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Abstract: The direct current (DC)–DC converter presents abundant nonlinear phenomena, such as
periodic bifurcation and chaotic motion, under certain conditions. For a switched-inductor buck-
boost (SIBB) converter with the memristive load, this paper constructs its state equation model under
two operating statuses, investigates its chaotic dynamic characteristics, and draws and analyzes the
bifurcation diagrams of the inductive current and phase portraits, under some parameter changing by
the MATLAB simulation based on the state equation. Then, by applying certain minor perturbations
to parameters, the chaotic phenomenon suppression method is explored by controlling peak current
in continuous current mode (CCM) to keep the converter run normally. Finally, the power simulation
(PSIM) verifies that the waveforms and the phase portraits controlling the corresponding parameters
are consistent with those of the MATLAB simulation.

Keywords: memristor; bifurcation; chaos; switched-inductor; buck-boost converter

1. Introduction

Power electronic technology has developed rapidly in recent years. Like other power
electronic devices, the DC–DC converter has also penetrated into many fields, including
energy science [1], physics [2], industry [3], automation [4–6], and so on.

The DC–DC buck-boost converter presents nonlinear physical phenomena, such as
chaos and periodic motion, which are affected by system parameters, topological structure,
load, and pulse period. The converter may produce results that cannot be predicted, and
which affect the normal operation of the system. Thus, researchers from all over the world
in this field pay lots of attention on these nonlinear phenomena. The bifurcation and
chaos of a current-mode buck-boost converter was studied by using the input voltage, the
reference current, and the load resistance as variable parameters [7]. The chaotic behavior
in a Buck-Boost converter depending on the circuit parameters and the inductive load has
been explored [8]. The chaos suppression for a Buck converter with the memristive load
has also been investigated [9].

In recent years, some scientists have proposed a new switched-inductor topology [10].
It can be embedded into the DC–DC converter to replace the traditional inductor, forming a
converter with stronger capacity of lifting and reducing voltage. One paper [11] studied the
nonlinear phenomena in the switched-inductor buck-boost (SIBB) converter in continuous
current mode (CCM). Another [12] investigated the various nonlinear behaviors of the
SIBB converter under the resistive load in discontinuous current mode (DCM). A further
study [13] has discussed chaos and its control of the current-mode switched-inductor
converter. Lastly, another part of the literature [14] indicated that the SIBB converter
can shift from DCM to CCM, and can operate in steady period-one state by utilizing
ramp compensation.

The above results are mainly focused on the DC–DC converter with a normal load,
without considering the memristive load. Similar to resistors, capacitors, and inductors,
memristors are also two-terminal circuit elements, but are memristive. As the fourth
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circuit element, the memristor has become an important research field, due to its wide
application, such as in the fields of memory [15–18], artificial intelligence computers [19,20],
and electronic engineering [21–32]. In the electronic engineering field, memristor has been
used in logic-based digital operations [21,22] and analog circuits [23–26]; memristors also
have been used in reconfigurable analog circuits as programmable elements [27,28], as filter
elements for signal processing [29,30], and in power converters as memristive loads [31,32].

Recently, replacing the traditional load in boost and buck-boost converters with the
memristors, and analyzing the nonlinear dynamic characteristics of converters, has become
a hot topic [33]. However, few researchers consider the dynamic characteristics of the
SIBB converter with the memristive load. The purpose of this paper is to investigate the
bifurcation and chaotic behavior of the SIBB converter with the memristive load when
the peak current changes. Furthermore, the harmful bifurcation and chaotic behavior are
suppressed by controlling the peak current.

2. Working Principle of the Converter and the Memristor

Terminology description is given as follows.

SIBB Switched-inductor buck-boost
CCM Continuous current mode
DCM Discontinuous current mode
DC Direct current
PSIM Power simulation
MATLAB Matrix laboratory
PV Photovoltaic
BAM Bidirectional associative memory
AMS Analog mixed signal
CNN Cellular nonlinear/neural network
CT Continuous-time
FIR Finite impulse response

2.1. Working Principle of the Converter

The current-mode-controlled SIBB converter is a kind of DC–DC converter controlled
by the inductive current. It is formed by applying a switched-inductor structure to the
traditional converter. Its basic circuit is shown in Figure 1.

Figure 1. The switched-inductor buck-boost (SIBB) converter under peak current mode.

The feedback loop consists of an RS flip-flop and a comparator. An RS flip-flop has
a reset input R and a set input S, as well as an output Q. The output Q directly controls
the state of the switch S. The set input S comes from the clock, while the reset input R
comes from the comparison of the reference current Ire f and the inductive current i1 in the
comparator. This converter has two operating modes: continuous current mode (CCM)
and discontinuous current mode (DCM). This paper studies the dynamic characteristics of
the converter in CCM. In this mode, the circuit has two statuses, as shown in Figure 2.
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Figure 2. Circuit statuses in continuous current mode (CCM). (a) Switch S is ON. (b) Switch S is OFF.

To make the analysis easier, let two inductors of the switched-inductor L1 = L2 and i1
is approximately equal to i2, and the inductive current i2 can be written as i1. Thus, the
system with the resistive load can be simplified to a second-order model, and its state
equations are as follows { .

x = A1x + B1Vin S is ON
.
x = A2x + B2Vin S is OFF

(1)

where x = [ i1 u] T is the state vector, Vin is the input voltage, and the coefficient matrices
are

A1 =

[
0 0
0 − 1

RC

]
, B1 =

[
1
L1
0

]
, A2 =

[
0 − 1

2L1
1
C − 1

RC

]
, B2 =

[
0
0

]

2.2. The Simulation Model of the Memristor

About 50 years ago, professor Cai theoretically predicted that the existence of a
nonlinear, passive, two-terminal electronic element that could describe the relationship
between charge and flux, and called it a memristor [34]. Cai also generated the concept of
a generalized memristor. In 2008, the feasibility of memristors was reported in Nature. This
report shocked the international electrical and electronic world, and made the theoretical
basis of circuits more perfect. The memristor was finally unveiled in 2009 after a flurry of
research by many scientists. Its symbol is shown in Figure 3.

Figure 3. Symbol of the memristor.

Memristors are similar to resistors, capacitors, and inductors as a nonlinear, passive,
two-terminal electronic element. It has two forms: the charge-controlled memristor and
the magnetron-controlled memristor. The relationship between its magnetic flux and
accumulated charge is

M(q) =
dϕ(q)

dq
(2)

W(ϕ) =
dq(ϕ)

dϕ
(3)

where M(q) is called memristance and W(ϕ) is called memductance [34].
A simulator of the magnetron-controlled memristor is designed by using circuit

elements, as shown in Figure 4.
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Figure 4. The simulator of the magnetron-controlled memristive load.

Referring to [33], the simulation circuit consists of two operational amplifiers, U1
and U2; three resistors, R1, R2, and R0; a capacitor C0; and a multiplier M, which is
g = −0.1. In addition, u and i0 are expressed as the input voltage and input current of the
simulation circuit, respectively. According to the volt–ampere relationship of the memristor,
u(t) = M(q)i(t) and i(t) = W(ϕ)u(t). The mathematical model of the memristor simulator
can be obtained as follows:

i0 =
1

R0
(1 − gv0)u (4)

dv0

dt
= − 1

R1C0
u − 1

R2C0
v0 (5)

3. The Modeling and Simulation
3.1. The Modeling of the SIBB Converter with the Memristive Load

We have described the operating principle of the SIBB converter and obtained its
state equations under the resistive load. Now we have replaced the resistive load with the
memristive load.

In CCM, the SIBB converter with its memristive load still has two statuses: switch S is
on, D0 is off; and switch S is off, D0 is on, as shown in Figure 2. At this time, the voltage on
the capacitor C is the input voltage of the simulation circuit, and i0 is the input current of
the simulation circuit. The state equations of the system with the memristive load can be
obtained as follows: { .

x = A1x + B1Vin + Cy S is ON
.
x = A2x + B2Vin + Cy S is OFF

(6)

where x = [ i1 u v0]
T is the state vector; Vin is the input voltage; and y is the product

of two state variables, such that y = uv0. The coefficient matrices are

A1 =


0 0 0
0 − 1

R0C 0

0 1
R1C0

− 1
R2C0

, B1 =

 1
L1
0
0

,

C =

 0
g

R0C

0

, A2 =


0 − 1

2L1
0

1
C − 1

R0C 0

0 1
R1C0

− 1
R2C0

, B2 =

 0
0
0


3.2. The Simulation of the SIBB Converter with the Memristive Load

The circuit parameters are selected as shown in Table 1. Taking Ire f as the bifurcation
parameter, the bifurcation diagrams of the inductive current i1 with Ire f changing can be
obtained, as shown in Figure 5. Figure 5a is the bifurcation diagram of the SIBB converter
with the resistive load, and Figure 5b is the bifurcation diagram of the SIBB with the
memristive load.
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Table 1. The circuit element parameters.

Elements Parameters Values

Voltage Vin 5 V
Inductor L1, L2 0.1 mH
Capacitor C 10 µF
Capacitor C0 20 nF
Resistor R1, R2 1 kΩ
Resistor R, R0 5 Ω

Frequency f 20 kHz
Multiplier g −0.1

Figure 5. The bifurcation diagram of inductive current i1 controlled by the reference current Ire f .
(a) With the resistive load, (b) With the memristive load.

According to the comparison of the bifurcation diagrams, we can see that the memris-
tive load does not affect the bifurcation structure. Both of them have chaos and bifurcation
of two-period, four-period, eight-period, etc., but the bifurcation point of the period dou-
bling can be moved. The results are listed as follows:

(1) The two-period bifurcation of the converter with the resistive load occurs when
Ire f = 3 A, while two-period bifurcation of the converter with the memristive load
occurs when Ire f = 3.85 A. Therefore the normal working area of the system is widened
under the memristive load.

(2) At the same time, it can be found that the SIBB converter with the resistive load occurs
chaos when Ire f = 5.8 A, while the SIBB converter with the memristive load occurs
chaos when Ire f = 8.9 A. The point where the chaos occurs moves back significantly,
which reduces the probability of chaos of the converter. The eight-period waveform
and phase portrait of the converter with the memristive load are shown in Figure 6.

(3) The behavior of the SIBB converter with the memristive load is much richer. When
Ire fε [9.87, 9.95], the system no longer exhibits a chaotic state, but a bifurcation. At
this time, the system would occur the tangent bifurcation after chaos [35]. When
Ire f = 9.9 A, the waveform and the phase portrait of i1 are as shown in Figure 7.
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The bifurcation diagrams of the SIBB converter with the resistive load and memristive
load were obtained by MATLAB simulation. Next, the PSIM software was used for
simulation to verify the accuracy of the bifurcation and chaotic behavior of the converter
with the memristive load.

4. Verification by the PSIM Simulation

The PSIM software is used for simulation to verify the accuracy of the bifurcation and
chaotic behavior of the converter with the memristive load. According to the schematic
diagram shown in Figure 1, this section builds the simulation model of the system in
the PSIM circuit software, as shown in Figure 8. The reference current Ire f is selected as
the variable, and the parameters of each circuit element are the same as those shown in
Table 1. The simulation results of the inductive current i1 under different states are shown
in Figures 9–12.
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20nF

V V0

K
-0.1

5Ω
R0

U2
U1

Figure 8. Power simulation (PSIM) diagram.
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Figure 9. The waveform and phase portrait of i1 (Ire f = 3 A). (a) The waveform of i1, (b) The phase
portrait of u − i1.

Figure 10. The waveform and phase portrait of i1 (Ire f = 5 A). (a) The waveform of i1, (b) The phase
portrait of u − i1.

Figure 11. The waveform and phase portrait of i1 (Ire f = 8 A). (a) The waveform of i1, (b) The phase
portrait of u − i1.

Figure 12. The waveform and phase portrait of i1 (Ire f = 9.5 A). (a) The waveform of i1, (b) The phase
portrait of u − i1.

It can be seen from Figures 9–12 that when Ire f is 3.0, 5.0, 8.0, and 9.5 A, the converter
is in the state of one-period, two-period, four-period, and chaos, respectively. It is not
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difficult to see that the simulation results of this PSIM circuit are consistent with those of
the MATLAB simulation.

5. Suppression of the Chaos

The resonant parametric perturbation method takes advantage of the characteristics
that the chaotic state is very sensitive to—the minor perturbation of the parameters. By
applying certain minor perturbation to the parameters, the system can be controlled from
the chaotic state to the stable one-period state.

According to the above results of the PSIM simulation, the SIBB converter with the
memristive load is in a chaotic state when Ire f = 9.5 A. The resonant parametric perturbation
method is used to control the chaos of the SIBB converter on this condition.

It is relatively simple that Ire f is used as the control parameter. Using Ire f 2 = Ire f + Ire f 1
to replace Ire f , according to this method, where Ire f 1 = Asin(2π f t + ϕ) and f is the
switching frequency (f = 20 kHz). Referring to [13], let A equal 0.3 and ϕ = 1.2 rad. A
minor perturbation is added when t = 0.05 s. The circuit diagram of the controller is
shown in Figure 13b, compared with the original simple controller in Figure 13a. Then, the
waveform of u and i1, as well as the phase portrait of u − i1 under the minor perturbation,
are obtained, as shown in Figure 14.
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Figure 13. The circuit diagram of the controller. (a) Without perturbation, as in Figure 8, (b) Adding
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Figure 14. The waveform of u and i1, as well as the phase portrait of u − i1 under the minor
perturbation. (a) The waveform of i1, (b) The waveform of u, (c) The phase portrait of u − i1.
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6. Conclusions

In this paper, the nonlinear behavior of the SIBB converter in CCM is observed by
using the memristive load instead of the resistive load. In order to study the dynamic
effect of the SIBB converter with the memristive load, this paper investigates the working
principle of the converter by using the simulation circuit, and obtains the bifurcation
diagrams, waveforms, and phase portraits of the inductive current i1 by controlling the
peak current. The results are listed as follows:

(1) It was found that the system has abundant dynamic behavior, including periodic
motion, period-doubling motion, and chaotic motion;

(2) The memristive load does not affect the bifurcation structure, but expands the normal
working area of the system and suppresses the occurrence of chaos;

(3) At the same time, the SIBB converter with the memristive load has richer behaviors,
and appears to demonstrate the behavior of the tangent bifurcation;

(4) The simulation results of PSIM are consistent with the numerical results of MATLAB.
It is also easy to see that the converter has been working in CCM from the waveforms
of i1;

(5) The resonant parametric perturbation method has a good effect on suppressing
chaotic phenomenon. The system can be controlled from the chaotic state to the stable
one-period state by this method.

In further research, we would extend the memristor model as a nonlinear part into
block-oriented nonlinear systems [36–38], to explore the system’s performance.
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