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Abstract: Flying ad-hoc networks (FANET) are one of the most important branches of wireless
ad-hoc networks, consisting of multiple unmanned air vehicles (UAVs) performing assigned tasks
and communicating with each other. Nowadays FANETs are being used for commercial and civilian
applications such as handling traffic congestion, remote data collection, remote sensing, network
relaying, and delivering products. However, there are some major challenges, such as adaptive rout-
ing protocols, flight trajectory selection, energy limitations, charging, and autonomous deployment
that need to be addressed in FANETs. Several researchers have been working for the last few years
to resolve these problems. The main obstacles are the high mobility and unpredictable changes in
the topology of FANETs. Hence, many researchers have introduced reinforcement learning (RL)
algorithms in FANETs to overcome these shortcomings. In this study, we comprehensively surveyed
and qualitatively compared the applications of RL in different scenarios of FANETs such as routing
protocol, flight trajectory selection, relaying, and charging. We also discuss open research issues that
can provide researchers with clear and direct insights for further research.

Keywords: flying Ad-hoc network; reinforcement learning; routing protocol; flight trajectory; un-
manned air vehicles

1. Introduction

Flying ad-hoc networks (FANETs) are gaining popularity because of their versatility,
easy deployment, high mobility, and low operational cost [1]. FANETs are usually formed
by unmanned aerial vehicles (UAVs), which can fly autonomously or can be controlled
remotely [2]. UAVs have been used by militaries around the globe since the beginning of
surveillance and rescue purposes [3]. Nowadays, with the advancement of technology,
UAVs have been extensively used in every domain for sensitive tasks such as traffic moni-
toring [4], disaster monitoring [5], relay for other ad-hoc networks [6], remote sensing [7],
and wildfire monitoring [8]. Multiple UAVs can be used to perform different tasks individ-
ually; however, when it comes to FANET, the UAVs must communicate with each other
and coordinate accordingly, as shown in Figure 1. FANET is an ad-hoc network of UAVs.
Generally, in FANETs small UAVs are used because coordination and collaboration among
small UAVs can outperform the large UAVs. Moreover, small UAVs have low acquisition,
operational costs, increased scalability, and survivability [9].However, FANET has some
major challenges to overcome such as

• Communication: UAVs can move at high speed, which poses difficulties in maintain-
ing communication with other UAVs. In addition, the distance among the nodes is
higher than that other ad-hoc networks [10].

• Power constraint: Generally, UAVs carry batteries as a power supply, which is limited
to support their operations and flying time. Increasing the capacity of the battery
may degrade the performance of the UAVs after a certain point owing to the energy
and weight ratio. Therefore, effective battery and charging management is one of the
major challenges of FANETs [11].
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• Routing protocol: Routing in FANETs is also a challenge owing to the high mobility
and power constraints of the UAVs. Many routing protocols have been designed for
ad-hoc networks but FANET requires a highly dynamic routing protocol to cope with
the dynamic changes in the FANET topology [12].

• Ensuring QoS: There are also some quality of service (QoS) related challenges that
should be addressed such as ensuring low latency, determining the trajectory path to
provide service, synchronization among UAVs, and protection against jamming attacks.

Figure 1. Flying ad-hoc network of UAVs.

Many researchers have been working for the last few years to overcome these chal-
lenges. They have been using different techniques related to artificial intelligence (AI) so
that the network can autonomously and adaptively learn and overcome the challenge by
itself. Reinforcement learning (RL) is one of the most important algorithms that has a
significant contribution to the development of AI [13–15]. RL is popular for its trial-and-
optimize scheme. RL consists of an agent and an environment in which the agent explores
the environment by taking actions and reaches an optimal policy for the system [16]. How-
ever, to achieve the optimal policy, the agent must know the entire system, which makes
the RL time-consuming and unsuitable for large networks. With the development of com-
putational capability achieved by the GPU, this problem can be addressed by integrating
deep neural networks (DNNs) into RL, namely deep reinforcement learning (DRL) [15,17].

Currently, there is no survey discussing the applications of RL in FANETs. This motivates
us to deliver the survey with the fundamentals of RL and DRL and a comprehensive
literature review on the applications of RL and DRL to address the challenges in FANETs.
The major issues include routing protocol, selecting flight trajectory, charging UAVs, anti-
jamming, and ensuring the QoS of FANETs.

2. Fundamentals of Deep Reinforcement Learning

In this section, we briefly discuss the internal structure, decision-making process, and
convergence process of reinforcement learning (RL) and deep reinforcement learning (DRL).

2.1. Reinforcement Learning

Reinforcement learning is an effective and extensively used tool of AI which learns
about the environment by taking different actions and achieves an optimal policy for
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operation. The RL consists of two main components: an agent and an environment.
The agent explores the environment and decides which action to take using the Markov
decision process (MDP) [18].

MDP is a framework for modeling decision-making problems and helping the agent to
control the process stochastically [18]. MDP is a useful tool for dynamic programming and
RL techniques. Generally, MDP has four parameters represented by the tuple ((, �, ?, A),
where ( is a finite state space, � is a finite action space, ? is the transition probability
from the present state B to the next state B′ after taking action 0, and A is the immedi-
ate reward given by the environment for action 0 [19]. As shown in Figure 2, at each
time step C, the agent observes its present state BC in the environment and takes action 0C .
Then, the agent receives a reward AC and the next state BC+1 from the environment. The main
goal of the agent is to determine a policy c to accumulate the maximum possible reward
from the environment. In long term, the agent also tries to maximize the expected dis-
counted total reward defined by max[∑)

C=0 XAC (BC , c(BC ))], where X ∈ [0, 1] is the discount
factor. Using the discounted reward, a Bellman equation named the &-function (1) is
formed to take the next action 0C using MDP when the state transition probabilities are
known in advance. The &-function can be expressed as

&(BC , 0C ) = (1 − U) ×&(BC , 0C ) + U[A + X(max&(BC+1, 0C ))], (1)

where U is the learning rate.

Environment

Reward, rt

Next State, st+1

Action, at

State, st

Policy
Controller

Agent

Figure 2. The agent-environment in Markov decision process.

RL with a &-function is also known as &-learning. Initially, the agent explores every
state of the environment taking different actions and forms a &-table using the &-function
for each state-action pair. Then, the agent starts exploiting the environment by taking
actions with the maximum &-value from the &-table. This policy is known as the n-greedy
policy, where the agent starts exploring or exploiting the environment depending on the
value of the probability n . An illustration of &-learning is presented in Algorithm 1.

Algorithm 1 The &-learning Algorithm.
Require: &((, �) = 0.
Ensure: Initialize U, X, n . for C = 1, 2, . . . ,) do

Choose an action 0C for present state BC based on the value of n .
Obtain an immediate reward AC and next state BC+1.
Update &((, �) via Markov decision process (1).
BC ← BC+1

end
Optimal policy, c(B) = arg max&((, �)
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2.2. Deep Reinforcement Learning

The &-learning algorithm is efficient in terms of its comparatively small action and
state space. However, the system becomes more complicated for large action and state space.
In this situation, the &-learning algorithm may not be able to achieve an optimal policy
owing to the complex and large &-table. To overcome this problem, researchers replaced
the &-table with a deep neural network (DNN) and named it deep &-learning (DQL) [15].
DQL is a deep reinforcement learning (DRL) that works with&-values similar to&-learning,
except for the &-table part as shown in Figure 3.

Environment

Reward, rt

Next State, st+1

Action, at

State, st

Agent

Figure 3. Simple deep &-learning.

The main goal of the DNN is to skip manual calculations each time by learning from
the data. A DNN is a computational nonlinear model like the structure of the human brain,
which can learn and perform tasks such as decision-making, prediction, classification,
and visualization [20]. It is composed of neurons arranged in multiple layers. It typically
has one input layer, two hidden layers, and on output layer, interconnected as depicted in
Figure 4 [21]. The input layer accepts the inputs with the input neurons and sends them to
the hidden layers. The hidden layer then sends the data to the output layer. Every neuron
has a weighted input, an activation function, and an output. The activation function
determines the output depending on the input of the neuron [22]. It acts as a trigger that
depends on the weighted input.

Output	Layer
Hidden	layers

Input	Layers

Inputs Outputs

Weights

Figure 4. Deep neural network.

During the training phase, the weighted values of the inputs of the neurons are
updated based on the outputs of the output layer using backpropagation by the agent.
The agent takes the output of the policy DNN and compares it with a target DNN model
and calculates error [23]. Then the agent updates the policy DNN using backpropaga-
tion. This process is generally referred to as optimization with gradient descent. After
a certain time, the agent updates the target DNN using policy DNN. For a more stable
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convergence of the optimal policy, experience replay memory (ERM) is introduced into
the DQL framework [24,25]. The agent takes different actions and saves the present states,
obtained rewards, next states, and actions taken in ERM [24,25]. Then, the agent takes a
mini-batch of data from the ERM and trains the policy DNN. Figure 5 and Algorithm 2
illustrate the framework and flow of the DQN better [26]. Thus, the agent can make
decisions efficiently and in a timely manner using the learned DNN.

Error
Approximation

Experience	Replay
Memory

DNNs

Optimization	with	
gradient	descent

Environment

Agent

Target
Q-Value

Predicted
Q-Value

State

Reward
Action

Mini	Batch

State,	Action,
Reward,	Next	State

Figure 5. DQL framework.

Algorithm 2 The Deep &-learning Algorithm.
Require: Initialize policy and target DQL network with random F and F′, respectively.
Require: Initialize experience replay memory (ERM).
Require: Initialize n .

for C = 1, 2, . . . ,) do
Select an action 0C for present state BC based on probability n .

Observe the immediate reward AC and next state BC+1.
Insert (BC , 0C , AC , BC+1) in ERM.
Create a mini-batch with random sample of (BC , 0C , AC , BC+1) from ERM.
Optimize the weights F of the policy DNN with gradient descent via MDP.
F′← F after certain number of time steps.

end

3. Fundamentals of FANET

In this section, we briefly discuss the architectural design and characteristics of FANET.
We also compare the FANET with other ad-hoc networks such as vehicular ad-hoc net-
works (VANETs), robot ad-hoc networks (RANETs), ship ad-hoc networks (SANETs), smart-
phone ad hoc networks (SPANs), and wireless sensor networks (WSNs). Finally, we discuss
the optimal FANET design that researchers are trying to achieve.

3.1. FANET Architecture

The architecture of FANET is similar to MANET as it is a subset of MANET. FANET con-
tains multiple manned or unmanned aerial vehicles and ground gateway units (GGUs)
communicating with each other in an ad-hoc manner [9,27]. There are different types of
topologies in FANET, such as:
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• Centralized topology: An example of centralized topology is shown in Figure 6,
where all UAVs are communicating with a GGU directly to transmit data to the control
center. In this topology, UAVs also communicate with each other via the GGU [28].
This topology is more fault-tolerant but requires higher bandwidth, causes high
latency, and constrains high-speed UAV mobility. Furthermore, putting up GGUs for
multiple UAV groups is not economically feasible.

Control center

GGU

Figure 6. Centralized topology of FANET.

• Decentralized topology: In this topology, UAVs can communicate with each other as
well as with the GGUs as shown in Figure 7 [9]. This topology provides the UAVs
more flexibility for mobility and requires less bandwidth but increases the power
consumption owing to the large overheads.

Control center

GGU

Figure 7. Decentralized topology of FANET.

• Multigroup topology: In this topology, UAVs are divided into multiple clusters,
and each group contains a cluster head (CH), which is responsible for communicating
with the GGU and other groups of UAVs as shown in Figure 8 [29]. With this topology,
a large number of UAVs can be covered. However, it increases the probability of a
single-point failure problem.
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Control center

GGU

CH

CH

Figure 8. Multigroup topology of FANET.

3.2. Characteristics of FANET

FANETs have some unique characteristics that make them different from other ad-hoc
networks. Some of the major characteristics are given as follows:

• Node mobility and model: There are different types of aerial vehicles which can move
at an average speed of 6–500 km/h [9]. Thus, node mobility is the most important
distinguishable factor which makes the FANET different from other ad-hoc networks.
Furthermore, node mobility results in several challenges in communication designing.
In FANET, UAVs can move freely at any direction and speed, depending on the
task on its own. By contrast, other ad-hoc networks have regular, low, predefined,
and controlled mobility [27]. Moreover, high mobility in FANET results in frequent
changes in network topology compared to other ad-hoc networks.

• Node density: In wireless ad-hoc networks, node density is a crucial parameter for
selecting data routing path. In FANET, node density mostly depends on the type of
UAV, objective, UAV speed, and communication range. As UAVs can be speedy and
have a long communication range, the number of UAV per unit area can decrease [30].
In other ad-hoc networks, such as VANETs, SANETs, WSNs, and SPANs, the node
density is high compared to FANET [31].

• Localization: In ad-hoc network, global positing system (GPS) is widely used to
locate the nodes. However, owing to the high speed mobility, FANETs use low
latency GPS system to locate the UAVs such as network-based positioning [32], height-
based positioning [33], differential GPS (DGPS) [34], and assisted GPS (AGPS) [35].
Moreover, localization is a major factor in flight trajectory and routing path selection.

• Radio propagation: When it comes to radio propagation model, FANETs have a great
advantage of line-of-sight (LoS) over other ad-hoc networks. In FANET, UAVs can
have a clear LoS among them due to their free mobility in the air. By contrast, in other
ad-hoc networks, there is little or no LoS between the source and the destination
owing to the geographical structure of the terrain.

• Energy Constraint: Energy limitation is one of the major design issues in ad-hoc
networks. In FANET, it depends on the size of the UAV. Most of the large UAVs
are not power-sensitive, whereas energy limitation is a concern for mini-UAVs [9].
In other ad-hoc networks, it varies from type to type as shown in Table 1.

Table 1 summarizes the differences among different ad-hoc networks [36–40].
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Table 1. Comparative analysis of different ad-hoc networks.

Characteristics FANETs VANETs SANETs RANETs SPANs WSNs

Node mobility Random Regular Predefined Controlled Regular Static or regular
Node Speed Upto 500 km/h Upto 150 km/h Upto 130 km/h Upto 25 km/h Upto 6 km/h Upto 8 km/h

Node Density Low High Medium Low Medium Varies with application
Localization DGPS/AGPS/Net/Height GPS GPS GPS GPS GPS

Radio propagation In air and On ground On water On ground On ground On ground
high LoS and low LoS and high LoS and low LoS and low LoS and low LoS

Energy Limitation Depends on the UAV Low Low High High High
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3.3. Optimal FANET Design

Many researchers are trying to establish an optimal solution for FANET, which is
more adaptable to any situation and more scalable to any extend. We discuss some
optimal conditions that many researchers are trying to achieve. Moreover, we discuss the
advantages of using RL over conventional methods in FANET.

As discussed earlier, FANETs have unpredictable nature owing to their high mobil-
ity and speed. The flying routes may vary from UAV to UAV in a multi-UAV system,
depending on the operation requirements. More UAVs can join an ongoing operation
to complete the task faster. UAVs also may fail owing to any technical problems or any
environmental issues. There are so many variables in FANET environment that needs to be
addressed. Thus, the optimal design should be more adaptive, super-fast, highly scalable,
energy-efficient, more stable, and highly secure.

To achieve these features, there is no alternative to RL owing to its self-learning
capability and energy efficiency. The conventional methods of selecting routing paths and
flying trajectories are energy inefficient and slow. Moreover, these are not self-learning
methods. To make the design solutions more adaptive and scalable, UAVs should learn to
make their own decision based on the current situation. To establish self-learning design
solutions, researchers have started using RL. Furthermore, many other problems, such as
autonomous charging, jamming protection, relaying, localization, and fault handling, can
be addressed using RL.

4. Applications of RL in FANET

In this section, we discuss the challenges of FANET that researchers solved with RL or
DRL and how they implemented RL or DRL in FANET in detail. We focus on the main
challenges of the FANET like routing protocol, flight trajectory selection, protection against
jamming, and other challenges such as charging and relaying, as shown in Figure 9.

Application	of	RL
in	FANET

Routing	Protocol Flight	Trajectory
Selection

Protection	Against
Jamming

Other	Challenges:
Charging	UAVs

Relaying

Figure 9. A taxonomy of the applications of RL in FANET.

4.1. Routing Protocol

We discuss the basics of the routing protocol, the RL-based approaches for solving
routing protocol problems such as energy consumption, end-to-end delay, and path stability
and we present a comparative analysis among them. The routing protocol specifies how
one node communicates with other nodes in a wireless ad-hoc network [12]. Figure 10
illustrates two possible routing paths from source to destination in multi-UAV FANET.
The main goal of the routing protocol is to direct the traffic toward the destination regardless
of the node mobility [41]. There are no dedicated routing protocols currently available
for FANETs [41]. FANET still uses conventional routing protocols used in mobile ad-
hoc network (MANET) an VANET. There are different types of conventional routing
protocols [42], given as follows:

• Proactive routing: Like wired network routing, all nodes in an ad-hoc network main-
tain a route table consisting of routes to other nodes. Whenever a node transmits
data, a route table is used to determine the route to the destination. The route table
continues to be updated to maintain the change in topology. This type of routing



Electronics 2021, 10, 449 10 of 19

protocol is unsuitable for FANETs owing to the frequent high-speed mobility of the
nodes [43].

• Reactive routing: Whenever a node initiates communication, this type of routing
protocol starts discovering routes to the destination. Predefined routing tables were
not maintained in this protocol. These types of routing protocols are known as on-
demand routing protocols. The main drawbacks of this protocol in terms of FANETs
are poor stability, high delay, high energy consumption, and low security [44].

• Hybrid routing: This is a combination of and a trade-off between proactive and
reactive routing protocols. In this protocol, nodes maintain a route table consisting
of routers to their neighbors and start route discovery whenever the nodes try to
communicate the nodes beyond their neighbors. [45].

• Others: In addition to the conventional routing protocols, different types of routing
protocols, such as energy-based routing, heterogeneous-based routing, swarm-based
routing, and hierarchical routing, etc., have been established by different researchers
in the past [27,46].

Source

Destination

Figure 10. Multihop routing in FANET.

Owing to the complex flying environment and high mobility, UAV nodes are un-
predictable [47]. Hence, conventional protocols of VANETs and MANETs cannot cope
with changes in the network in real time. Therefore, many researchers have attempted to
develop a self-learning, highly reliable, adaptive, and autonomous routing protocol using
reinforcement learning (RL) [48]. The main purpose of using RL in FANET routing is to
ensure fast and stable routing with minimum energy consumption.

4.1.1. QMR

Liu et al. [12] proposed a &-learning-based multiobjective optimization routing
protocol (QMR) where end-to-end delay and energy consumption are optimized simul-
taneously. They also dynamically changed the &-learning parameters such as learning
rate, discount factor, and n-value for exploration and exploitation. QMR consists of rout-
ing neighbor discovery, &-learning algorithm, routing decision, and penalty mechanism.
Initially, the QMR collects the geographic locations of their neighbors using a global po-
sitioning system (GPS) and sends HELLO packets to start the route discovery process.
Each HELLO packet contains the node’s geo-location, energy, mobility model, queuing de-
lay, and discount factor. Nodes start to maintain and update their neighbor table upon
receiving the HELLO packets. A neighbor table contains the arrival time, learning rate,
MAC delay, and &-value along with the information of the HELLO packet [12].
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After route discovery, QMR selects a neighbor to forward the data packet using &-
learning. The &-learning algorithm considers energy consumption, link stability, one-hop
delay, and neighbor relationships to select the next hop for data forwarding. The learning
rate of the algorithm is an exponential adaptive function that depends on the one-hop
delay. The discount factor varies with the velocity of the neighbor. For faster neighbors,
the discount factor is low, and vice versa. Moreover, the trade-off between the exploration
and exploitation depends on the actual velocity of the data packet traveling over a link,
link quality, and neighbor relationship [12].

By incorporating all the variables, the source node computes :-weighted &-values
and forms a &-table, where : represents the link quality and neighbor relationship.
Then, the source node selects the link with the maximum :-weighted &-value to for-
ward the data and obtains maximum reward [12]. If there is no neighbor with a nonzero
:-weighted &-value, then the source node receives the minimum reward for all neighbors,
updates the neighbor table, and searches for new neighbors using route discovery [12].

4.1.2. RLSRP with PPMAC

Reinforcement learning based self-learning routing protocol (RLSRP) with position-
prediction-based directional MAC (PPMAC) is a hybrid communication protocol proposed
in [49] wherein PPMAC resolves the directional deafness problem with directional antennas
and RLSRP provides the routing path using RL.

In [49], Zheng et al. predicted the positions of other nodes, controlled the communi-
cation and data transmission using the PPMAC scheme. The authors used self-learning
RL to determine the shortest route with the shortest delay from the source to the destina-
tion. The partially observable Markov decision process (POMDP) is incorporated with the
proposed RL algorithm, where the end-to-end data transmission delay is provided as a
reward. Similar to QMR, RLSRP maintains a neighbor table to keep track of the changes in
the network topology. The learning parameters, such as discount factor and learning rate,
are fixed. Moreover, RLSRP uses a greedy policy and selects the route with the maximum
value function, where the end-to-end delay is minimum.

4.1.3. Multiobjective Routing Protocol

Yang et al. [50] proposed a &-learning-based fuzzy logic for multiobjective routing
protocol. The source node determines the routing path using the proposed algorithm
while considering the transmission rate, residual energy, energy drain rate, hop count,
and successful packet delivery time. A fuzzy system is used to identify reliable links, and&-
learning supports the fuzzy system by providing a reward on the path [50]. The algorithm
not only considers the single-link performance but also the whole path performance using
two types of &-values from two &-learning algorithms. After obtaining the &-values for
the single links and the entire path, the fuzzy logic evaluates the &-values and determines
the optimal path for routing. Moreover, the learning parameters, such as the discount
factor and learning rate, are fixed for the &-learning algorithm.

Similarly, in [51], He et al. determined the routing path using a fuzzy logic-based RL
algorithm, but they considered delay, stability, and bandwidth efficiency factors. Figure 11
summarizes the applications of RL in the routing protocol via block diagrams. More-
over, a comparative analysis of the aforementioned protocols is presented in Table 2.
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PPMAC
Reinforcement
Learning	with

POMDP
Route	Decision

Routing	Neighbor
Discovery Q-learning Route	Decision Penalty

Mechanism

Fuzzy	
System Q-learningRoute	Selection

QMR

RLSRP	with	PPMAC

Q-learning-based	Fuzzy	system

Figure 11. Application of RL in Routing Protocols of FANET.

Table 2. Comparative analysis of the routing protocols based on RL in FANET.

Routing Protocol Algorithm Advantages Limitations

QMR [12]

&-learning with
dynamic learning
rate, discount
factor, and
adaptive
mechanism of
exploration and
exploitation

1. Multiple objectives, such as
end-to-end delay, energy
consumption are considered.

1. Re-establishing communication
is uncertain if a node gets lost.

2. Dynamic and adaptive
&-learning parameters, such as
learning rate, and discount factor
based on nodes’ velocity and link
stability.

2. Whole route stability is not
considered.

3. An adaptive mechanism is used
for balancing exploration and
exploitation.

3. Computational energy
consumption is not considered.

4. A penalty mechanism is used to
combat "neighbor unavailability"
problem.

RLSRP with
PPMAC [49]

Reinforcement
learning with
partially
observable
Markov decision
process (POMDP)

1. The positions of nodes are
predictable.

1. Fixed RL parameters.

2. Antenna direction can be
changed towards the routing
direction.

2. Only end-to-end delay is
considered for route selection.

3. Partially observable Markov
decision process (POMDP) is used.

3. There is no adaptive mechanism
for balancing exploration and
exploitation.

4. Broadcasting is used for
re-establishing the communication
with other nodes.

4. Computational energy
consumption is not considered.

Multiobjective
Routing
Protocol [50,51]

&-learning-based
fuzzy logic

1. Multiple factors, such as the
transmission rate, residual energy,
energy drain rate, hop count, and
successful packet delivery time are
considered.

1. There is no adaptive mechanism
for balancing exploration and
exploitation.

2. Both single and whole route
performances are considered.

2. Fixed RL parameters.

3. Two &-values are used from two
&-learning algorithm.

3. There is no mechanism to remedy
the “neighbor unavailability”
problem.

4. Fuzzy logic is used to select the
optimal route.

4. Computational energy
consumption is not considered.



Electronics 2021, 10, 449 13 of 19

4.2. Flight Trajectory Selection

We discuss the basics of UAV flight trajectory and RL-based approaches for solving
problems of flight trajectory selection such as energy consumption [52], data fetching, QoS,
quality of experience (QoE), coverage [53,54], and obstacles [55]. In addition, we present a
comparative analysis.

As the existence of FANETs comes from the flying nodes, selecting the flying trajectory
is a crucial factor in autonomous flying scenarios. There are various usages of FANETs,
where flying trajectory selection plays a vital role. Using FANETs as portable intercon-
nected aerial base stations (BSd) is one of the major commercial and civilian applications
of FANETs. Because UAV base stations (UBSs) can be easily deployed to handle tempo-
rary traffic congestion, provide emergency coverage in disaster areas, to ensure the QoS,
or collect data from remote internet of things (IoT) devices regardless of terrestrial territory
as shown in Figure 12 [14]. Moreover, UAVs can also be used to deliver products at the
doorstep of people.

BS

Figure 12. UBS flight trajectory in FANET.

Owing to the complex flying environment, limited data memory, limited power
support, user mobility, and various QoS requirements, many researchers have proposed
different trajectory designs that incorporate RL. The main reason for using RL is to obtain
an optimal solution for the aforementioned challenges. The applications of RL in flight
trajectory selection are summarized below and a comparative analysis is presented in
Table 3.

4.2.1. &-SQUARE

&-SQUARE is a &-learning-based UAV flight planning algorithm that improves the
quality of experience (QoE) of video users proposed in [52]. A macro BS is considered to
consist of several user clusters that require video streaming. Multiple UBSs are hovering
over multiple clusters with prefetched or on-demand data depending on the QoE demand
of the clusters without interfering with each other. The flying path is determined by the
&-learning algorithm, where the location of the cluster with a high QoE requirement,
residual energy of the UBS, and flying time are considered. Paths to multiple recharge
points are also considered for recharging the UBSs. While hovering over the cluster if
the energy level approaches a certain threshold, the UBS will fly to the charging point to
charge and comeback. UBS flies back to the macro BS if more video data need to be fetched.
Here, the agent UBS follows the n-greedy policy to determine the flight trajectory [52].

4.2.2. Decentralized Trajectory Design

A scenario is considered in [56], where multiple UAVs are performing real-time
sensing and sending tasks. The main motive is to determine the decentralized flight
trajectories using the opponent modeling &-learning algorithm to transmit data efficiently
using the sense-and-send protocol. The opponent modeling &-learning algorithm is a
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multiagent &-learning algorithm, in which explicit models of the other agents are learned
as stationary distributions. Using these distributions, agents take action from joint state-
action pairs in each cycle [56]. Moreover, two performance-enhancing methods, action set
reduction, and model-based rewarding, are introduced in the opponent modeling &-
learning algorithm to achieve a high convergence speed.

Similarly, in [57], a decentralized DRL algorithm was used to navigate multiple UBSs
to provide data services to a set of ground users. Liu et al. formulated an optimization
problem using POMDP and used actor-critic-based distributed control method to fly the
UBSs energy-efficiently.

Table 3. Comparative analysis of the selection of flight trajectory based on RL in FANET.

Type Algorithm Advantages Limitations

&-SQUARE [52] Single-agent
&-learning

1. Energy limitation is considered. 1. Fixed RL parameters.
2. Autonomous visit to charging
stations is incorporated.

2. Single UAV is considered for
learning.

Decentralized
Trajectory
Design [56,57]

Decentralized
RL/DRL

1. POMDP is used to determine the
trajectory path.

1. Fixed altitude setting.

2 Energy limitation is considered. 2. Autonomous visit to charging
stations is not considered.

3. Actor-critic method is used for
distributed control.

3. User mobility is not considered.

Joint Trajectory
design and Power
Control [58]

Multi-agent
&-learning

1. Low complexity and fast
convergence due to individual
agent training.

1. Fixed policy for other agents is
considered while training an agent.

2. User location is predictable, and
action is possible accordingly.

2. Autonomous visit to charging
stations is not considered.
3. Fixed RL parameters.
4. Energy limitation is not
considered.

Multi-UAV
Deployment and
Movement
Design [59–61]

&-learning
/Double
&-learning

1. User mobility is considered. 1. User mobility is constrained
within the cluster.

2. Multiple UAVs are incorporated
together by dividing the users in
clusters.

2. Energy limitation is not
considered.

3. 3D deployment scenario is
considered.

3. Autonomous visit to charging
stations is not considered.

4. n-greedy policy is used. 4. Mobility of UAVs is constrained
within 7 directions.

Trajectory
Optimization for
UBS [53,55]

&-learning

1. n-greedy policy is used. 1. Fixed altitude setting.
2. Obstacles are considered during
flying towards destination.

2. Autonomous visit to charging
stations is not considered.

3. Safety check is incorporated
within the system.

3. Mobility of UAVs is constrained
within 4 directions.

4. Energy limitation is considered
in terms of flying time.

4. User mobility is not considered.

4.2.3. Joint Trajectory Design and Power Control

In [58], Liu et al. predicted the movement of the users and determined trajectories
toward the users to deliver data with minimum power. The authors also predict the future
positions of the users using an echo state network (ESN) and determine the trajectory in
advance using multiagent &-learning algorithm. To achieve fast convergence and reduce
complexity, the authors trained one agent at a time while maintaining a fixed policy for
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other agents. Moreover, the agents use a greedy policy to achieve optimal solutions for
joint trajectory design and power allocation.

4.2.4. Multi-UAV Deployment and Movement Design

Multiple UAVs are deployed in a 3D space to serve mobile users in [59]. The&-learning
algorithm is used to solve the NP-hard problem [60] of 3D deployment and movement
toward the users considering users’ mobility. The main goal is to maximize the sum mean
opinion score (MOS) of the users while maintaining the QoE.

Liu et al. [59] proposed a three-step solution in which they used the :-means algorithm
to cluster the users, and then trained the UAV agents using a&-learning algorithm to find its
optimal 3D positioning with respect to the mobile users. Finally, they also used a&-learning
algorithm to determine the flying trajectory toward the moving users. However, there is a
huge scope for implementing deep &-learning to overcome constraints such as intercluster
users’ mobility and UAVs flying in all possible directions. Ghanavi et al. also adopted a
similar kind of approach to maintain QoS in [61]. However, a double &-learning approach
was used instead of simple &-learning in [62] for similar 3D scenarios and achieved a 14.1%
gain in user satisfaction compared to simple &-learning.

4.2.5. Trajectory Optimization for UBS

Bayerlein et al. [55] optimized the trajectory of a UBS using &-learning to maximize
the sum-rate for multiple users. The authors considered a scenario in which a UBS agent
is flying at a fixed altitude to serve multiple ground users. A cuboid obstacle was also
considered in this scenario. The UBS selects the flying trajectory toward the users while
avoiding the obstacles using both table-based and neural network (NN) based Q-learning.
Finally, the authors compared the results of table-based and NN-based Q-learning ap-
proaches, where NN-based Q-learning is more efficient and scalable.

A similar approach was taken in [53], where Klaine et al. used UBSs to provide emer-
gency radio coverage in disaster areas. The main goal of the approach was to provide an
efficient emergency network while maximizing coverage, sum-rate, and avoiding obstacles
and interference.

4.3. Other Scenarios

There are other usages and challenges of FANETs, such as charging UAVs, using UAVs
as network relay, using UAVs to give protection against jamming, that were solved by some
researchers using RL. The applications of RL in these scenarios are summarized in Table 4.

Table 4. Summary of other scenarios based on RL in FANET.

Type Algorithm Characteristics Goal

Relaying Deep
&-learning

Multiple UAVs are positioned in dynamic UAV swarming applications
by using the replay-buffer-based DQN learning algorithm which can
keep track of the network topology changes [63].

Achieve the optimal
communication
among swarming
nodes.

Protection
against
jamming

Federated
&-learning

Mowla et al. developed a cognitive jamming detection technique using
priority-based federated learning in [64]. Then, the authors developed an
adaptive model-free jamming defense mechanism based on federated
Q-learning with spatial retreat strategy in [65] for FANETs.

Jamming protection
for other networks.

Charging
UAVs

Deep
&-learning

The mobile charging scheduling problem is interpreted as an auction
problem where each UAV bids its own valuation and then the charging
station schedules drones based on it in terms of revenue optimality. The
charging auction enables efficient scheduling by learning the bids
distribution using DQL [11].

Scheduling UAVs for
charging.
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5. Open Research Issues

This section discusses and highlights future possible research issues based on the anal-
ysis performed in the previous section. We summarize and compare multiple applications
of RL in routing protocols and flight trajectory selection. Moreover, we summarize the
applications of RL in other issues of FANET. In designing the routing protocol or selecting
the flight trajectory, multiple researchers have implemented RL and attempted to solve
different issues. However, there are still some open research issues in FANET that are not
addressed by any studies. The open research issues are summarized below:

• Energy constraint: UAVs carry batteries as the main power source to support all the
functionalities, such as flying, communication, and computation. However, the capac-
ity of the batteries is insufficient for long-term deployment. Many researchers used
solar energy for on-board energy harvesting and used RL to optimize the energy con-
sumption. Unfortunately, these solutions are not sufficient for long flights. This opens
a key research issue, where UAVs can harvest power wireless from nearby roadside
units or base stations or power beacons for communicational and computational
functionalities utilizing RL. Another way to solve the energy issue is that UAV has to
exploit DRL to visit charging stations while other UAVs fill up the void.

• 3D deployment and movement: Many studies have been carried out regarding de-
ployment and movement. However, most of the researchers have made some sig-
nificant assumptions, such as constraining UAV and user mobility [59] or reducing
action-state space [56], in multi-UAV scenario. Consequently, 3D deployment and
movement design considering all the constraints is still an open research issue of
FANET. Furthermore, it is also important for cooperative communication of other
networks, where UAVs act as relays.

• Routing issue: A few works have been done on routing protocols utilizing RL for
FANET. Routing protocol is crucial for FANETs due to their high node mobility,
low node density, and 3D node movement. There are still scopes of improvements,
such as handling no neighbor problem, multiflow transmission, directional antenna
problem, and scalability issues, utilizing RL. Moreover, the scope of extending the
routing protocols of VANETs and MANETs for FANET using RL is still an open
research issue.

• Interference management: Recently, UAVs are using WiFi for communicating with
each other. However, interference can occur when working areas of two different
FANETs with different targets overlap. Furthermore, UBSs can interfere with each
others’ UAV to ground communication owing to their high moving speed. These sce-
narios are still open challenges, where RL can be utilized.

• Fault handling: Fault occurrence is widespread in any network. Fault handling is
crucial in FANET to avoid interruption. However, there are no existing RL-based solu-
tions that can handle any fault, such as UAV hardware problems, equipped component
problems, and communication failure due to any software issues. Thus, fault handling
using RL needs to be deeply explored.

• Security issue: Many RL-based strategies were developed in the past to prevent
jamming and cyber attacks for MANET and VANET [66]. However, there are few
RL-based solutions available for FANET security. If even all the aforementioned
issues were solved, communication in FANET can still be interrupted due to a security
breach. Consequently, RL-based security solutions require an in-depth investigation.

6. Conclusions

In this study, the latest applications of RL in FANETs have been exhaustively reviewed
in terms of major features and characteristics and qualitatively compared with each other.
However, RL can be computationally expensive, but the outcome from using RL is promis-
ing in terms of providing better performance in terms of major performance parameters
such as energy consumption, flight time, communication delay, QoS, QoE, and network
lifetime. The comparative analysis of different applications of RL in different scenarios
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of FANETs presented in this study can be effectively used for choosing and improving
flight paths, routing protocols, charging, relaying, etc. We also discuss the RL-based open
research issues of FANETs that need to be explored. Finally, it can be concluded that
adaptive RL parameters and a balance between exploration and exploitation strategies
help RL to converge more rapidly while overcoming the challenges of FANETs.

Author Contributions: Conceptualization, S.R. and W.C.; methodology, W.C.; software, S.R.; valida-
tion, S.R. and W.C.; formal analysis, S.R. and W.C.; investigation, S.R. and W.C.; resources, W.C.; data
curation, S.R. and W.C.; writing—original draft preparation, S.R.; writing—review and editing, W.C.;
visualization, S.R. and W.C.; supervision, W.C.; project administration, W.C.; funding acquisition,
W.C. Both authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2019R1F1A1046687)
and by the research fund from Chosun University, 2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, J.; Jiang, C.; Han, Z.; Ren, Y.; Maunder, R.G.; Hanzo, L. Taking Drones to the Next Level: Cooperative Distributed

Unmanned-Aerial-Vehicular Networks for Small and Mini Drones. IEEE Veh. Technol. Mag. 2017, 12, 73–82. [CrossRef]
2. Batista da Silva, L.C.; Bernardo, R.M.; de Oliveira, H.A.; Rosa, P.F.F. Multi-UAV agent-based coordination for persistent

surveillance with dynamic priorities. In Proceedings of the 2017 International Conference on Military Technologies (ICMT), Brno,
Czech Republic, 31 May–2 June 2017; pp. 765–771. [CrossRef]

3. Alshbatat, A.I.; Dong, L. Cross layer design for mobile Ad-Hoc Unmanned Aerial Vehicle communication networks. In Proceed-
ings of the 2010 International Conference on Networking, Sensing and Control (ICNSC), Chicago, IL, USA, 10–12 April 2010;
pp. 331–336. [CrossRef]

4. Semsch, E.; Jakob, M.; Pavlicek, D.; Pechoucek, M. Autonomous UAV Surveillance in Complex Urban Environments. In Proceed-
ings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Milan,
Italy, 15–19 September 2009; Volume 2, pp. 82–85. [CrossRef]

5. Maza, I.; Caballero, F.; Capitan, J.; Martinez-de Dios, J.R.; Ollero, A. Experimental Results in Multi-UAV Coordination for Disaster
Management and Civil Security Applications. J. Intell. Robot. Syst. 2011, 61, 563–585. [CrossRef]

6. De Freitas, E.P.; Heimfarth, T.; Netto, I.F.; Lino, C.E.; Pereira, C.E.; Ferreira, A.M.; Wagner, F.R.; Larsson, T. UAV relay network to
support WSN connectivity. In Proceedings of the International Congress on Ultra Modern Telecommunications and Control
Systems, Moscow, Russia, 18–20 October 2010; pp. 309–314. [CrossRef]

7. Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial
vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [CrossRef]

8. Barrado, C.; Messeguer, R.; Lopez, J.; Pastor, E.; Santamaria, E.; Royo, P. Wildfire monitoring using a mixed air-ground mobile
network. IEEE Pervasive Comput. 2010, 9, 24–32. [CrossRef]
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