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Abstract: As the physical size of MOSFET has been aggressively scaled-down, the impact of process-
induced random variation (RV) should be considered as one of the device design considerations of
MOSFET. In this work, an artificial neural network (ANN) model is developed to investigate the effect
of line-edge roughness (LER)-induced random variation on the input/output transfer characteristics
(e.g., off-state leakage current (Ioff ), subthreshold slope (SS), saturation drain current (Id,sat), linear
drain current (Id,lin), saturation threshold voltage (Vth,sat), and linear threshold voltage (Vth,lin))
of 5 nm FinFET. Hence, the prediction model was divided into two phases, i.e., “Predict Vth” and
“Model Vth”. In the former, LER profiles were only used as training input features, and two threshold
voltages (i.e., Vth,sat and Vth,lin) were target variables. In the latter, however, LER profiles and the
two threshold voltages were used as training input features. The final prediction was then made
by feeding the output of the first model to the input of the second model. The developed models
were quantitatively evaluated by the Earth Mover Distance (EMD) between the target variables from
the TCAD simulation tool and the predicted variables of the ANN model, and we confirm both the
prediction accuracy and time-efficiency of our model.

Keywords: line-edge roughness (LER); random variation; machine learning; artificial neural network

1. Introduction

In the past few decades, the physical dimension of metal oxide semiconductor field-
effect transistor (MOSFET) has been dramatically decreased not only to increase the number
of transistors in integrated circuits (ICs) but also to boost up the performance of transistor
in ICs. As of 2020, a few billion transistors are integrated into a single piece of IC chip.
However, the process-induced random variation should be considered when designing
and integrating transistors in IC. It is known that the process-induced random variation is
primarily occurred by three root-causes, i.e., line edge roughness (LER) [1], random dopant
fluctuation (RDF) [2], and work function variation (WFV) [3].

With the machine learning (ML) technique, the impact of LER-induced random vari-
ation in 5 nm FinFET is quantitatively predicted (i.e., major points in the input transfer
characteristic of 5 nm FinFET (drain current-. vs.-gate voltage (Id–Vg) curve) are predicted).
The major causes of LER are originated from photolithography process: (1) the line edge
along the photoresist pattern is determined by the intensity of light exposure. Due to the
uneven intensity, the line edge should be rough in nature. (2) Acid cations (which are
generated in the deprotection process) affect the mask pattern, resulting in LER [4–6]. The
LER profile can be characterized (and can be reconfigured) with three parameters, i.e., RMS
amplitude (σ), correlation length (ξ), and roughness exponent (α) [7–11]. In Figure 1, an
exemplary LER profile is illustrated. The RMS amplitude indicates the standard deviation
of roughness along the line of the pattern. The correlation length means the “average”
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value of the physical distance in-between peak and valley. Note that two correlation lengths
in x-/y-directions are necessary to characterize a surface roughness. In three-dimensional
device structure, e.g., FinFET, two correlation lengths, i.e., x and y, are used together to
reconfigure the surface roughness of sidewall in FinFET. The roughness exponent is de-
fined as a fractal dimension. More specifically, this indicates the amount of high-frequency
components left behind in LER profile [5,12,13]. Figure 2 shows the unexpected variation
of FinFET’s Id–Vg curves caused by LER. In Figure 2a, the red-colored line indicates the
Id–Vg curve of nominal FinFET without LER, and the gray-colored lines show Id–Vg
curves of 250 FinFETs with identical LER profiles. Figure 2b shows the Id–Vg curves of
FinFETs with two LER profile combinations (note that 250 cases are sampled for each case).
The gray-colored lines have σ: 0.7295, ξx: 89.3916, ξy: 195.6248, and the dark gray-colored
lines have σ: 0.1411, ξx: 96.7100, ξy: 186.6837. This shows that the larger the amplitude is,
the larger the variation is.

Figure 1. A line-edge roughness (LER) profile can be characterized with three key features such as
rms amplitude (σ), correlation length (ξ), and roughness exponent (α).

Figure 2. (a) Drain current-. vs.-gate voltage (Id–Vg) curves of FinFET with LER vs. nominal FinFET. (b) Id–Vg curves of
FinFET with LER but with different amplitudes.

In the past few years, many studies on LER-induced random variations have been
done. The typical method to evaluate the effect of LER-induced random variation on FinFET
device is simply to run the Technology Computer-Aided Design (TCAD) simulations with
additional in-house software to implement LER [14]. However, TCAD simulations spend
tens of minutes (up to hours or even days) because the total number of device-under-test
should be more than a few hundred to obtain statistically significant data. In this work,
to aggressively shorten the long simulation running time, an artificial neural network
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(ANN) is proposed and developed. We set the LER profiles as a training input feature and
specify the characteristic parameters of Id–Vg curve of the device as target variables, so
that perceptrons in each layer of the ANN model can learn the coefficient between them.
If there is a model (which has been trained with various LER profiles), it can predict the
fluctuation of Id–Vg curve within seconds.

2. Simulation

When training a machine learning (ML) model, it is necessary to prepare both training-
data and test-data. In this work, those data sets were generated and obtained using TCAD
(Sentaurus) and MATLAB tools. A nominal 5 nm FinFET device was designed, and it is the
nominal object for the ML model. Note that the device design parameters for 5 nm FinFET
device are summarized in Table 1. The quasi-atomistic model with the 2-D autocorrelation
function (ACVF) method [14] (see Equation (1) below) was used to design and reconfigure
the LER on the sidewall of FinFET. When creating the LER profiles, the features for the
LER profiles were uniformly sampled within a limited range. Note that the range of LER
profiles are as follows: σ from 0.1 nm to 0.8 nm, ξx from 10 nm to 100 nm, ξy from 20 nm to
200 nm.

ACVF(x, y) = σ2exp

−
−

(
(x cos θ + y sin θ)2

ξ2
x

+
(−x sin θ + y cos θ)2

ξ2
y

) 1
2

. (1)

Table 1. Device design parameters of the FinFET used in this work.

Device Parameters

Symbol Description Unit Value

Lg Gate length nm 20
Tox Equivalent oxide thickness (HfO2) nm 0.3
Wfin Fin width nm 7
Hfin Fin height nm 50
VDD Power supply voltage V 0.7
IVti Constant current A/um 5.35 × 10−7

σ RMS amplitude nm 0.1~0.8
ξx x-axis correlation length nm 10~100
ξy y-axis correlation length nm 20~200

For three different LER profiles, the input transfer characteristics (i.e., Id–Vg curve)
of FinFET were investigated. To investigate the impact of LER profiles on the Id–Vg
characteristic of FinFET, 150 training data sets for various LER profiles were prepared (Note
that a single training data set consists of 50 Id–Vg curves). We extracted 10 test data sets
(consisting of 250 Id–Vg curves) out of 150 training data sets to verify the prediction model.

All data sets consist of both LER profiles (e.g., RMS amplitude (σ), x-axis correlation
length (ξx), and y-axis correlation length (ξy)) and the Id–Vg curve’s characteristic param-
eters (e.g., off-state leakage current (Ioff ), subthreshold slope (SS), the saturation drain
current (Id,sat), the linear drain current (Id,lin), the saturation threshold voltage (Vth,sat),
and linear threshold voltage (Vth,lin)). The scale of each data in the dataset was different
from that of the other data. For example, in a test-data set, the mean of Ioff is 7.37 pA, but
the mean of Vth is 299 mV. To address this issue as well as to achieve a superior learning
performance, it is mandatory to have an identical scale for all the data. In the ML society,
there are a few methods available for data scaling. In this work, the “Robust Scaling”
method was adopted and used, because the impact of outliers on the learning performance
can become minimal with the method [15].
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SS =
1000

(
Vth − Vo f f

)
log10

(
IVth /IVo f f

) . (2)

The subthreshold features (i.e., Ioff, Vth, and SS) (which are the three parameters
among the six Id–Vg characteristic parameters) are physically and mathematically asso-
ciated with each other (see Equation (2)). To improve the performance of the prediction
model, we divided the model into two phases: (1) Predict Vth, predicting Vth using the LER
profiles, and (2) Model Vth, using the LER profiles and Vth as training input features to
train the coefficient of Equation (2). Figure 3 shows the overview of the prediction model.

Figure 3. Overview of the prediction model.

Figure 4 shows the conceptual diagram of two artificial neural networks (ANN): (1)
Predict Vth and (2) Model Vth. The input features of Model Vth are (1) 3 features for LER
profiles and (2) 2 features of Vth,sat and Vth,lin (in total, 5 features). The target variables of
Model Vth are the characteristic parameters of Id–Vg curve excluding Vth,sat and Vth,lin.

It is known that the LER-induced threshold voltage variation in various types of
field-effect transistor follows the Gaussian distribution [1,16,17]. Based on those previous
studies, the input transfer characteristics (Id–Vg curves) of FinFET should follow the multi-
variate Gaussian distribution. “MultivariateNormalTril” was used to train coefficients
between target variables and to improve the performance of the prediction model. It was
in the last hidden layer and trained the mean vector and covariance matrix of the target
variables to implement distribution. The prediction data were generated through the
implemented distribution. This has been used in developing the ANN model (“Predict
Vth” model).
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Figure 4. Conceptual diagram of two artificial neural networks (ANN): (1) Predict Vth (see top left-side one) and (2) Model
Vth (see top right-side one). Note that two threshold voltages (Vth,sat and Vth,lin) and LER profiles (σ, ξx, and ξy) as training
features are used as input for the Model Vth.

Two ANN models consist of four hidden layers. “ReLU” was used as the active
function [18]. The “batch normalization” [19] was applied to each hidden layer, and 20%
of the training sets were used as the validation data sets to prevent overfitting issues. To
prevent “overfitting” in the process of developing the ANN model, the “training loss” was
compared against the “val loss”. Herein, the negative log-likelihood (NLL) was used as a
loss function. Note that the learning process was done using “rmsprop” as an optimizer.
The number of training, i.e., epoch, was set to 5000.

To validate the model, we compared the prediction results of this study and prediction
results of Simple ANN using only LER profiles as training input feature.

The ANN model was designed with the built-in functions of Keras and Python using
Tenserflow2.0.

3. Results and Discussion

Time spent on training is summarized in Table 2. While the running time of TCAD
simulation for the FinFET used in this work was ~30 min per device, the training time for
the ANN models (i.e., simple ANN and this study) was up to 35 ms per epoch. TCAD
simulation needs tens of hours to make one set (250 data per set), while the ANN models
need a few minutes to make 10 sets (250 data per set).

Table 2. Time spent on training.

Model Time

Simple ANN 450 s (15,000 epoch)

This study Predict Vth 100 s (5000 epoch)
Model Vth 175 s (5000 epoch)

Using the developed ANN models, the LER-induced variation of threshold voltage
and others (i.e., Vth,sat, Vth,lin, Id,sat, Id,lin, Ioff, and SS) of FinFET were predicted, and then
compared against the test data sets. The target variables in the test set consisting of 250 data
represent the form of distribution. As previous studies have shown, the LER-induced
variation of threshold voltage and others of FinFET should follow the Gaussian distribution.
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Therefore, we compared the distribution of the test set against the distribution of the
prediction results of the ANN models, to evaluate the model that we developed. Using the
earth mover distance (EMD) score [20], the prediction performance for each model was
quantitatively evaluated. Note that EMD means “the minimum amount of work required
to move from one distribution to another”. EMD can be used to compare two different
distributions. The EMD scores are obtained by comparing the test data (generated by
TCAD) and the prediction data (generated by the simple ANN model and the prediction
model suggested in this work). The EMD score shows that the prediction model in this
study has better performance than the simple ANN model. Note that the values of EMD
for each model are summarized in Table 3. Figure 5 shows the bar charts of the EMD
by test set number, for comparison between the simple ANN model and the proposed
prediction model in this study. Except for test set 6, all EMD of the proposed model in
this study is lower than the simple ANN’s. Figure 6 shows the scattering plots (a–c) and
box-and-whisker plots (d–i) of the 10th test set with the largest EMD gap between the
simple ANN model and the prediction model suggested in this study model. We used
“the Kruskal-Wallis H test” to evaluate the statistical significance. Figure 6d–i contains the
p-values obtained by the Kruskal–Wallis H test of the six characteristic parameters of Id–Vg
curve. The p-value as significance level was set to 0.05 in this study.

Since the ANN prediction model in this study trained the coefficient between the
subthreshold features, it would accurately predict results even with relatively few data
and epoch. Considering the long running-time issue in TCAD simulation, we suggest that
the ANN model can be a promising alternative to TCAD simulation, when it comes to
predicting the LER-induced random variation in FinFET.

Table 3. The EMD of each model.

TEST SET Amp. Corr. x Corr. y EMD

Simple ANN

1 0.6248 17.0074 173.8572 0.419317
2 0.5565 80.9191 80.5699 0.251837
3 0.5047 48.6240 67.9938 0.208757
4 0.5605 25.4287 69.3974 0.176496
5 0.6373 69.1486 65.3304 0.271804
6 0.7295 89.3916 195.6248 0.209605
7 0.1527 23.3264 51.2533 0.178308
8 0.6899 85.0886 80.9837 0.219300
9 0.2593 78.1265 28.0868 0.090672

10 0.1411 96.7100 186.6837 0.174057

Average EMD 0.220015

This Study

1 0.6248 17.0074 173.8572 0.348625
2 0.5565 80.9191 80.5699 0.211269
3 0.5047 48.6240 67.9938 0.143110
4 0.5605 25.4287 69.3974 0.161759
5 0.6373 69.1486 65.3304 0.209351
6 0.7295 89.3916 195.6248 0.290165
7 0.1527 23.3264 51.2533 0.056710
8 0.6899 85.0886 80.9837 0.112868
9 0.2593 78.1265 28.0868 0.071807

10 0.1411 96.7100 186.6837 0.032418

Average EMD 0.163808
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Figure 5. The earth mover distance (EMD) scores between the test sets (made by Technology
Computer-Aided Design (TCAD)) and the prediction data sets (made by the simple artificial neural
network (ANN) model and the prediction model suggested in this study).

Figure 6. Scattering plots (a–c) of test data (made by TCAD) and prediction results (made by simple ANN and the ANN
model proposed in this study). (d–i) Box-and-whisker plots (d–i) of electrical characteristics in Id–Vg for test data (made by
TCAD) as well as for the prediction results (made by simple ANN and the ANN model proposed in this study). Note that
the Kruskal–Wallis H test’s values (i.e., p-value and statistics value) are included.

4. Conclusions

We have proposed and developed an Artificial Neural Network (ANN) model to
predict the LER-induced variation of the Id–Vg curve of 5 nm FinFET. The characteristic
parameters of the Id–Vg curve, which are assumed to follow the Gaussian distribution,
are predicted using the suggested ANN model. The model has two phases. The first
is predicting the threshold voltages of two modes using LER profiles as training input
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features. The second is additionally using the two threshold voltages as training input
features with LER profiles to train coefficients between the subthreshold features (i.e., Ioff,
Vth, and SS) and predicting the Id–Vg curve’s characteristics excluding Vth,sat and Vth,lin
(e.g., Ioff, Id,sat, Id,lin, and SS).

Comparing EMD between the test data (made by TCAD simulation) and the predicted
data (made by the suggested model), we demonstrate that the predicted characteristics
have very similar distributions to those of TCAD data. If the distributions of the prediction
model’s results are almost similar to the distribution of the TCAD data, the prediction
model has much better efficiency than TCAD simulation, in terms of simulation time
(i.e., the prediction model’s training time is up to 35 ms/epoch, but the TCAD simulation
running time is about 30 min/device). Thus, our ML-based prediction model has accuracy
and precision as the level to TCAD simulation, and are hundreds of thousands times faster
than TCAD in time.

Based on the results of this study, we suggest that the ANN prediction model based
on machine learning is an effective alternative to investigate the variation induced by LER
of FinFET as well as to address the time-inefficiency of the TCAD simulation.
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