were verified
for achieving the objective of mobile robot control. Relative to our previous published
papers [24–26], the major contributions of this study are as follows: (1) an efficient KNFC is
proposed for mobile robot navigation control, (2) the proposed KCMDE algorithm contains
features of both the CA and DE strategy, and is implemented using the knowledge sources
of the belief space in the CA to increase global search ability, and (3) in special environ-
ments, two thresholds are used to switch the controller mode between the wall-following
mode and the general controller.

The remainder of the paper is organized as follows. Section 2 introduces the mobile
robot structure and sensor signal. Details of the knowledge-based neural fuzzy controller
and a knowledge-based cultural multi-strategy differential evolution (KCMDE) for ad-
justing the parameters of KNFC are described in Section 3. Section 4 presents an escape
approach in special environments. The experimental results of mobile robot navigation
control are illustrated in Section 5. Section 6 offers conclusions for this study.
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2. Description of the Mobile Robot Structure and Sensor Signal

This section introduces the experiments conducted using the mobile robot PIONEER
3-DX [24–26] (see Figure 1). The robot includes eight front ultrasonic sensors, a battery, two
differential drive wheels, and wheel encoders. The ultrasonic sensors are positioned on the
left and right side, with six sensors facing forward at 20◦ intervals.
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Figure 1. Pioneer 3-DX.

In this study, the detection range of the ultrasonic sensors was approximately 20–70 cm.
The configuration of the position of the ultrasonic sensors [24–26] is presented in Figure 2.
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Figure 2. Sensors of Pioneer 3-DX

The eight ultrasonic sensors (sensor1, sensor2, . . . , sensor8) were allocated into three
call signs: S1, S2, and S3. S1 is the distance between the obstacle and left sensor of the
robot, S2 is the distance between the obstacle and the front sensor of the robot, and S3 is
the distance between the obstacle and right sensor of the robot. S1, S2, and S3 are depicted
in Figure 2 and determined as follow:

S1 = min(sensor1, sensor2, sensor3) (1)

S2 = min(sensor4, sensor5) (2)

S3 = min(sensor6, sensor7, sensor8) (3)

3. The Proposed Knowledge-Based Neural Fuzzy Controller

This section describes the proposed knowledge-based neural fuzzy controller (KNFC).
In this KNFC, the first three inputs of the mobile robot are the distance between the obstacle
and the left front, and right sensors (S1, S2, and S3, respectively). The unit of the inputs
is cm. The fourth input is the angle between the front of the mobile robot and the target
(θd), and the unit is degrees. The output is the velocity of the two wheels of the mobile
robot. The velocities of the left and right wheels are defined as LV and RV, respectively,
and the unit is cm/s. Thus, the controller has four inputs and two outputs. The KCMDE
algorithm is proposed to adjust the parameters of KNFC. The proposed KCMDE algorithm
adopts the concepts of the culture algorithm (CA), which is composed of three parts,
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namely the belief space, population space, and information exchange protocol, comprising
the acceptance and influence functions. In addition, different problems exhibit distinct
performance in various DE strategies. Therefore, the KCMDE algorithm is designed using
the multistrategy method. The KCMDE algorithm combines the advantages of the CA and
multistrategy method to adjust the parameters of the KNFC efficiently and improve global
search capability.

3.1. Structure of the Knowledge-Based Neural Fuzzy Controller

The structure of the knowledge-based neural fuzzy controller (KNFC) is illustrated in
Figure 3. The KNFC implements a fuzzy if–then rule [23] in the following form:

Rule−j :
[
IF x1 is A1j and IF x2 is A2j and IF x3 is A3j and IF x4 is A4j

]1−γj+(γj/4)

Then y1 is wj and y2 is vj,
(4)

where x1 is the value of sensor group S1,x2 is the value of sensor group S2, x3 is the value
of sensor group S3, x4 is the angle between the direction of the robot and the target, Aij is
the linguistic term of the precondition part, γj ∈ [0, 1] is the compensatory factor, y1 is the
left-wheel velocity of the robot (LV), y2 is the right-wheel velocity of the robot (RV), and wj
and vj are the weights of consequent parts.
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The operation of each node in each layer of the KNFC structure is described as follows:

Layer 1 (input layer): Each node in this layer transfers the input value to the next layer directly.

u(1)
i = xi (5)

Layer 2 (membership function layer): Each node in this layer calculates the membership
value with each value from the last layer corresponding to the linguistic of the jth rule. The
operation used as the Gaussian membership function [23] is given as follows:

u(2)
ij = exp

− [u(1)
i −mij]

2

σ2
ij

 (6)

where mij and σij are the mean and standard deviation of the Gaussian membership
function, respectively, i is the ith input, and j is the jth rule.
Layer 3 (rule layer): The nodes in this layer execute the product operation, which uses the
membership values of each input corresponding to the jth rule in Layer 2. In addition, the
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operation uses the compensatory factor to perform if-condition matching of fuzzy rules.
The compensatory operation [23] is given as follows:

u(3)
j =

(
∏

i
u(2)

ij

)1−γj+(γj/4)

(7)

where γj =
c2

j

c2
j +d2

j
is the compensatory factor and cj, dj ∈ [−1, 1] are the parameters of

compensatory factors. The purpose of tuning cj and dj is to increase the adaptability of the
fuzzy operator.
Layer 4 (output layer): The nodes in this layer function as defuzzifiers. This operation
summarizes the final output of the fuzzy inference as follows:

y1 = u(4)
1 = ∑

j
u(3)

j ·wj (8)

y2 = u(4)
2 = ∑

j
u(3)

j ·vj (9)

3.2. The Proposed Knowledge-Based Cultural Multi-Strategy Differential Evolution Algorithm

To realize the KNFC, a novel evolutionary learning algorithm called the knowledge-
based cultural multi-strategy differential evolution (KCMDE) algorithm is proposed. The
proposed KCMDE algorithm comprises the concept of the cultural knowledge source
algorithm and the probability assignment of the knowledge source according to the space
of the learning period. In the cultural algorithm (CA), the knowledge source is used to
lead the individual to move toward the optimal solution. In cognitive science, knowledge
sources can be described by the physical meaning of animals, things, and other social
activities. In this study, the knowledge source was realized using the mutation strategy
of the DE algorithm. Suitable individuals can gradually drive the belief space to direct
the overall feasible solution in order to search a superior solution space. Next, using the
method of the learning period space, the probability of each knowledge source can be
adjusted instead of the traditional probability assignment. Complete suppression of certain
knowledge sources can increase the adaptability of the algorithm, thereby enabling superior
results to be obtained. The flowchart of the KCMDE algorithm is shown in Figure 4. The
steps in the learning process of the KCMDE algorithm are described in the following text.

• Step 1: Initialization of the population space

The algorithm must initialize the population space before the evolution process and
achieve uniform distribution and random generation of each individual. The upper bound-
ary and lower boundaries of each element in the individual must be predefined. Assume
that xmin and xmax are the minimum and maximum boundaries of each element in each
domain, respectively. The structural parameter of the KNFC is coded according to the
predefined number of rules. Each individual of the population represents a KNFC. In this
study, the mobile robot control problem was a four-input and two-output problem. Each
input was coded into two parameters, namely mij and σij, which represent the mean of the
Gaussian membership function and the variance of the Gaussian membership function,
respectively. The two outputs were coded into wjand vj, where wj and vj are the weights
of the consequent part of the KNFC. The other two parameters, cj and dj, are the internal
parameters of γj, where γj is the compensatory factor of the KNFC. The coding method [24]
is illustrated in Figure 5.
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The population of the KCMDE algorithm is generated according to the coding method.
The operation of each element in each individual is depicted as follows:

xi,j = randi(0, 1)·(xi,max − xi,min) + xi,min (10)

where xi,j represents the x th elements of the j th individual and randi(0,1) is uniformly
distributed between 0 and 1.

• Step 2: Initialization of the belief space

The initialization of the belief space is empty; however, the size of the belief space is
the same as the population and gradually decreases with the evolution of the generations,
whereas the number of individuals that become paragons decreases over time.

• Step 3: Initialization of the learning period space
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The initialization of the learning period space is empty. The learning period space
is composed of successful memory and failed memory. The size of the learning period
space is set according to the parameter LP (the size of the successful memory and failed
memory), which is predefined by the user. In this study, the LP is set to 30. This space is
responsible for recording each generation of the selected source of knowledge to improve
individual performance. If the individual performance of the selected knowledge improves,
the number of the selected knowledge for the successful memory increases. By contrast,
the number of the selected knowledge for the failed memory increases.

• Step 4: Evaluation of each individual

Evolutionary algorithms usually rely on the performance of the individual to decide
the selection progress. The larger the fitness function, the more improved are performance
and fitness values. The evaluation operation is expressed as follows:

f =
1

1 +

√
1

Nt

Nt
∑

l=1
(yl − yl)

2

(11)

where yl represents the l th the real of the left-wheel and right-wheel speeds of the mobile
robot, yl represent the l th the desired (training data) of the left-wheel and right-wheel
speeds of the mobile robot, and Nt is the size of the training data.

• Step 5: Selection process of the knowledge source based on the learning period space

When the learning period space is not filled, the selection probability of each knowl-
edge source is set as equal. Once the learning period space is filled, the selection probability
of each knowledge source changes. After the learning period space is filled, the selection
probability of each knowledge source is based on the roulette-wheel area. The initial
roulette-wheel area is the same. Thus, selection probability is used to select the knowledge
source, which is used to update the current individual. The belief space of the KCMDE
algorithm has five knowledge sources, namely situational, normative, topographical, do-
main, and history knowledge. In this study, three knowledge sources, namely situational
knowledge, topographical knowledge, and history knowledge were used. These sources
are described as follows:

1. Situational knowledge

The best individual in the evolutionary process xg
i,best is a model to lead other in-

dividuals for situational knowledge. In this study, the differential mutation strategy
DE/best/1 [16] is used, and evaluation of the initial population is necessary in initial
situational knowledge. Therefore, the initial best individual is determined and stored. For
situational knowledge, the mutation strategy is affected in the following way:

vg
i,j = xg

i,best + F·(xg
i,r1 − xg

i,r2) (12)

2. Topographical knowledge

Topographical knowledge presents spatial information to build a map of the fitness
landscape in the evolution process. A tree structure was used to achieve topographical
knowledge. In the tree structure, the root can only have two children that represent two
differential mutation strategies, namely xg

i,best− xg
i,j and xg

i,r1− xg
i,r2. Therefore, the influence

function moves the children using DE/current-to-best/1 [16] as follows:

vg
i,j =


xg

i,j + F·
∣∣∣xg

i,best − xg
i,j

∣∣∣+ F·
∣∣∣xg

i,r1 − xg
i,r2

∣∣∣, if xg
i,j < li

xg
i,j − F·

∣∣∣xg
i,best − xg

i,j

∣∣∣− F·
∣∣∣xg

i,r1 − xg
i,r2

∣∣∣, if xg
i,j > ui

xg
i,j + F·(xg

i,best − xg
i,j) + F·(xg

i,r1 − xg
i,r2), otherwise

(13)
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where xg
i,j represents the current individual, xg

i,best is the best individual in the belief space,

an xg
i,j 6= xg

i,r0 6= xg
i,r1 6= xg

i,r2 6= xg
i,best.

3. Historical knowledge

This is the best historical knowledge of the individual’s past records as an event-
based memory, such as local optimal. Therefore, historical knowledge is achieved as
a list to store the w temporal on the last search. If the population diversity decreased
during late evolution in this study, the best individual was used as a model to induce
premature convergence. To obtain fast search but not early convergence, a new mutation
strategy, namely DE/current-to-w past best [16], was implemented to use the wth best
individual in a history list to guide the other individuals (Figure 6). The expression for the
DE/current-to-w past best mutation strategy is as follows:

vg
i,j =


xg

i,j + F·
∣∣∣xw

i,best − xg
i,j

∣∣∣+ F·
∣∣∣xg

i,r1 − xg
i,r2

∣∣∣, if xg
i,j < li

xg
i,j − F·

∣∣∣xw
i,best − xg

i,j

∣∣∣− F·
∣∣∣xg

i,r1 − xg
i,r2

∣∣∣, if xg
i,j > ui

xg
i,j + F·(xw

i,best − xg
i,j) + F·(xg

i,r1 − xg
i,r2), otherwise

(14)

where xw
i,best is randomly selected as one of the wth best individuals in the belief space.

• Step 6: Crossover
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To implement the DE operation search strategy, the KCMDE algorithm uses the
crossover operation. The population after the mutation (vg

i,j) and the population before the

mutation (xg
i,j) based on the crossover rate (CR) was used to generate the new population

(ug
i,j). The operation of ug

i,j is expressed as follows:

ug
i,j =

{
vg

i,j, if Rand(i) ≤ CR

xg
i,j, if Rand(i) > CR

(15)

where CR ∈ [0, 1] is the CR and defined by the user, j is the dimension number of the
individual, and Randj(0, 1) is a uniform random number operator.
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• Step 7: Survivor selection

In survivor selection, the new individual (ug
i,j) is evaluated using Equation (16). If the

performance of the new individual (ug
i,j) is better than that of the original individual (xg

i,j),

the new individual (ug
i,j) is used instead of the original individual (xg

i,j).

• Step 8: Update of the learning period space

The update of the learning period space is based on whether the individual (ug
i,j) of

the selected knowledge source is better than the original individual (xg
i,j) in the current

generation. When the individual (ug
i,j) of the selected knowledge source is not better than

the original individual (xg
i,j), the failed factor (nfk,g) is increased. By contrast, the successful

factor (nsk,g) is increased. The number of generations (g) is not larger than the size of
the learning period space in Tables 1 and 2. Until the learning period space is filled, the
selection probability of each knowledge source is marginally adjusted. When the number of
generations is larger than the size of the learning period space in Tables 3 and 4, the earliest
records stored are removed to enable new values in the current generation to be stored.
When the evolution generation is increased, the selection probability of each knowledge
source is adjusted.

Table 1. g < Learning period (LP situation) of successful memory.

Index Strategy 1 Strategy 2 · · · Strategy k

1 ns1,g=1 ns2,g=1 · · · nsk,g=1
2 ns1,g=2 ns2,g=2 · · · nsk,g=2
...

...
...

...
...

LP ns1,g=LP ns2,g=LP · · · nsk,g=LP

Table 2. g < LP situation of failed memory.

Index Strategy 1 Strategy 2 · · · Strategy k

1 n f1,g=1 n f2,g=1 · · · n fk,g=1
2 n f1,g=2 n f2,g=2 · · · n fk,g=2
...

...
...

...
...

LP n f1,g=LP n f2,g=2 · · · n fk,g=LP

Table 3. g > LP situation of successful memory.

Index Strategy 1 Strategy 2 · · · Strategy k

1 ns1,g−LP ns2,g−LP · · · nsk,g−LP
2 ns1,g−LP+1 ns2,g−LP+1 · · · nsk,g−LP+1
...

...
...

...
...

LP ns1,g−1 ns2,g−1 · · · nsk,g−1

Table 4. g > LP situation of failed memory.

Index Strategy 1 Strategy 2 · · · Strategy k

1 n f1,g−LP n f2,g−LP · · · n fk,g−LP
2 n f1,g−LP+1 n f2,g−LP+1 · · · n fk,g−LP+1
...

...
...

...
...

LP n f1,g−1 n f2,g−1 · · · n fk,g−1
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In the aforementioned tables, LP is the size of the learning period space, strategy k is
the kth knowledge source, nfk,g is the number of failed attempts in the g generation, and
nsk,g is the number of successful attempts in the g generation.

When the learning period space is filled, execute step 9. Then, execute step 10.

• Step 9: Adjusting the selection probability of each knowledge source according to the
learning period space

In the KCMDE algorithm, the selection probability of each knowledge source is
adjusted according to the failed factor (nfk,g) and successful factor (nsk,g). In the initialization
of KCMDE, the selection probability of each knowledge source is set as equal. The success
rate (Sk,g) is operated by gathering the failed factor (nfk,g) and the successful factor (nsk,g)
from 1 to LP in the learning period space. The operation is expressed as follows:

Sk,g =

g−1
∑

g=g−LP
nsk,g

g−1
∑

g=g−LP
nsk,g +

g−1
∑

g=g−LP
n fk,g

+ ε (16)

where k is the number of the knowledge source; Sk,g, which enters the generation suc-
cessfully based on previous LC generation, is the success rate of the offspring individual
generated by the kth strategy; and ε is the value that prevents the success rate from being
equal to 0.

After the success rate of the knowledge source is generated, the proportion of each
knowledge source is operated using Equation (16) and summarized to 1. Equation (16)
represents the selected probability of each knowledge source and is expressed as follows:

pk,g =
Sk,g

K
∑

k=1
Sk,g

(17)

where K is the number of knowledge source, k is the k th knowledge source, g is the
evolution generation, and pk,g is the selected probability of each knowledge source.

• Step 10: Adjustment of the belief space

The belief space of the KCMDE algorithm is a space that stores the experience of the
paragon individual. Irrespective of whether the individual becomes a paragon, the adjust-
ment of the belief space is influenced. The evaluation method of acceptance is designed.
The evaluation method of acceptance is responsible for evaluating which individual be-
comes a paragon and adjusts the belief space. The elite selection mechanism [22] is used,
and the specific proportion of population in which the individual has superior fitness is
selected to become the paragon. The proportion gradually decreases when the number of
evolution generations increases. The operation is expressed as follows:

Naccepted = n%·I + n%
t
·I (18)

where n% is predefined by the user and represents the proportion of acceptance, I is the
number of the population, and t is the number of the current generation.

4. An Escape Approach in Special Environments

In a complex environment, the controller is responsible for moving the mobile robot
away from the obstacle and close to the target. When the mobile robot encounters special
environments, such as concave, continuous concave, and V-shaped environments, the
mobile robot can produce dead-end traps or infinite loops. Thus, the mobile robot cannot
successfully reach the target. The escape special environment approach is designed for
solving the four types of special environment (Figure 7).
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Figure 7. Special environments.

In the design of the escape special environment approach, first, two thresholds, namely
A and B, are designed. Thresholds A and B are angle values and are predefined. When
the angle between the direction of the mobile robot and the target is larger than threshold
A, the robot enters the wall-following mode. Threshold B is the angle when the mobile
robot enters the wall-following mode. The angle between the direction of the mobile
robot and the target enforces threshold B. Thus, the mobile robot enters the wall-following
mode. When the angle between the direction of the mobile robot and the target is equal to
threshold B again, the mode of the mobile robot is transferred back to the normal controller
navigation mode. The flowchart of the escape special environment approach is illustrated
in Figure 8.
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Figure 8. Flowchart of the escape special environment approach.

The schematic of the escape special environment approach is depicted in Figure 9.
First, no obstacles are present near the robot. The mobile robot moves toward the target
until it encounters the obstacle (point 1), when the angle between the direction of the
mobile robot and the target is larger than threshold A (point 2). At this time, the mobile
robot judges to the left of the robot and no obstacle is accounted for. When the angle
between the direction of the mobile robot and the target is larger than threshold B, the
robot enters the wall-following mode (point 3). Thus, the mobile robot moves along the
wall (point 4). When the angle between the direction of the mobile robot and the target is
equal to threshold B again, the mode of the mobile robot is transferred back to the normal
controller navigation mode (point 5).
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5. Experimental Results

The proposed KNFC based on the KCMDE algorithm was tested using the mobile
robot Pioneer 3-DX to navigate in the unknown environment. The KNFC was tested
in a complex and unknown environment to prove its navigation ability. The learning
performance of the KCMDE algorithm was then compared with that of the DE strategy.
Finally, the learned KNFC by the KCMDE algorithm were simulated in an unknown
environment and the special environment. The code of our technique (as well as dataset) is
made publicly available in [27].

5.1. Performance Comparison of Various DE Methods

The performance of the proposed KNFC based on KCMDE algorithm was compared
with that of the DE/best/1, DE/current-to-best/1, DE/rand-to-best/1, and DE/current-
to-rand/1 mutation strategies [16] of the original DE. KCMDE has four parameters: a
population size PS, a crossover rate CR, a scale factor F, and a learning period space (LP). In
general, the larger the PS, the more robust will be the search, with increased computational
cost. However, a large CR will lead to large perturbations and a slow convergence speed.
On the other hand a low CR will lead to rapid loss of diversity. Additionally, if F is small, it
will lead to extensive exploitation and thus a much higher likelihood of non-convergence.
On the other hand, a large value of F will lead to over exploration and a significantly
reduced convergence speed. Finally, the LP will guide the search in population. If LP
closes to PS that is meaningless, and LP is small, this easily makes the solution fall into
the local optimum. The initial parameters of various DE were as follows: the population
size was 100, CR was 0.9, scale factor was 0.5, and size of the learning period was 30
(Table 5). Each algorithm was run 30 times. The mean of the fitness of each generation
of 30 runs was calculated, and these data were plotted into the convergence curve. In
the DE/best/1, DE/current-to-best/1, DE/rand-to-best/1, DE/current-to-rand/1, and
KCMDE algorithms, the number of fitness evaluations (FES) is 1000 (generations) × 100
(population size) = 100,000 for a fair comparison. The convergence curve is displayed
in Figure 10. The convergence curve indicates that the KCMDE algorithm has the fast
convergence features of DE/best/1 and the superior learning features of DE/current-to-
best/1. Thus, the KCMDE algorithm, which combines the concept and multistrategy, is an
effective algorithm. Table 6 indicate that the learning ability of the proposed KNFC based
on the KCMDE algorithm is superior to that of other algorithms.



Electronics 2021, 10, 466 14 of 20

Table 5. Initial parameters of knowledge-based cultural multi-strategy differential evolution (KCMDE).

Parameter Value

Population Size (PS) 100
Crossover Rate (CR) 0.9

Scale Factor (F) 0.5
LP 30
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Table 6. Performance comparison of the various algorithms.

Algorithm Mean Std

KCMDE 0.47919743 0.02302581
DE/current to best/1 0.46926785 0.01761061

DE/best/1 0.45371649 0.02120286
DE/current to rand/1 0.40449828 0.02703615

DE/rand to best/1 0.40532059 0.02807071

5.2. Navigation Ability in Complex Environments

A map with complex obstacle environments was used to test the mobile robot navi-
gation ability of the KCMDE algorithm and compare it to other DE/strategy algorithms.
Equation (19) was designed to test the mobile robot navigation ability of the algorithms such
as DE/best/1, DE/current-to-best/1, DE/rand-to-best/1, and DE/current-to-rand/1 [16]
in order to test the mobile robot navigation ability of the algorithms. In mobile robot navi-
gation, the best path is the path with the shortest distance from the start point to target one
in the shortest time. Thus, the operation is designed to calculate the system performance
(SP) to compare the performance of controllers. The SP is expressed as follows:

System per f ormance (SP) =
1
D
· 1
T

(19)

where D is the distance the mobile robot navigates from the start point to target one and T
is the time for the mobile robot to navigate from the start point to target one.

In Equation (19), a large SP value represents a superior performance of the controller
for mobile robot navigation. Table 7 indicate the KCMDE algorithm has the best SP.
Figure 11 displays the navigation of the mobile robot using the proposed KNFC based on
the KCMDE algorithm in a complex environment. However, the mobile robot navigation
of the KNFC based on DE/current to rand/1 is unsuccessful. These results indicate that
the KCMDE algorithm is effective.
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Table 7. System performance comparison of various algorithms in a complex environment.

Algorithms Total Distance (m) Total Time (sec) SP

KCMDE 10.539495 16.384000 0.00579108925523
DE/current to best/1 10.819416 16.736000 0.00552261175968

DE/best/1 10.785474 17.248000 0.00537553903975
DE/rand to best/1 11.030170 16.992000 0.00533354775226

DE/current to rand/1 - - -
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Figure 11. Mobile robot trajectories using various algorithms in a complex environment.

5.3. Navigation Ability in Highly Complex and Special Environments

Highly complex and special environments were designed for testing the KNFC base
on the KCMDE algorithm. Figure 12 illustrate the analysis of the sensor values and the two-
wheel velocity in the highly complex environment. For example, the point A in Figure 13
corresponds to the point A in Figure 12. S1 is near the robot; however, the target is on the
left of the robot. Therefore, the robot turns left (see LV and RV in Figure 13). At point B,
S3 with a low value represents the obstacle on the right of the mobile robot. The velocity
of the two wheels gradually decreases, and the velocity of the right wheel is marginally
larger than that of the left wheel. The robot moves forward slowly. At point C, the mobile
robot moves without obstacles, the velocity of the two wheels is large, and the robot turns
toward the target gradually. At point D, the obstacle is on the left and the mobile robot
thus turns right.
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Figure 13. Ultrasonic sensor values and velocities of the left and right wheels of the robot using the
KNFC base on the KCMDE algorithm in highly complex environments.

In the special case environment, the threshold of A is set as 150◦ and the threshold of
B is set as 90◦. Figures 14 and 15 illustrate the analysis in the special case environment. At
point A, the angle between the direction of the mobile robot and the target is larger than
threshold A. Thus, the mobile robot enters the wall-following mode. The line between
point A and point B in Figure 14 indicates the angle between the direction of the mobile
robot and the target is more than threshold B. Therefore, the mobile robot follows the
wall. When the angle between the direction of the mobile robot and the target is equal to
threshold B, the mobile robot navigates using the KNFC base on the KCMDE algorithm. At
point C, the sensor groups S2 and S3 indicate that the obstacles are on the front and right
of the robot. Because the obstacle to the right is near the robot, the robot turns left with low
speed. (see LV and RV in Figure 14) At point D, the situation of the V-shaped environment
is satisfied. In this situation, the sensor values become low and the target is on the left of
the mobile robot. The velocity of the left wheel is nearly 0. The velocity of the right wheel
is marginally higher than that of the left wheel but still low. The mobile robot slowly turns
right in the V-shaped environment.
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5.4. Implementation of Pioneer 3-DX Robots

Pioneer 3-DX robots were used to test the navigation ability of the proposed controller
in complex, V-shaped, and U-shaped environments. Eight points were selected to describe
the motion of the robot in each environment. In the complex environment (Figure 16), M1
was the panorama. Initially, the robot was at the start point (P1). The robot navigated
through points P2, P3, P4, P5, and P6 and finally reached the target. Next, the robot was
tested in the V-shaped environment (Figure 17), where M2 was the panorama. At P1, P2,
and P3, the robot moved toward the target and encountered the V-shaped sac. Because
the target was on the left of the robot, the robot turned right to avoid the obstacle. At P3
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and P4, the angle between the robot and the target was larger than threshold A. Therefore,
the robot entered the wall-following mode with a fixed target angle after threshold B. At
P6, the angle between the robot and the target was equal to threshold B and the robot
navigated using KNFC base on KCMDE algorithm. Finally, the robot reached the target
(P7 and P8). The motion of the robot in the U-shaped environment in Figure 18 was similar
to that in the V-shaped environment.
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6. Conclusions and Future Work

This study proposes a KNFC for mobile robot navigation control. In the proposed
KNFC, a KCMDE is proposed to adjust the parameters of KNFC. The KCMDE algorithm
combines the CA and DE strategy and is implemented using the knowledge sources of the
belief space of the CA. For knowledge source selection, the concept of multi-strategy is
used. The proposed KNFC is applied in PIONEER 3-DX mobile robots to achieve automatic
navigation and obstacle avoidance capabilities. A novel escape approach is proposed to
enable robots to autonomously avoid special environments. The angle between the obstacle
and robot is used and two thresholds are set to determine whether the robot entries into
the special landmarks and to modify the robot behavior for avoiding dead ends. The
experimental results show that the proposed KNFC based on the KCMDE algorithm has
improved the performance of learning ability, and system performance by 15.59%, and
79.01%, respectively, compared with the various DE methods. This study proved that
the proposed method has a large SP value in high complex environments and an escape
ability in special environments. Although the KNFC based on the KCMDE algorithm can
perform mobile robot navigation control, several parameters of DE algorithms (such as
DE/best/1, DE/current-to-best/1, DE/rand-to-best/1, and DE/current-to-rand/1) still
need to be set in advance. Therefore, an adaptive adjustment method of these parameters
will be developed in future work.
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