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Abstract: The industrial Internet of Things (IoT) can monitor production in real-time by collecting
the status of parts on the production line with cameras. It is easy to have bright and dark areas in
the same image because of the smooth surfaces of mechanical parts and the unstable light source,
which affects semantic segmentation’s performance. This paper proposes a joint learning method
to eliminate the influence of illumination on semantic segmentation. Semantic image segmentation
and image decomposition are jointly trained in the same model, and the reflectance image is used to
guide the semantic segmentation task without the illumination component. Moreover, this paper
adopts an enhanced convolution kernel to improve the pixel accuracy and BN fusion to enhance
the inference speed, optimizing the model to meet real-time detection needs. In the experiments, a
dataset of real gear parts was collected from industrial IoT cameras. The experimental results show
that the proposed joint learning approach outperforms the state-of-the-art methods in the task of
edge mechanical part detection, with about 4% pixel accuracy improvement.

Keywords: industrial IoT; joint learning; semantic segmentation; asymmetric convolution; BN fusion

1. Introduction

With the development of Industry 4.0, promoting the combination of the Internet of
Things (IoT) and modern manufacturing is of great significance to promoting industrial
production modernization [1]. Common mechanical parts, such as gears and slender shafts,
are widely used in the military, aerospace, automobile and manufacturing industries. The
precision of parts directly affects the equipment’s working performance and service life.
Therefore, combined with the industrial IoT, a large number of intelligent cameras can
be used to collect the status of parts on the production line in real-time. Each step of the
production process can be identified, monitored and managed, which can significantly
improve the yield rate of factory parts [2].

Using an intelligent camera, the size of mechanical parts can be measured with the
non-contact method, in which the edge detection algorithm of the part image is crucial.
Xin et al. [3] used the improved Roberts operator to extract the contour of the target, and
then Zernike moments were used for sub-pixel positioning. At the same time, they were
using the Otsu method to automatically select the segmentation threshold, which achieves
good detection efficiency and detection accuracy. Ofir N et al. [4] regarded edge detection
as a group of discrete curves to search for faint edges with noise interference, and effectively
detect these faint edges. These traditional methods mostly extract the edge by analyzing
the shape, texture, color and other features of the target image [5], then calculating the parts’
size. Generally, to build a model for specific applications, we need to be familiar with the
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process of edge detection and rely on the manually designed extractor for feature extraction.
Besides, we also need to have professional knowledge and parameter adjustment process,
which cannot be widely applied.

Industrial automatic production equipment is characterized by large scale and compli-
cated process. Mostly distributed intelligent cameras collect different types of images, so
classical algorithms are difficult to meet the actual needs. The development of deep learning
theory and practice provides a useful reference for image edge detection and segmentation,
and semantic segmentation is a challenging problem [6]. The sensor performance of the
IoT camera is limited, and the image quality is low due to the movement of the parts and
the specular reflection of the metal surface. The imaging conditions changes may hurt the
segmentation process, including shadow, reflection, light source color and intensity.

For IoT devices with limited cost and performance, Sharma et al. [7] used Refined
Graph Cut Segmenter to design an improved image segmentation technology for low-
resolution images and restricted devices. They applied the algorithm to low-end IoT servers.
Khan et al. [8] proposed a novel cascade method, which combines hand-made features with
convolutional neural network (CNN) to process brain tumor image segmentation tasks
generated by IoT devices. At present, there are few types of research on image segmentation
algorithms in the field of industrial production, and the existing models are not ideal
for image processing with large differences between light and shade. Thus, the state-of-
the-art approaches are hard to meet the detection requirements of actual production in
industrial IoT.

Industrial IoT camera is greatly affected by illumination factors when collecting images,
so this paper’s method improves the semantic segmentation effect by excluding illumina-
tion. Intrinsic image decomposition is the process of decomposing an image into reflectance
components and illumination components. The reflectivity component is an inherent prop-
erty of the object and will not change with light factors. Illumination components change
continuously with light source factors, including specular reflection and shadows, that affect
image semantic segmentation. Therefore, it is more effective to use the reflectance image for
semantic segmentation because it does not contain the negative effects of illumination. On
the contrary, semantic segmentation information has prior knowledge of object reflectivity,
which can guide the intrinsic image decomposition.

In this paper, a convolutional neural network with an encoder-decoder structure is
proposed. After extracting image features through one encoder, two decoders are used
to process image segmentation and image decomposition tasks, respectively. Regarding
segmentation and decomposition as a mutually-promoting collaborative process, the
model is trained with a joint learning strategy to eliminate the influence of light to improve
mechanical parts segmentation accuracy. The contributions of this paper are as follows:

(1) Design a semantic segmentation model for parts image, use the joint learning method
to improve the semantic segmentation performance;

(2) Create an image dataset of mechanical parts collected by IoT camera with labels;
(3) Use asymmetric convolution and BN fusion to optimize the model performance.

The remaining portions of this paper are organized as follows: the related work
and principles are stated in Section 2; the method part is discussed in Section 3; and the
experiments and results are discussed in Section 4. Finally, the conclusion of this paper is
presented in Section 5.

2. Related Work

This section briefly introduces the progress of multi-task learning, and explains the
principle of the two tasks to be jointly processed in this paper.

2.1. Multi-Task Learning

Multi-Task learning is a method that combines multiple tasks and learns simultane-
ously to enhance the ability of model representation and generalization. Joint learning can
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be realized through the neural network approach. The main work can currently be divided
into Parameter Sharing [9] and Tagging strategy [10].

As shown in Figure 1, there are three existing parameter sharing schemes: Hard shar-
ing [11], Soft sharing [12], and hierarchical sharing [13]. Hard Sharing is the most widely used
sharing mechanism today, embedding data representations of multiple tasks into the same
semantic space, and then extracting feature representations for each task using a specific
layer. Hard sharing is easy to implement and is suitable for tasks with strong correlation, but
it often performs poorly when encountering weakly related tasks. For the soft sharing, each
task uses a single network for learning, and the network of each task can access information
in the network corresponding to other tasks, such as eigenvalues, gradients and so on. Al-
though the soft sharing mechanism is very flexible and does not need any assumptions about
task dependencies, additional parameters are required for assigning each task a network.
Hierarchical sharing is to do the simple tasks in shallow layers of the network and complex
tasks in deep layers. Hierarchical sharing is more flexible than hard sharing and requires
fewer parameters than soft sharing. However, designing an efficient hierarchical structure
for multiple tasks is mainly relies on expert experience.

Figure 1. Parameter sharing.

Image segmentation is based on the object’s category information, and the category
information contains the prior knowledge of the object’s reflectivity attributes, so segmenta-
tion and decomposition can be used as a vital correlation task. In this paper, a hard sharing
mechanism is used to extract features with one encoder, and two decoders handle the
corresponding tasks separately. Furthermore, the soft sharing is also combined between
decoders to improve each task’s performance by sharing parameters.

2.2. Image Semantic Segmentation

Image segmentation is a process of assigning a label to each pixel in the image such
that pixels with the same label are connected for some visual or semantic property [6], then
divide into a different region. Semantic segmentation technology based on deep learning
has dramatically improved the performance of image edge detection. Long J et al. [14]
proposed a full convolutional neural network (FCN), which replaces the full connection
layer with the convolution layer in CNN, retains the target’s spatial information in the
output and realizes semantic segmentation by pixel-level classification. Benefit from rich
spatial information and large perception domain [15], many classic models such as U-
Net [16], Mask R-CNN [17], Deeplab [18], etc., were proposed based on FCN. Most of
these models use public datasets such as ImageNet [19], to show the model’s performance.
According to the proposed model, researchers use some improvements and optimizations
to satisfy the specific scenarios. To improve the segmentation performance, Stan T et al. [20]
sampled a large number of small images in a fixed number of X-ray datasets to train the
neural network. Smith A et al. [21] designed a U-Net-based convolutional neural network
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and constructed an annotated chicory dataset, which successfully completes the root system
segmentation task of plants. It also demonstrated the feasibility of using deep learning to
create the own dataset. Vuola A et al. [22] compared the advantages and disadvantages
between U-Net and Mask R-CNN and developed an integrated model, which achieved
better results in the nuclear segmentation task.

In mechanical parts image segmentation in the industrial scene, the change of lighting
conditions will cause the change of object appearance when the image is collected in the
field, which hurts the semantic segmentation task. In this paper, the segmentation and the
decomposition tasks are learned jointly to reduce the impact of illumination.

2.3. Intrinsic Image Decomposition

An image can be decomposed to generate countless combinations of reflectance and il-
lumination, so image decomposition is a long-standing ill-posed problem [23]. Li et al. [24]
added non-local texture constraints to traditional techniques to optimize intrinsic image
decomposition, significantly improving previous algorithms. With the development of
technology, the latest research on intrinsic image decomposition has turned to deep learning
technology. Shi et al. [25] used a neural network decoder to jointly optimize each compo-
nent by learning the correlation between intrinsic attributes, and achieved robust and real
decomposition results. Based on this study, we use image segmentation attributes as an
assistant to improve the performance of other tasks by joint learning.

3. Method

To reduce the influence of illumination factors on parts image segmentation, we use
the joint learning method in the encoder-decoder model. A shared encoder is used to extract
features, and two decoders are used to learn image segmentation and image decomposition,
respectively. Through intrinsic image decomposition, the reflectance image without illumi-
nation component is used to guide the semantic segmentation task; simultaneously, the class
attribute provided by semantic segmentation contains the prior knowledge of reflectance of
the target object, which guides the image decomposition task. Besides, asymmetric convolu-
tion and BN fusion enhance the feature learning ability and accelerate the operation speed,
respectively.

3.1. Joint Learning Method

Image intrinsic decomposition is based on Retinex theory [26], which decomposes an
image into the product of a reflectance image and illumination image. The results obtained by
image decomposition are not unique, and most of the current work is devoted to solving the
ill-posed problem of intrinsic image decomposition. Suppose that I is the original image, R is
the reflectance image, S is the illumination image and (x, y) is the image’s pixel coordinates.
The classical intrinsic image decomposition can be formulated as:

I(x, y) = R(x, y)S(x, y) (1)

Since the reflectance image is an object’s own property, it is not affected by any light.
According to the ShapeNet [25] model, given an image I, the process of obtaining reflectance
component R and illumination component S by intrinsic image decomposition can be
understood as follows:

(R, S) = F(I, θ) (2)

θ contains all the parameters learned by the image intrinsic decomposition decoder. MSE
is used to optimize each component of θ. Let R∗ to be the ground truth parameter in the
dataset, R is the parameter learned by the decoder and r = R∗− R is the learning difference.
To obtain the most realistic reflectance image, minimize the following formula:

L1(R∗, R) =
1
n ∑

i,j,c
r2

i,j,c−
1

2n2

(
∑
i,j,c

r2
i,j,c

)2

(3)
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where i,j are pixel coordinates; n is the total number of pixels; C is the RGB channel index
of the color image.

Image semantic segmentation task assigns a label based on what the pixel represents.
Through a series of convolution and pooling operations, we can obtain a low-resolution
multichannel feature map containing the characteristics of the relationship between the ob-
ject and its environment. The feature map can provide the contextual semantic information
of the segmented target in the entire image.

For a dataset with n classes and labels, predictions are made of the probabilities that
the pixels belong to each class, and the sum of these probabilities is 1:

n

∑
i=1

P((x, y)|i) = 1 (4)

P represents the probability that a pixel with coordinates (x, y) belongs to class i. After
sampling from a deep feature map, P can be predicted, and the most significant P can be
selected as the label of the pixel. Gather the pixels with the same label to generate a Mask,
which divides the same class of the region.

For our image semantic segmentation task, the dataset has only two classes: conveyor
background and part foreground to reduce the calculation. We use the loss function L2
to calculate the number of wrong pixels in foreground and background prediction. The
smaller of L2 the better outputs, so minimize the following formula:

L2 =
1
n

n

∑
i=1
|yi − ŷi| (5)

where yi is the class of predicted pixels (0 as background, 1 as foreground); ŷi is ground
truth; n is the total number of pixels in the image.

For the whole model, to achieve joint learning, we combine the loss function of
segmentation decoder and decomposition decoder with training the parameters, as shown
below jointly:

L = γ1L1 + γ2L2 (6)

γ is a manually set coefficient, which represents the weight of the corresponding loss
function. By optimizing L to get the best output of image segmentation, and impact of γ
will be shown in the evaluation part.

3.2. Asymmetric Convolution

To achieve better segmentation performance, most ideas for model improvement are
mainly focused on: (1) how to connect the layers [27]; (2) combining different layers to
improve the learning quality [28]. The asymmetric convolution [29] uses an improved
scheme independent of the network structure. It does not increase computation and can
fulfill the real-time requirements of image detection in the industrial field. The structure of
asymmetric convolution is shown in Figure 2.

Suppose several 2D kernels with compatible sizes operate simultaneously on the same
input to produce the output with the exact resolution, and their outputs can be summed. In
that case, these kernels can be added at the corresponding positions to obtain an equivalent
kernel producing the same output:

I × K1 + I × K2 + I × K3 = I ×
(

K1 ⊕ K2 ⊕ K3
)

(7)

Let the input I ∈ RX×Y×C, the convolution kernel K ∈ RA×B×C and ⊕ is the addition
of kernel parameters at corresponding positions. Taking the convolution kernel of 3× 1 as
an example, there are M convolution kernels and the output of the j convolution kernel K j

is at the Jth channel, the value of a point P in the output can be expressed as follows:
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P:,:,j =
C

∑
c=1

3

∑
a=1

1

∑
b=1

K j
a,b,cWa,b,c (8)

where W is the corresponding sliding window. If the points P output by the three convo-
lution kernels corresponds to the same sliding window, then the additivity of formula 7
holds (dark color in Figure 2).

Figure 2. Asymmetric convolution.

3.3. BN Fusion

Batch normalization [30] can accelerate the convergence speed of model training,
make the model training process more stable and avoid gradient explosion or gradient
disappearance. Usually, neural networks are batch normalized after convolution, which
requires two calculations. BN fusion combines these two steps into one.

For a convolution layer, the output is determined by the weights ω and the bias b:
Xl = ω× Xl−1 + b. The batch normalization is shown in formula (9):

Xnorm = γ× X− µ√
σ2 + ε

+ β (9)

γ and β are trainable hyperparameters, which are iterated by backpropagation. As a restore
parameter, it retains the distribution of the original data to a certain extent. µ is the mean
value of input X, σ2 is the variance and ε is a constant to avoid errors of dividing by zero.

The homogeneity of convolution allows subsequent BN operations and linear scaling
to be integrated into the convolution layer with additional bias. Expand X in formula (8)
and take the following deformation:

Xnorm =
γ×ω√
σ2 + ε

× Xl−1 + β + γ× b− µ√
σ2 + ε

(10)
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Construct a new convolution kernel that new weights ω̃ = γ×ω√
σ2+ε

, new bias b̃ =

β + γ × b−µ√
σ2+ε

.Then, the new kernel’s output is the same as the result of the original
Conv+BN, but only one calculation. After the model is trained, using BN fusion to speed
the inference time.

3.4. Model Structure

The model used in this paper has a 5-layer encoder and a 5-layer decoder, respectively.
The encoder uses a convolutional kernel of 3× 3 and a stride of 2 to extract each layer’s
features and then uses the batch normalization to reduce the correlation between the layers.
After BN operation, the rectified linear unit (ReLU) [31] is used as the activation function.
The decoder uses the feature size symmetrical to the encoder for up sampling. The model
is shown in Figure 3.

Figure 3. Model structure for joint learning.

There is a mirror link between the encoder and the decoder. We use the copy and crop
method in U-Net [16] to make the upsampling process more accurate. There is parameter
sharing between the two decoders, the feature values after ReLU activation are shared
with each other. There are two reasons for this: (1) The reflectance image obtained by
the intrinsic decomposition does not contain illumination components, so as to guide
the segmentation process to reduce the incorrect segmentation caused by the difference
of highlight and shadow. (2) The class information obtained by semantic segmentation
contains prior knowledge about an object’s reflectance, which can guide the generation of
more accurate reflectance images.

In the training phase, we use three convolution kernels of 3× 1, 1× 3 and 3× 3, all
of which use a 3× 3 sliding window to match the existing square convolution kernel. The
branches of the three convolution kernels are all Conv + BN operation. After the training is
completed, they are fused into a standard square convolution kernel of size 3× 3. This process
does not require any additional hyperparameters. The output composition is as follows:

O =


(I × K1 − µ1)

γ1
σ1

+ β1

(I × K2 − µ2)
γ2
σ2

+ β2

(I × K3 − µ3)
γ3
σ3

+ β3

(11)

I is the input image, and the output O is the sum of three branches after convolution and
batch normalization. µ, γ, σ and β are the parameters in BN operation. The enhanced
square convolution kernel contains BN fusion:
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O = I ×
(

γ̃1

σ̃1
K1 ⊕

γ̃2

σ̃2
K2 ⊕

γ̃3

σ̃3
K3

)
+ β (12)

γ̃, σ̃ and β̃ are the parameters after BN fusion. Branches can be converted into standard
convolution kernel by adding kernel parameters at the corresponding position.

4. Results and Discussion

This section first introduces the dataset and evaluation index. Then proves the effec-
tiveness of the proposed method through the contrast experiment. Finally, we compare the
experimental results with the state-of-the-art model.

4.1. Dataset

In this study, we needed to do effective semantic segmentation for the images collected
on the conveyor belt in industrial production, so we constructed a new dataset containing
lots of images of metal parts. Considering the different illumination conditions in different
conveyor belt areas, different sizes of gears occupy different pixels. A total of 600 original
images were collected in a manual setting in an area without specular reflection. After
collecting the original images, we added 5% Gaussian noise through Photoshop to obtain
noisy images. There are 1200 images in the dataset, and we extracted the target area and
cropped the images to 320 × 320 resolution. We randomly selected 1000 images as the
training set, and the remaining 200 images were used as the test set.

Intrinsic image decomposition training requires labels that cannot be labeled by hand.
Therefore, we used the part image with ideal shooting results as the benchmark, and ren-
dered these images with the specified intensity of high light. The original low-light images
were taken as the ground truth reflectance attributes. As for the semantic segmentation label,
we manually defined the black area as the foreground and the white area as the background.
An example of the dataset is shown in Figure 4.

Figure 4. Examples from the dataset. The first image was taken in the ideal environment, which
achieved the best imaging result; the second image has the foreground and background manually
marked, which can be used as the label of image semantic segmentation; last is the image with
interference factors collected in the simulated industrial environment as the input of our model.

4.2. Evaluation Criteria

The proposed model performs two tasks simultaneously, but the main target is image
segmentation. Therefore, for the intrinsic image decomposition decoder, we quote parame-
ters from the existing model ShapeNet [25], and then fine-tune with the industrial parts
dataset, and use MSE to measure the decomposition effect.

For the image semantic segmentation task, we use the pixel accuracy to evaluate the
prediction effect:

PA =
TP + TN

TP + TN + FP + FN
(13)

True positive (TP) is the number of pixels correctly predicted as the target; true nega-
tive (TN) is the number of pixels accurately indicated as the background. On the contrary,
false positive (FP) and false negative (FN) are the pixels with the wrong predictions.
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To comprehensively analyze the segmentation performance and compare with the
mainstream segmentation models, we also used IoU to evaluate the segmentation effect:

IoU =
target ∩ prediction
target ∪ prediction

(14)

4.3. Experimental Results and Analysis

The experimental configuration was as follows: CPU, AMD R5 2600; GPU, NVIDIA
GTX 1660Ti; RAM, 16 GB. Experiments were programmed in the TensorFlow framework [32],
the code running environment was Python3.8 and the deep learning environment was
CUDA10.1 and cudnn7.6. We used RMSProp [33] optimizer to train the model.

4.3.1. Experiment One: Effectiveness of Parameter Sharing in Joint Learning

This experiment mainly verifies the effectiveness of parameter sharing. We use the
control variable method to test the following cases. Case 1: without joint learning; only
the semantic segmentation decoder works. Case 2: the intrinsic image decomposition
decoder shares one-way parameters with the semantic segmentation decoder to help with
the segmentation task. Case 3: two decoders pass parameters to each other to achieve joint
learning. The experimental results are shown in Table 1.

Table 1. Parameter sharing in joint learning.

/ Segmentation Decomposition
PA IoU Reflectance MSE

case 1 0.903 0.766 -
case 2 0.927 0.787 0.0113
case 3 0.941 0.813 0.0089

The results show that the joint learning method dramatically improves the performance
of semantic segmentation task. Although a single semantic segmentation task can learn
some illumination changes, it cannot eliminate the adverse factors caused by lighting differ-
ences. The intrinsic image decomposition can extract some commonalities. For example,
shading is usually smooth and gray, and the specular reflection is sparse and has high
contrast. Therefore, these commonalities can be used to guide the semantic segmentation
task. At the same time, the object category provided by semantic segmentation also contains
some commonalities of reflectivity, which can in turn, guide the intrinsic image decompo-
sition task. Therefore, in case 3 of joint learning, the segmentation result is better, but the
decomposition is improved. This is because the two tasks promote each other and enhance
the performance.

4.3.2. Experiment Two: Weights of Loss Function

This experiment verified the influence of loss function weights. Let the sum of γ1 and
γ2 be 1; we analyzed the weights of two tasks of different proportions, and how that affect
the model’s segmentation performance. The experimental results are shown in Table 2.

Table 2. Influences of loss function weights.

γ1 γ2 PA IoU

0.1 0.9 0.927 0.792
0.3 0.7 0.941 0.813
0.5 0.5 0.892 0.766
0.6 0.4 0.825 0.694
0.7 0.3 0.735 0.586
0.9 0.1 0.516 0.367
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In Table 2, as the decomposition loss function γ1 increased, the degree to which the in-
trinsic attributes guide the semantic segmentation gradually increases, and the segmentation
performance is improved. However, with the weight γ1 becoming bigger and bigger, the
target of the model focuses on image decomposition; then the evaluation index of segmenta-
tion decays rapidly. The goal of this study was to achieve the best semantic segmentation
performance, so according to the experimental results, γ1 = 0.3 and γ2 = 0.7 were selected
as relatively optimal combinations.

4.3.3. Experiment Three: Influence of Asymmetric Convolution

This experiment compared the effects of the standard convolution kernel and asym-
metric convolution blocks on the model. This experiment was carried out on the parameter
configuration of the first two experiments, and three groups of test results were selected, as
shown in Table 3.

Table 3. Performances of different convolution kernels.

/ Test 1 Test 2 Test 3
PA IoU PA IoU PA IoU

convention 0.941 0.813 0.938 0.809 0.940 0.811
new kernel 0.945 0.818 0.943 0.813 0.945 0.816

For the comparability, all the models were trained until complete convergence, and all
used the same configurations, such as learning rate and batch size. In the data comparisons,
conventional kernel enhanced by the asymmetric convolution blocks can improve the per-
formance of segmentation, increasing the pixel accuracy of about 0.5%; this phenomenon
shows that the different weights inside the enhanced convolution kernel are more important
to the model’s representation ability. Enhanced convolution kernel does not require addi-
tional hyperparameters and inference calculations. This method can be used to improve the
accuracy when the model is constrained by computational budgets or model size.

4.3.4. Experiment Four: Influence of BN Fusion

Based on the previous investigation, the convolution layer and BN layer were fused
in this experiment. To verify BN fusion’s ability to accelerate the processing, we divided
the test set images into 10 batches, and each batch had 100 images. We calculated the time
required to process each batch under different conditions, as shown in Figure 5.

Figure 5. Processing time of each batch.

According to the figure, each batch of images enhanced by BN fusion was generally
faster than baseline, and the average time was increased by about 4.5%. It is worth noting
that the model proposed in this paper is a Conv + BN + ReLu structure, so the fusion of the
convolutional layer and the BN layer is a linear transformation, which will not bring about
calculation errors. BN fusion cannot be used for any nonlinear operation in the middle
layer, such as a Conv + ReLu + BN structure.
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4.3.5. Experiment Five: Comparison with Classical Semantic Segmentation Model

We verified the effectiveness of our model through the segmentation of the industrial
part dataset. We chose two state-of-the-art classical models: FCN [14] and U-Net [16]. The
experimental results are shown in Table 4.

Table 4. Results of different models.

Model PA IoU

SegNet 0.908 0.759
U-Net 0.911 0.769
Ours 0.945 0.818

In Table 4, the results show that, compared with the traditional single-task segmen-
tation model, the proposed joint learning approach can significantly improve the not’s
segmentation performance after eliminating adverse interference. The comparison results
are shown in Figure 6.

Figure 6. Comparison of different models.

In the visualized semantic segmentation results, this paper provides four groups
of different types of gear images to compare the performances of different models. The
first group’s image has a simple object, and the segmentation results of our method and
comparative method are both excellent. However, for the second group, the metal part
image has specular reflection and shadow at the same time. Our approach can eliminate
these two disadvantageous interferences. In the contrast experiment, SegNet eliminated
shadow interference, but the external contour has many gaps; U-Net has continuous contour,
but the shadow is also judged as the target. To demonstrate the ability to resist the highlight
influence, the third group of images has obvious light details on the upper right of the target.
Our method correctly identified it as the target. Still, the two comparison algorithms have
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some misjudgments to some extent. That is, there are some separate background points in
the gear area. The last group of images is complicated; the proposed model combines the
reflection features for semantic segmentation, and achieved a relatively complete contour.
However, because the color inside the target was close to the shadow, the classification
of details was not ideal. U-Net tends to distinguish the shadow as the part target, so the
segmentation result is bulky. SegNet, on the contrary, got many missing edges.

5. Conclusions

The images of mechanical parts collected by industrial IoT cameras are affected by the
light source. Traditional methods cannot eliminate the effects of illumination. To address
this problem, this paper investigated the use of deep learning-based semantic segmentation
methods for mechanical image detection in industrial IoT. Then, a joint learning approach
was proposed to improve the detection performance. The proposed method uses reflection
feature maps to guide semantic segmentation without the influence of illumination. Although
the proposed model is trained on the rendering dataset, it can simulate the effects of specular
reflection and shadow well, so it can produce better results on real images compared to other
algorithms, with a pixel accuracy improvement of about 4%. The simulation study showed
that our proposed approach can effectively eliminate illumination and achieve satisfying
image detection performance in industrial IoT. In the future, the follow-up work will be
carried out in multi-object instance segmentation to make the algorithm more suitable for
the images collected on the industrial scene.
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