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Abstract: In this article, a fuzzy logic model is proposed for more precise hourly electrical power
demand modeling in New England. The issue that exists when considering hourly electrical power
demand modeling is that these types of plants have a large amount of data. In order to obtain a more
precise model of plants with a large amount of data, the main characteristics of the proposed fuzzy
logic model are as follows: (1) it is in accordance with the conditions under which a fuzzy logic model
and a radial basis mapping model are equivalent to obtain a new scheme, (2) it uses a combination of
the descending gradient and the mini-lots approach to avoid applying the descending gradient to all
data.

Keywords: fuzzy logic model; descending gradient; mini-lots approach; hourly electrical power de-
mand

1. Introduction

The availability of energy is strongly related to quality of life and wellness in humans
and is also a sign of economic growth. The availability of hourly electrical power is in
demand, which is one of the clearest indicators of development. Currently, 70% of the
total hourly electrical power demand is produced by fossil fuels. This indicates that
the relationship between electrical producing and consuming is extremely important.
More recently, the hourly electrical power demand has been changing rapidly. The issue of
hourly electrical power demand modeling has been addressed with different approaches.
This has led the companies involved in this service to look for other approaches in order to
obtain hourly electrical power demand modeling.

In the last decade, cities have experienced a significant growth in the total hourly
electrical power demand. As the needs of hourly electrical power demand grow, the
complexity of the plant grows. There are many factors that influence the hourly electrical
power demand. In this scenario, modeling approaches need more precision.

Hourly electrical power demand modeling relies not only on the availability of primary
fuels, but also in the following economic technical factors:

• Knowing the behavior of financial expenses for fuel acquisition in the hourly electrical
power demand.

• Anticipating changes in electrical networks, substations, and transmission lines.
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• Applying new measures for saving.

On a technical level, the behavior of growth or decrease in the hourly electrical power
demand, also referred to as hourly electrical power demand modeling, makes it possible
to achieve the maximum hourly electrical power demand in the best possible economic
conditions. The modeling of events requires a meticulous study of past events as well as
their relationships, and from this, trying to extrapolate an actual event.

There are some approaches used in various applications. In References [1–3], the ap-
proaches are for system controls. In References [4–6], the approaches are for plant modeling.
In References [7–9], the approaches are for parameter optimization. In References [10–12],
the approaches are for prediction. In References [13–15], the approaches are for classifica-
tion. In [16–18], the approaches are for recognition. Since these approaches use modeling
in various applications, this modeling could also be applied to the behavior of the hourly
electrical power demand.

Some approaches are also used for hourly electrical power demand modeling. In
References [19–21], the authors used recurrent neural models. In References [22–25], the
authors used deep neural models. In References [26–29], the authors compared neural
and fuzzy logic models. In References [30–32], the authors used fuzzy logic models.
In References [33–36], the authors used neural models. Since these approaches do not
frequently use the fuzzy logic models for hourly electrical power demand modeling, any
contribution with regard to this subject is welcome by the scientific community.

The issue that exists when considering hourly electrical power demand modeling is
that this type of plant has a large amount of data. This indicates that the approach that
is employed for the modeling of plants with a large amount of data may require a high
computational cost. With this in mind, an approach capable of modeling a large amount of
data is required.

In this article, a fuzzy logic model is proposed for a more precise hourly electrical
power demand model using the data provided by the International Organization for
Standardization (ISO) from New England between2002 to 2006. While the data provided
are old, this plant has a large amount of data.

In order to obtain a more precise model of plants with a large amount of data, the
main characteristics of the proposed fuzzy logic model are as follows: (1) it is in accordance
with the conditions under which a fuzzy logic model and a radial basis mapping model
are equivalent to propose a new scheme which uses training and generalization, (2) it
uses a combination of the descending gradient and the mini-lots approach to apply the
descending gradient to a small subset of the training dataset where the subset is called
mini-lot and the set is called lot.

The organization of this article is as follows. In Section 2, the fuzzy logic model, the
descending gradient, and the mini-lots approach are detailed. In Section 3, the fuzzy logic
model and the neural model are compared for a more precise hourly electrical power
demand model. In Section 4, the conclusion, implications, and future research are detailed.

2. Fuzzy Logic Model Approach

The proposed fuzzy logic model is in accordance with the conditions under which a
fuzzy logic model and a radial basis mapping model are equivalent to obtain a new scheme
where the mentioned conditions are summarized as follows [37]:

• Both the fuzzy logic model referred to in this document and the radial basis mapping
model use the same aggregation method (namely, either weighted average or weighted
sum) to derive their overall outputs.

• The rules number in the fuzzy logic model is equal to the unit number in the radial
basis mapping model.

• Each membership mapping of the fuzzy rule antecedent in the fuzzy logic model is
equal to each radial basis mapping of the radial basis mapping model. One way to
achieve this is to use Gaussian membership mappings with the same variance as in
the fuzzy rule and to apply additions to calculate the firing strength.
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• They should have the same constant terms (for the zero-order fuzzy logic model and
original radial basis mapping model) or linear equations (for the first order fuzzy logic
model and extended radial basis mapping model).

In order to obtain a precise model with the fuzzy logic model, the data must be highly
variant and the training and generalization must be used. Both the training, as represented
by the adjustment of terms, and the generalization of the resulting model are related;
neither works well without the other being correctly executed.

In the training, the fuzzy logic model calculates its terms in relation to a plant at
each time to obtain a result which is compared with the actual value of the plant; the
fuzzy logic model’s terms are then adjusted to try to reduce the error. Through the
initialization of terms, the fuzzy logic model has a point in which to start adapting the
terms. The training takes place over time until the terms stabilize and the error criterion
converges to a minimum value.

The basic approach to estimate the modeling efficiency of the fuzzy logic model is
to measure the error made on a new training dataset, also called generalization data.
This approach consists of working only one set of data and reserving a percentage of said
data (around 20%) to check the generalization of the modeling once it had been trained.

The schema of the fuzzy logic model employed in this article is shown in Figure 1.

Figure 1. The schema of the fuzzy logic model.

The fuzzy logic model is
a1 = x

z2 = θ1a1
a2 = g(z2)

z3 = h(x) = θ2a2

(1)

a1 is the input, a2 = g(z2) is the output of the rules part, and z3 = h(x) is the output
of the fuzzy logic model.

The Gaussian membership mapping is

g(z2) =
1

σ
√

2π
e−

(z2−c)2

2σ2 (2)

z2 is the input, c is the center, and σ is the width.
For the training of the fuzzy logic model by means of the descending gradient, the

next methodology is implemented:

(1) Terms are initialized randomly.
(2) Forward propagation is implemented to obtain h(x).
(3) The value of the cost J(θ1, θ2) is obtained.
(4) Backward propagation is implemented by using the descending gradient and the

mini-lots approach described in the following two subsections.
(5) The descending gradient is employed to optimize the terms (θ1, θ2).
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The next two approaches of the fuzzy logic model described in the following two
subsections are intended to deal with a large amount of data.

2.1. Descending Gradient

The fuzzy logic model is fed by the training data. The terms are then initialized and
forward propagation is implemented using the Gaussian membership mapping in the
rules part to obtain the model, which is compared to the plant output. The terms are then
optimized using the descending gradient until the error converges to a minimum [38,39].

The descending gradient is employed, and the cost is

J =
1
2

m

∑
i=1

e2 =
1
2

m

∑
i=1

(h(x)− y)2 (3)

y is the plant output, m is the number of rules, and the error e is

e = h(x)− y = z3 − y (4)

In the backward propagation for the output part,

∂J
∂θ2

= ∂J
∂e

∂e
∂z3

∂z3
∂θ2

= (z3 − y) a2
(5)

The gradient is negative, and taking into account a constant learning factor α, the tune
of the terms in the output part is

θ2 = θ2 − α ∂J
∂θ2

⇒ θ2 = θ2 − α(z3 − y) a2
(6)

In the backward propagation for the rules part,

∂J
∂θ1

= ∂J
∂e

∂e
∂z3

∂z3
∂a2

∂a2
∂z2

∂z2
∂θ1

=

(z3 − y)θ2

 c−z2
σ2 e

− (z2−c)2

2σ2

σ
√

2π


 a1

(7)

The gradient is negative, and taking into account a constant factor α, the tune of the
terms in the rules part is

θ1 = θ1 − α ∂J
∂θ1

⇒ θ1 = θ1 − α

(z3 − y)θ2

 c−z2
σ2 e

− (z2−c)2

2σ2

σ
√

2π


 a1

(8)

2.2. Descending Gradient with Mini-Lots

One of the most frequently used approaches to adjust the fuzzy logic model is the
descending gradient with mini-lots, which is a modification of the descending gradient.
The main characteristic of this approach is that the descending gradient is applied to a
relatively small subset of the training dataset; the subset is called a mini-lot, and the set is
called a lot. The training dataset is divided into mini-lots, and all mini-lots are traversed by
tuning the terms in each mini-lot. A tour of all mini-lots corresponds to an epoch [40,41].

Employ a training dataset with m data and u characteristics,

Xum = [x1, x2, x3, . . . , xum]
x1, um

(9)
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Ym = [y1, y2, y3, . . . , ym]
y1, m

(10)

Often, this type of modeling cannot find the global minimum due to the complexity in
the cost (see Figure 2), and consequently, it is trapped in a regional minimum.

Figure 2. The cost of the fuzzy logic model.

To address this issue, the descending gradient with mini-lots was employed. This type
of optimizer divided the training dataset into small lots in order to avoid being trapped in
a regional minimum and to achieve the global minimum.

Xnm =

[
xu1, . . . , xun

x1, un

∣∣∣∣∣xun+1, . . . , xu2n
x2, un

∣∣∣∣∣, . . . , xupn
xp, un

]
(11)

Ym =

[
y1, . . . , yn

y1, n

∣∣∣∣∣yn+1, . . . , y2n
y2, n

∣∣∣∣∣, . . . , ypn
yp, n

]
(12)

The approach of the descending gradient with mini-lots was expressed (we randomly
separated the training data into p mini-lots of size n) as follows:

(1) For each epoch.
(2) Calculate the gradient on each of the mini-lots 1, 2, . . . , p

θ1 = θ1 − α


(z3 − y)θ2

 c−z2
σ2 e

− (z2−c)2

2σ2

σ
√

2π


 a1


θ2 = θ2 − α(z3 − y)a2

(13)

(3) α is the constant factor which is chosen with a value between 0 and 1, and y is the
plant output.

(4) Repeat for the next epoch.

The properties of the descending gradient with mini-lots are:

• It is not necessaryto use all the data to find a good direction of descent. A small
number of mini-lots may be enough for agood model.

• Calculating the descending gradient using the entire training dataset is computation-
ally inefficient.

3. Simulations

In this section, the neural model of [33–36] was compared to the fuzzy logic model of
this article for the hourly electrical power demand model.

Accurate hourly electrical power demand modeling is critical for effective operations
and planning in order to maximize profits. The hourly electrical power demand influences a
series of decisions, including the period in which the generators should be used, wholesale
prices, and market prices.



Electronics 2021, 10, 448 6 of 12

The training dataset was a table with a record of hourly electricity demands and
temperature observations from the International Organization for Standardization (ISO)
for New England between2002 to 2006. There are other more recent training data from
other places, but these training data were selected because they offer the largest amount
of consecutive data [42]. The data were measured during the first half of each year.
The information included the temperature of the dry bulb and the dew point.

For the hourly electrical power demand model, 8 characteristics were taken into
account in order to train the fuzzy logic model:

• Dry bulb temperature.
• Dew point.
• Time of the day.
• Weekday.
• Mark indicating a holiday or weekend.
• Average demand of the past day.
• Demand of the same time and the past day.
• Demand of the same time and same day of the past week.

We used the demand of the same day as the output.
With the7000 training dataset, the fuzzy logic model was trained to model the hourly

electrical power demand. Since the fuzzy logic model had been trained, the behavior was
checked, sothe 1000 generalization dataset was used for each characteristic.

Table 1 shows the numerical values for the 8 inputs with training data and 1 output
with training data, where count is the number of training data, mean is the mean of
the training data, std is the standard deviation of the training data, min is the minimal
value of the training data, max is the maximum value of the training data, BulbT(Â◦F) is
the temperature of the dry bulb, dewPoint(Â◦F) is the dew point, Weekend is the mark
indicating if this is free or a weekend day, PaverageLoad in MWh is the average load
of the past day, LoadPreviousD in MWh is the load of the same hour in the past day,
LoadPreviousW in MWh is the load of the same hour and day in the past week, and
ActualLoad in MWh is the load of the same hour and day in the current week.

Table 1. The numerical values for the 8 inputs and 1 output with data.

Count Mean Std Min 25% 50% 75% Max

BulbT 7000 50.0716 18.5104 −7 36 51 65 96
dewPoint(Â◦F) 7000 38.3980 19.6439 −24 24 40 55 75

Hour 7000 12.4984 6.9224 1 6 12 18 24
Day 7000 4 2.0003 1 2 4 6 7

Weekend 7000 0.6890 0.4629 0 0 1 1 1
PaverageLoad 7000 15,218.2727 2972.5212 9152 12,950 15,411 17,085 28,130
LoadPreviousD 7000 15,214.8604 2975.7433 9152 12,938.25 15,418 17,087.5 28,130
LoadPreviousW 7000 15,211.0955 1739.9369 509.5833 14,053.5520 14,953.0416 16,125.9791 23,479.4583
ActualLoad 7000 15,214.9935 2976.1711 9152 12,936 15,420 17,089 28,130

The fuzzy logic model had3parts:1input part,1 rules part, and1 output part. The input
part had8 terms, the rules part had3 rules, and the output part had1 term.

Remark 1. The number of rules in the rules part, the constant factor α, the width σ, the center c,
and the number of training data for each mini-lot were chosen by trial and error such that good
modeling was obtained from the fuzzy logic model.
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3.1. The Fuzzy Logic Model

The modeling of the fuzzy logic model was done using the next tune of the terms:

θ1 = θ1 − α


(z3 − y)θ2

 c−z2
σ2 e

− (z2−c)2

2σ2

σ
√

2π


 a1


θ2 = θ2 − α(z3 − y)a2

(14)

The fuzzy logic model was trained with a constant factor of α = 0.9, the width was
σ = rand, the center is c = rand. rand was a random number between0to1.

This type of optimizer divided the training dataset into small lots in order to avoid
being trapped in a regional minimum so that it could achieve the global minimum or a
value very close to it. For its implementation,8 mini-lots were selected and each mini-lot
of2000 training dataset was selected. The remaining training dataset can be expressed in
this way:

X8, 43833 =

[
x1, . . . , x2000

x1, 8, 2000

∣∣∣∣∣x2001, . . . , x4000
x2, 8, 2000

∣∣∣∣∣, . . . , x8000
xp, 8, 2000

]

Y43833 =

[
y1, . . . , y2000

y1, 2000

∣∣∣∣∣y2001, . . . , y4000
y2, 2000

∣∣∣∣∣, . . . , y8000
y8, 2000

] (15)

The next results wereobtained.

3.2. The Comparison Results

Modeling occurs from time to time until the terms stabilize and the error criterion
converges to some minimum value. The basic approach to obtain efficiency of the fuzzy
logic model was to create new tuning with the trained terms and to measure the error
made on a new training dataset (generalization data). The approach consisted of working
only one set of data and reserving a percentage of said data to check the generalization
of the plant once it had been trained.The 7000 dataset was used for the training andthe
1000 training dataset was used for the generalization.

The cost is employed for comparison. The cost J is defined in (3). It is transcendent to
know that the result of the cost J with a value closer to0 is desired, which yieldsa greater
adjustment of the modeling to the output. It is important to note that the cost J defined in (3)
contains and is directly proportional to the error e defined in (4). Consequently, the closer
to 0in the cost J yields, the closer to 0in the error e which yields a greater adjustment of the
modeling to the output.

The results of the neural model of [33–36] against the fuzzy logic model of this
article for hourly electrical power demand modeling are shown in Figures 3 and 4 for
modeling comparisons, in Figures 5 and 6 and Table 2 for the cost comparisons during the
training and generalization of the first training dataset, in Figures 7 and 8 for modeling
comparisons, and Figures 9 and 10 and Table 3 for the cost comparisons during the training
and generalization of the second training dataset. From the Figures 3, 4, 7 and 8 it can be
seen that the fuzzy logic model is more precise than the neural model for hourly electrical
power demand modeling due to the fact that the advised approach obtains a model closer
to the plant. From Figures 5, 6, 9 and 10 as well as Tables 2 and 3, it is evident that the fuzzy
logic model of this article is more precise than the neural model for hourly electrical power
demand modeling due to the fact that the advised approach contains a smaller cost value.
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Figure 3. Training results of the first training dataset.

Figure 4. Generalization results of the first training dataset.

Figure 5. Training costs of the first training dataset.
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Figure 6. Generalization costs of the first training dataset.

Table 2. Costs for the first training dataset.

Neural Model Fuzzy Logic Model

J of training 0.0716 0.0512
J of generalization 0.0543 0.0419

Figure 7. Training results of the second training dataset.

Figure 8. Generalization results of the second training dataset.
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Figure 9. Training costs of the second training dataset.

Figure 10. Generalization costs of the second training dataset.

Table 3. Costs for the second training dataset.

Neural Model Fuzzy Logic Model

J of training 0.0804 0.0737
J of generalization 0.0652 0.0294

4. Conclusions

In this article, the hourly electrical power demand model is established. Hourly elec-
trical power demand modeling is used to save electricity as a renewable energy approach,
thus a fuzzy logic model which uses the scheme of the radial basis mapping model and
the descending gradient with mini-lots is proposed. This fuzzy logic model was compared
to a neural model. The results of the analysis indicated that the former approach is more
precise due to the fact that its modeling was closer to that of the real plant and that it
offered a smaller cost value. The policy implication is with regard to the public availability
of the data; this data is not publicly available in the country where it was researched, while
in other countries the data is public. For future research, an alternative approach to the
fuzzy logic model should be analyzed to seek and to improve the aforementioned results.
The proposed approach can be applied in the modeling of robotic or mechatronic plants.
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