
electronics

Article

Memory Access Optimization of a Neural Network Accelerator
Based on Memory Controller

Rongshan Wei 1 , Chenjia Li 1, Chuandong Chen 1,*, Guangyu Sun 2 and Minghua He 3

����������
�������

Citation: Wei, R.; Li, C.; Chen, C.;

Sun, G.; He, M. Memory Access

Optimization of a Neural Network

Accelerator Based on Memory

Controller. Electronics 2021, 10, 438.

https://doi.org/10.3390/

electronics10040438

Academic Editor: Antonio F. Díaz

Received: 16 January 2021

Accepted: 5 February 2021

Published: 10 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China;
wrs08@fzu.edu.cn (R.W.); N181127090@fzu.edu.cn (C.L.)

2 Center for Energy-Efficient Computing and Applications, Peking University, Beijing 100871, China;
gsun@pku.edu.cn

3 School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China;
mhhe@fjmu.edu.cn

* Correspondence: cdchen@fzu.edu.cn; Tel.: +86-0591-87860838

Abstract: Special accelerator architecture has achieved great success in processor architecture, and it
is trending in computer architecture development. However, as the memory access pattern of an
accelerator is relatively complicated, the memory access performance is relatively poor, limiting
the overall performance improvement of hardware accelerators. Moreover, memory controllers for
hardware accelerators have been scarcely researched. We consider that a special accelerator memory
controller is essential for improving the memory access performance. To this end, we propose a
dynamic random access memory (DRAM) memory controller called NNAMC for neural network
accelerators, which monitors the memory access stream of an accelerator and transfers it to the optimal
address mapping scheme bank based on the memory access characteristics. NNAMC includes a
stream access prediction unit (SAPU) that analyzes the type of data stream accessed by the accelerator
via hardware, and designs the address mapping for different banks using a bank partitioning model
(BPM). The image mapping method and hardware architecture were analyzed in a practical neural
network accelerator. In the experiment, NNAMC achieved significantly lower access latency of the
hardware accelerator than the competing address mapping schemes, increased the row buffer hit
ratio by 13.68% on average (up to 26.17%), reduced the system access latency by 26.3% on average (up
to 37.68%), and lowered the hardware cost. In addition, we also confirmed that NNAMC efficiently
adapted to different network parameters.

Keywords: memory controller; DRAM; address mapping; memory access optimization

1. Introduction

In modern computer architectures, the main memory for hardware acceleration is
dynamic random-access memory (DRAM), which is advantaged by high density and
low cost. Expanding data volumes have increased the number of parameters required in
neural network models, the complexity of the calculation process, and accordingly the
storage bandwidth of the system. Meanwhile, the capacity of DRAM remains limited,
and from an architectural perspective, the utilization rate of DRAN is related to its access
patterns. DRAM contains a multi-level matrix array of memory cells, usually with multiple
banks. The two-dimensional matrices are organized into rows and columns. When data
access different rows in the same bank of a DRAM, the previously accessed row must be
precharged and the target access row must be activated. This operation, called row conflict
or page conflict, requires a large number of cycles. Frequent row conflicts significantly
reduce the memory performance and utilization, possibly causing serious latency and
additional energy overheads. Therefore, minimizing the number of row conflicts is an
important goal of memory system optimization.

Electronics 2021, 10, 438. https://doi.org/10.3390/electronics10040438 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1398-2181
https://doi.org/10.3390/electronics10040438
https://doi.org/10.3390/electronics10040438
https://doi.org/10.3390/electronics10040438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10040438
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/4/438?type=check_update&version=1


Electronics 2021, 10, 438 2 of 20

At present, memory performance is usually optimized through memory address map-
ping [1–4], memory access scheduling strategies [5–7], rearrangement of access data [8,9],
and other methods that reduce the row conflicts. Although these technologies improve the
system performance to a certain extent, they cannot effectively handle multiple memory
access patterns for specific applications, because the memory access pattern is dynamically
generated by the processor at runtime, and depends on the memory access characteristics
of the application. Therefore, pre-designed memory optimization techniques perform
poorly on applications that do not use the existing memory access patterns, and may cause
severe performance loss.

Processor architecture design has benefited from the rapid development of neural net-
works, which allow architectures for specialized application domains [10–12]. At present,
many dedicated accelerator architectures have been designed, typically for neural network
accelerators [13–15]. However, the calculation method of a neural network impedes the
performance of these architectures on central processing units, and GPUs are limited by
the power consumption and area of the application platform. Field programmable gate
array (FPGA) accelerators have attracted attention for their flexibility and energy efficiency,
but in practical applications, there are two major problems with manually designed and op-
timized FPGA hardware accelerators. The first problem is the limited computing resources
of the FPGA platform. Second is the large number of calculations and complex memory
access patterns of the neural network of an accelerator, which overburden the memory
system. To improve the performance of FPGA accelerator systems, we must optimize their
memory access performance using a dedicated memory controller.

In this work, we propose a memory controller called NNAMC, and apply it to a
convolutional neural network (CNN) accelerator. NNAMC operates at the whole hardware
level to improve the memory system performance. During execution, it divides the memory
banks and applies different address mapping schemes to different banks, thus isolating
the different access stream patterns. After analyzing the memory access patterns of the
address streams, NNAMC stores their different patterns in specific banks to optimize
the performance requirements. The most difficult procedure is accurately identifying
and analyzing the access data stream and the most suitable address mapping scheme
for the memory access stream. In NNAMC, this critical problem is solved using a bank
partitioning model (BPM). The memory access address sequence is completed by the data
prediction unit of the previous item, and designs the optimal address mapping scheme in
the partitioned bank.

The main contributions of this paper are summarized below.

1. The NNAMC design is based on an FPGA hardware development system, which is a
memory controller dedicated to neural network accelerators, and is implemented in
Very High speed integrated circuit hardware Description Language (VHDL) without
excessive software operations.

2. A Steam Access Prediction Unit (SAPU) and a Bank Partitioning Model (BPM) were
designed for NNAMC. The system performance is improved through professional
prediction and classification of the memory access streams and the optimization of
DRAM address mapping.

3. The performances of NNAMC and previous address mapping schemes were compared
in typical test cases. The NNAMC outperformed the previous designs, and strongly
adapted to different network parameters.

The remainder of this article is organized as follows. Section 2 presents the background
of DRAM, and Section 3 discusses related work. Section 4 describes the motivation of the
proposed design. Section 5 proposes the NNAMC design scheme, and Section 6 presents
the setup and results of the experiments. The article concludes with Section 7.

2. Background

As shown in Figure 1, a DRAM device is composed of multiple two-dimensional
arrays of memory cells. Each two-dimensional array (called a bank) is composed of storage



Electronics 2021, 10, 438 3 of 20

capacitors and transistors. The data are stored in the storage capacitors. Each DRAM cell is
connected with a wordline and a bitline. In the vertical direction, the cells are connected
to a row buffer area through the shared bitline, and in the horizontal direction, they are
connected to the row decoder through the shared wordline. When data access the DRAM,
the bank, row, and column IDs of the target address determine the specific DRAM location
of the address, and the specific cell can be accessed by activating the specific bitline and
wordline. The two-dimensional array structure of DRAM not only achieves efficient wiring,
but also improves the operating speed and reduces the system’s power consumption.

Figure 1. Dynamic random-access memory (DRAM) architecture.

Each bank in DRAM has a row buffer area connected by a bitlines. When accessing
DRAM data, the row buffer can be used as a cache for storing all data in the row accessed
by the previous address. If two consecutive memory accesses refer to the same row of
the same bank in the DRAM, the access latency will be low. In this scenario, only the
target cell in the row buffer corresponding to the column ID of the current address must
be located. This operation is called a row buffer hit (or page hit). If the target rows of
two consecutive accesses are different rows in the same bank, a row conflict occurs, meaning
that the memory continuously accesses different rows in the same bank. In this scenario,
the current row must be closed by issuing a precharge command, and the row to be accessed
by the next address must be opened by issuing an active command. However, as banks
are arranged in parallel, two adjacent instructions in different rows of different banks will
avoid row conflicts. Row conflicts usually increase the latency and energy consumption.
The latency of row conflict access is 3.5 times that of row buffer hit. Therefore, increasing
the row buffer hit ratio will greatly improve the memory performance of DRAM.

The main page policies of modern DRAM are the open-page policy (OPP) and the
close-page policy (CPP) [16,17]. As an example, the access latency of DDR3-1600 memory
in OPP and CPP modes are shown in Table 1.

Table 1. Memory access latency in two-page policy modes.

DRAM Page Policy Row Buffer Hit Row Buffer Miss

OPP TCL = 13.125 ns TCL + TRCD + TRP = 48.125 ns
CPP TCL + TRCD = 23.25 ns

OPP is widely used in memory systems with few computer processors. In contrast,
CPP supports access to random memory locations and memory request modes with low
access localities. CPP is usually used in the memory systems of many processor systems,
multi-processor systems, or dedicated embedded systems. Depending on the system,
different row buffer management strategies can optimize the performance or minimize the
power consumption of the memory system.



Electronics 2021, 10, 438 4 of 20

3. Related Work
3.1. Address Mapping

Address mapping converts a memory address to the corresponding physical storage
unit based on the arrangement of bank ID, row ID, and column ID. Address mapping
is among the most commonly used methods for reducing the row conflict of the system.
Figure 2 shows several commonly used address mapping schemes proposed by previous
researchers. Panels (a) and (b) show the bank–row–column (BRC) [18] and row–bank–
column (RBC) [18] schemes, which exchange an upper bank bit in the address with a low
row bit. Xilinx proposed the most advanced memory interface generator (MIG) [18] IP
core using these mapping schemes. In addition to the BRC and RBC mapping schemes,
MIG provides a test address mapping scheme. The complex memory controller supports
permutation-based page interleaving (PBPI) [1], as shown in Figure 2c. The new bank
bit is obtained through an XOR operation of the address’s bank bit and a low row bit.
The parallelism of the bank ensures the maximum DRAM utilization, and the lowest three
row bits are usually selected for XOR operation. Bit reversal [3] (Figure 2d) reverses the bits
corresponding to the bank and row bits in the original physical address. Minimalist open-
page (MinOP) [4] (Figure 2e) partitions the column positions, placing the least significant
bits after the bank bits, and the most significant bits before the row bits. The low-order
row bits are then XORed with the bank bits to generate new bank bits. The authors of [2]
proposed a binary invertible matrix (BIM) for GPU mapping (Figure 2f), which represents
memory remapping operations. The BIM composes all address mapping schemes through
AND and XOR operations, and exploits its reversibility property to ensure that all possible
correspondences are considered. DReAM [19] analyzed the switching rate at runtime and
changed the address mapping on the fly, but this scheme incurs a large overhead. Whereas
current memory controllers convert physical addresses using a single address mapping
scheme, which is not very flexible, our proposal scheme eliminates this concern.

Figure 2. Different address mapping schemes. (a) Bank – Row – Column. (b) Row – Bank – Column.
(c) Permutation – Based Page Interleaving. (d) Bit – reversal. (e) Minimalist open – page. (f) Binary
Invertible Matrix.

3.2. Special Memory Controller

Special memory controllers effectively improve the memory performance of DRAM.
The memory controller CONCEPT [20] exploits the unique performance of RRAM to im-
prove the performance and energy efficiency and can also calculate processing in memory.
The authors of [21] proposed a self-optimized memory controller design that observes
the system state with reinforcement learning, and evaluates the long-term performance
impact of each operation. The authors of [22] proposed an access prediction technology
for multimedia applications. Their system tracks the memory data access information of
the executed instructions, and dynamically predicts different access patterns. PARDIS [23]
is a programmable memory controller based on a standard reduced instruction set com-
puter. The address mapping of a specific application program is realized through offline



Electronics 2021, 10, 438 5 of 20

analysis, which improves the memory performance. In [24] the authors proposed a specific
access pattern that optimizes the bandwidth of fast Fourier transform-based applications.
The authors of [25] proposed a prefetch architecture with two-dimensional access for image
processing. However, these controllers cannot be used in software-less systems such as
ASIC or FPGAs.

3.3. Bank Partitioning

The row conflicts between threads can be reduced by partitioning the banks between
memory applications. The authors of [26] proposed a software method that effectively
eliminates the interferences without hardware modification. Page coloring is a BPM that
allocates specific threads and implements a thread cluster through the memory controller.
This technique passively schedules the memory requests. Dynamic bank partitioning
integrated with thread cluster memory scheduling [27] compensates for the low paral-
lelism caused by bank partitioning, and estimates the number of banks to guide the bank
partitions. This method improves the throughput and fairness of the system. A new
software and hardware cooperative BPM for DRAMs combines page coloring and BPBI
mapping and reduces the inter-thread interference [28,29]. The authors of [30] proposed
a DRAM memory aware memory allocator with a page-based virtual memory system,
which allocates the memory pages of each application to a specific memory. Their allocator
avoids sharing the memory library between the cores, thereby eliminating the need for
special hardware stand by.

4. Motivation

This section explains the motivation of our study. To this end, we demonstrate a CNN
accelerator on image mapping. The accelerator stores the image data in DRAM, and reads
the pixel data using a CNN-like computing operation. The reading method maps the image
pixels to the memory system by address mapping. We call this process an Address and
Pixel Transaction (APT).

4.1. Address and Pixel Transaction

APT is a local unit that maps image pixels to DRAM by address mapping. As an ex-
ample, we consider sequential access during a CNN calculation. Figure 3a is the sequential
access map. The address increases along the horizontal direction of the image, scan the
next line when the horizontal scan is completed. ImgW and ImgH are the width and height
of the image, respectively, in units of pixels, and the initial address is that of the allocated
memory space. During the sequential access, the address of the image coordinates (A, B) is
given by:

Address = Initial address + [(B − 1) × ImgW + A − 1] × Pixel (0 < A ≤ ImgW, 0 < B ≤ ImgH) (1)

Suppose that the image size is 60 × 80, the initial address is 0 × 0000, and each pixel requires
16 bits. The APT of coordinate (79, 59) is Address = 0 + [(59 − 1) × 80 + 79] × 16 = 75,504 bits,
and the hexadecimal number of the converted memory standard address is 0 × 126F0.
Figure 3b shows the memory mapping of this address. The physical address 0 × 126F0
is mapped following the BRC scheme. The APT corresponding to this pixel is in the
zeroth and first banks, and the DRAM cell in the 49th row and 752th column performs
the storage [31].

Image access by DRAM uses various access patterns. In our image convolution com-
putation, we applied 2D access. The size of the convolution kernel was 3 × 3, the stride was
1, and the 2D access was based on APT. The results are shown in Figure 3c. When accessing
a DRAM cell, if the accessed data are not in the row buffer of the current bank, the current
row must be precharged, the target row is reactivated, and a read/write command is issued.
Such row conflict operations are energy and time consuming.



Electronics 2021, 10, 438 6 of 20

Figure 3. Address and pixel transactions in the accelerator. (a) Sequential access mapping APT.
(b) Address mapping. (c) Part of the 2D access mapping APT.

Figure 3c shows the address sequence of accessing this segment. Among the 11
accessed address sequences are four row conflicts, which can seriously harm the memory
system. During a row conflict, other operations cannot be performed in the same bank.
The memory access patterns for image memory access operations are many and varied.
Our NNAMC exploits this variability to optimize the DRAM performance and reduce the
number of row conflicts.

4.2. Motivation—Memory Access of CNN Accelerator

The memory performance is related to the memory access pattern of an applica-
tion. Arithmetic operations are complicated processes for accelerators and demand a
burdensomely high memory bandwidth from the memory system. We consider the CNN
accelerator because the typical memory access patterns in CNN calculations cover more
than 95% of all memory access types of image processing [32]. Figure 4 is an example of a
CNN accelerator. First, the accelerator obtains the feature maps and weights on the host
side and stores them in the memory system. Second, the FPGA computing unit extracts the
feature map and weights from the memory for calculation. Repeating this step, a feature
map is extracted and calculated for each operation, and is stored in the memory system.
Finally, the system calculation results are transmitted back to the host.

Owing to the characteristics of CNN convolution computation, row conflicts in the
memory system are common occurrences during accelerator access. When the PE performs
the convolution calculation, the accelerator accesses the memory data two-dimensionally
(see Figure 3c). A series of visits can cause serious row conflicts. Among the 11 accessed
address sequences, the rows were precharged and reactivated four times, increased access
latency by 2.4 times. The calculation formula of the memory access delay multiples (Ratio
of the current system running time to the system full row buffer hit running time) is
as follows:

TCL × Number o f hits + (TCL + TRCD + TRP)× Number o f misses
TCL × (Number o f address sequence − 1)

(2)



Electronics 2021, 10, 438 7 of 20

Figure 4. Workflow of the convolutional neural network (CNN) accelerator.

The access patterns of CNN calculations include (but are not limited to) sequences,
strides, two-dimensional patterns, and random accesses. Input feature maps and weights
of different sizes will also seriously affect the memory access characteristics of the system.
Using the characteristics of different access maps, NNAMC designs a dedicated memory
controller for neural network accelerators.

5. Proposed Architecture—NNAMC
5.1. Overview

NNAMC is a novel technology that analyzes the memory access patterns of a neural
network accelerator during its operation. By allocating the optimal address mapping
scheme, NNAMC reduces the number of row conflicts and improves the memory per-
formance. The proposed NNAMC (see Figure 5) realizes a novel structure for hardware
memory controllers. Its four design components are Address Access Behavior Monitoring
(AABM), SAPU, bank retag, and a BPM. The memory controller is applicable to most neural
network accelerators and is compatible with the workflow in Figure 4.

The AABM monitors the memory access requests sent by the accelerator to the memory
controller. Because AABM applies FIFO strategy, the memory controller quickly identifies
the information of each memory access request. This strategy maximally simplifies the
cache preprocessing operation of the address stream, and reduces the expense of tracking
and monitoring the address stream in DRAM.

The SAPU stores and analyzes the input address stream and the parameters of the
neural network. This component divides the memory request into four subtypes with
different access patterns: sequential, stride, 2D, and random. The access type is determined
by a fine-grained CNN, which effectively guides the subsequent scheduling of the memory
system, and the BPM is maximized. The implementation of SAPU is detailed in Section 5.2.

The BPM includes bank retag and bank partitioning. The bank retag rearranges
the bank of the address stream. The bank partition imposes strict requirements on the
setting of the address mapping scheme in that bank. Therefore, different patterns of the
address streams entering the target bank can be assured only by rearranging the banks.
Under the optimized address mapping scheme for the target bank, the bank partitioning
specifically maps each access stream to maximize the performance of the bank accessed by
the access stream.

These four components comprise the NNAMC architecture. By improving the mem-
ory controller hardware, we can improve the memory performance while fully utilizing
the storage bandwidth. Once the access types of the continuous access requests have
been forecasted and scheduled by SAPU, the row buffer hit ratio is maximized by bank
partitioning model operations.



Electronics 2021, 10, 438 8 of 20

Figure 5. Basic structure of the proposed NNAMC.

5.2. Accelerator Access Prediction

The SAPU discriminates the address stream type in the NNAMC architecture. The SAPU
is composed of four functional units: parameter reference table (PRT), parameter comput-
ing unit (PCU), comparative decision logic (CDL), and arbitration logic (AL). As shown in
Figure 6, the SAPU monitors all access streams and neural network parameter informa-
tion, and updates the access history in the PRT. Besides saving the historical information,
the PRT reorganizes the internal threshold data, and enters the number of decisions into
the CDL. The PCU calculates the various parameters of the PRT and their thresholds M,
and generates a difference address table. The CDL calculates and compares the RPT and
PCU input values and generates binary logic numbers, which are input to the AL for
judgment and decision-making. This subsection introduces the structure and function of
these four units, which collectively determine the access pattern of the stream.

Figure 6. The proposed basic framework of stream access prediction unit.



Electronics 2021, 10, 438 9 of 20

5.2.1. Parameter Reference Table (PRT)

The PRT stores the address streams, network parameters, and system operation results
in internal entry tables. When the accelerator accesses the memory system, the image length
and window size in the entry tables are updated in response to the storage requests from
the accelerator. The size of the entry table stored in the address stream depends on the
size of the physical address. In this paper, the entry table was configured to store 27 bits
physical addresses, and the entry table storage address stream was divided into two cases.
When the PRT lacked the access instruction addresses and network parameters (first case),
a new entry table was created. When the instruction address in the entry table contained
valid entries (second case), the entry table was incremented until the entry reached its upper
limit, and was then passed to the PCU. The neural network parameter storage part mainly
stored the basic information (image length and window size). As the basic information
was more-or-less fixed, this part of the item table was generally constant. The result of the
system operation was stored in the AL. Each entry table of the storage information was
stored as a 3 bits binary number.

5.2.2. Parameter Computing Unit (PCU)

The PCU obtains the numerical value in the PRT entry table, and calculates the SAPU
reference value. The PCU comprises two parts: an address difference storage unit and a
parameter threshold calculation unit. The address difference storage unit calculates the
difference Dif_addr between the previous and current addresses in the PRT entry table.
The previous and current addresses are 27 bits unsigned addresses and Dif_addr is a signed
addresses calculated as:

Dif_addr = Previous addr − Current addr (3)

Each calculation result Dif_addr is stored in the signed address difference memory
Dif_ram. This memory is composed of multiple address storage units, and its depth
depends on the local parameter kernel of the neural network, which is found in the
PRT entry table. The parameter kernel of the benchmark in this paper is 11, implying
that the design conforms to the hardware design rules and introduces no large timing
latency to the system. The counter controls the full threshold of Dif_ram. When the value
stored in Dif_ram reaches kernel-1, the enable ram_en of the Dif_ram is closed, and the
internal Dif_ram is full.

The parameter threshold calculation unit mainly calculates the network parameters
and sets the reference threshold of the CDL. The internal neural network parameters of
the system are integrated to obtain the new image width and kernel. The calculations are
given by Equations (4) and (5), respectively:

Image_width = Image_width + 2 × padding (4)

Kernel = Kernel_size × Kernel_size (5)

The reference thresholds M and N of comparator A and the counter in the CDL are
respectively computed as:

M = (Image_width − Kernel_size + 1) × Pixel (6)

N = (Image_height − 1) × Image_width × Pixel (7)

5.2.3. Comparative Decision Logic (CDL)

The CDL obtains the value in each storage block of Dif_ram, and generates the
reference value. The CDL comprises a comparator, a shift register, an AND gate, and a
counter (Figure 6). Decision-making is performed by the following steps:



Electronics 2021, 10, 438 10 of 20

(1) All values in Dif_ram are transferred into Com C. If all values are equal, the output 1
is sent to the S1 end of the AL;

(2) The value in the last block of the Dif_ram storage unit (the kernel-1 block) is trans-
ferred to the shift register. If the upper 8 bits of the data in the shift register are F,
the shift register outputs 1.

(3) The PCU output reference threshold M, and the data of Dif_ram (kernel-kernel_size-1
. . . kernel_size) value of 1 storage unit, are transferred to Com A. If the data in Com
A are equal, then Com A outputs 1.

(4) Com B judges whether the values of the other storage units except the first kernel-
kernel_size-1 . . . kernel_size-1 storage unit equal the value in the kernel-1 storage
unit. If the answer is yes, then Com B outputs 1.

(5) The outputs of Com A, B, and the shift register are computed by AND logic and the
result is input to the S0 terminal of the AL.

(6) If all Dif_ram values in the count memory of Counter are the product of Image_width
× Pixel, and the number of Image_width × Pixel is N, then Counter outputs 1.
This result is input to the S2 terminal of the AL.

5.2.4. Arbitration Logic (AL)

The AL generates an address access memory pattern based on CDL signals. The AL
constitutes a single decoder whose input terminals S0, S1, and S2 provide binary-number
combinations on the four output results (Y0-Y3), corresponding to 100, 010, and 001. The AL
output is stored in the entry table of the PRT, and is used as the memory access pattern of
the current address stream.

In the example of Figure 7, the CNN accelerator dynamically predicts the memory
access to a 960 × 1280 image using the 2D access pattern. The figure shows the network de-
tails when a 3 × 3 window slides over the image and the first pixel of the window is stored
at the physical address 0003D3B8. As the network kernel is 9, the nine instructions are
recorded and changed in turn. The nine differences are stored in Dif_ram. Among these val-
ues, the difference stored in Dif_ram [2] and Dif_ram [5] (000027F0) is equal to M (10224D)
output by the PCU, the difference stored in Dif_ram [8] is FFFFAFF8 (<0), and the remaining
entries Dif_ram [0], Dif_ram [1], Dif_ram [3], Dif_ram [4], Dif_ram [6], and Dif_ram [7]
are all equal. The output terminal S0 of the AND gate is 1, the output terminals S1 and S2
are 0, and the AL output is 100, denoting that the memory access address stream follows
the 2D memory access pattern.

Figure 7. Detailed example of access by the stream access prediction unit.



Electronics 2021, 10, 438 11 of 20

5.3. Bank Partitioning Model

Based on the observations in Section 3.2, we propose a BPM that considers the address
mapping requirements of multiple patterns of access streams to reduce the number of
row-buffer conflicts. Figure 8 shows the basic principle of bank partitioning. Considering
the characteristics of CNNs, the basic memory-access patterns of the BPM are divided into
sequential, 2D, stride, and random (Memory access patterns detailed in Section 6.1).

Figure 8. Overview of our proposed bank partitioning model. (a) Traditional. (b) Our proposal.

Figure 8a shows the traditional memory access pattern. All DRAM banks adopt a
unique address mapping scheme and sample the same address-mapping scheme for all
memory access streams. In previous work, the memory access performance was improved
by modifying and optimizing the address-mapping scheme, but when the accelerator
simultaneously runs multiple memory access streams, row conflicts and memory access
latency can reduce the system performance. Some memory access streams require specific
address mapping. For example, when the memory access stream of stride with different
image sizes and pixel size pairs are accessed using the RBC scheme. In such cases, the pre-
vious methods will cause severe extremes and instability that greatly reduce the memory
access performance.

Figure 8b shows the bank partitioning scheme adopted in NNAMC. After partitioning
the DRAM banks, RBC address mapping and BPBI address mapping were applied to the
low banks (LBS) and high banks (HBS), respectively. The scheme was implemented in
two steps: (1) Analyzing the memory access behavior of the SAPU address stream and
applying bank retag to the address stream; and (2) forming decisions on the bank-level
memory access.

The task of bank retag is rearranging the banks. Bank partitioning is difficult, because
it must ensure that the memory streams enter the target bank as required. The LBS and
HBS in the above division each occupied four banks. The bank retag operation is shown in
Figure 9. Based on the hardware design, we cached each memory access stream using a
FIFO operation. The memory bank of the address mapping scheme adopted by NNAMC
is set in the 10th to the 12th bits. The 12th bit of each address of the sequence and the 2D
address streams were ANDed with 0, meaning that all sequences and 2D address streams
adopted the RBC address mapping scheme. For the stride memory access pattern, the 12th
bit of each address and 1 were subjected to the OR operation, meaning that all address
streams of the stride adopted BPBI address mapping, thus realizing the bank retag.



Electronics 2021, 10, 438 12 of 20

Figure 9. Bank retag operation process.

Bank-level access decisions are made for two reasons. First, we can isolate memory
access patterns with large performance differences, fully utilize the memory space locations,
and reduce the interference between memory access streams. LBS uses RBC address
mapping and HBS uses BPBI address mapping. Figure 9 explains that bank retag is used
to receive the sequential and 2D access patterns. HBS is used to receive the stride access
pattern. Our proposed NNAMC adopts a hybrid address mapping schemes, which is
the result of 225 experimental selections for various CNN parameters. The experimental
results show that the row buffer hit ratio of sequential access pattern can reach 72.7–99.99%
(90.52% on average). The row buffer hit ratio of 2D access pattern can reach 74.22–98.95%
(87.02% on average). But the row buffer hit ratio of the stride access pattern is only 0–100%
(51.18% on average). Because of the huge fluctuation of the row buffer hit ratio of stride
access (the floating range spans 0–100%), we choose the BPBI address mapping that is
optimal for stride access for HBS. BPBI row buffer hit ratio can reach 87.5% for stride
access scheme. We choose the RBC address mapping for sequential and 2D access patterns.
Random access patterns, most of which constitute image noise, are unstable and do not
require specific address mapping schemes. Second, we can increase the accelerator’s
sensitivity to memory access streams and fully exploit the parallelism of the banks, thereby
increasing the system throughput. Here we constructed up to eight banks from DDR3-1600
memory modules.

In bank retag, the rearranged memory-access address may be the same as the previous
or subsequent memory-access address, which leads to the loss or conflict of system data.
In bank retag simulations, the probability of obtaining identical addresses after bank retag
rearrangement was found to be very low. Among the total number of system addresses,
the low probability of identical addresses is acceptable and will not affect the system process.
Moreover, the NNAMC was designed for CNN hardware accelerators. The probability of
data loss minimally impacts on neural networks [33]. In fact, the probability of noise in
CNN images is much higher than the probability of data loss by bank retag.



Electronics 2021, 10, 438 13 of 20

6. Experimental
6.1. Experimental Setup
6.1.1. Benchmark Selection

To demonstrate that NNAMC can flexibly adapt to CNN hardware accelerators,
we tested the performance of NNAMC on four typical CNN accelerator memory access
patterns: sequential, 2D, stride, and random. According to Jang et al. [32], these mem-
ory access patterns cover more than 95% of CNN application scenarios. For each mem-
ory access pattern, NNAMC was tested in a representative CNN operation scenario as
described below.

Sequence: As shown in Figure 3a, the accelerator linearly accesses the memory on
the chip, and a memory with sufficient space can store a large amount of output data.
In this test, the convolution calculation result of the feature map in CNN was accessed and
arranged in a sequential manner, and all data were cached on the chip by the accelerator
during the calculation process.

2D: In this test, the convolution computation of CNN was a typical 2D access pattern.
The convolution kernel scanned the image using a 2D window. 2D memory access is the
most important memory access pattern in CNNs, accounts for most of all CNN operations.

Stride: In this test, the CNN adopted a cascaded fully connected layer as the system
classifier. The stride access pattern can test matrix–vector multiplications, which are
periodically performed by hardware accelerators. The stride access pattern is used not only
in CNN calculations, but also in image processing applications.

Random: Losses of image pixels in the CNN calculation or losses of access data in the
accelerator operation were given random addresses in the original address sequence.

In the sequence and stride access tests, the selected images were sized 600 × 800,
768 × 1024, and 960 × 1280, and the pixel sizes were 8, 16, and 32 bit. For the 2D access
pattern, we chose images and pixel sizes giving the same resolution as the sequence and
stride tests. For the kernel part, we selected three typical CNN kernels: 3 × 3, 7 × 7d,
and 11 × 11. References [19,34] also provide similar but different application benchmarks,
which does not affect the experimental results. The runtimes of the benchmarks based on
the above selections are shown in Figure 10. All runtimes were measured on an Intel core
i5-6500 (4-core) system.

Figure 10. Runtimes of the benchmarks.

To show the advantages of NNAMC dedicated to CNN hardware accelerators, several
existing address mapping schemes were selected for a performance comparison: BRC [18],
RBC [18], BPBI [1], Bit reversal [3], and MinOP [4].



Electronics 2021, 10, 438 14 of 20

6.1.2. Experimental Platform

The whole system was implemented on a Xilinx VC707 FPGA. The FPGA develop-
ment board includes a Virtex-7 VX485T FPGA chip and a 1 GB Micron DDR3 DRAM.
Each physical address contains 27 bits: 3 bits bank coordinates, 14 bits row coordinates,
and 10 bits column coordinates. The NNAMC design was based on a Xilinx MIG IP Core
and implemented in Verilog HDL. To clarify the performance improvements after optimiz-
ing the address mapping scheme, we closed the memory access scheduling, page policy
optimization, and all other optimization techniques.

6.2. Results
6.2.1. Experimental Results

The performance of NNAMC was compared with those of previously proposed
address mapping schemes on the same benchmarks of the dedicated CNN accelerator.
The two most important indicators of a memory system (row buffer hit ratio and access la-
tency) were selected as performance measures. First of all, the operands of various memory
access patterns in the benchmark are verified by equal processing. The experimental results
are shown in Table 2. In the 27 test cases, NNAMC was compared with the other address
mappings (BRC, RBC, BPBI, Bit reversal and MinOP), the row cache hit rate increased
by 43%, 12.46%, 17.90%, 11.32%, 11.36%, respectively. The overall average row cache hit
rate increased by 19.21%, proving the importance of the NNAMC prediction unit and the
effectiveness of bank partition optimization. The address mapping scheme adopted by
NNAMC assigned the bank to a mid-address bit, reflecting the strong stability of NNAMC;
accordingly, the fluctuations in the row buffer hit ratio were not large.

In order to verify the ability of NNAMC to reduce system memory access latency,
all address mapping strategies were tested on FPGA, and the memory access latency of
each test example was reported in Figure 11. As shown in the figure, NNAMC can indeed
reduce the access latency of the system. Compared with other address mappings (BRC,
RBC, BPBI, Bit reversal, and MinOP), the designed NNAMC reduces the access latency
by 15.04 ns, 4.36 ns, 6.26 ns, 3.96 ns, and 3.97 ns, the overall average access latency was
reduced by 33.03%, and the maximum access latency was reduced by 52.57%.

Table 2. Comparison of row buffer hit ratios of different address mappings.

Benchmark
Address Mapping

BRC
(%)

RBC
(%)

Bit-Rev
(%)

BPBI
(%)

MinOP
(%)

NNAMC
(%)

Small

8 bit
3 × 3 53.81 98.95 72.73 87.52 87.51 98.95
7 × 7 59 98.95 72.78 87.51 87.5 98.95

11 × 11 60.67 98.95 72.83 87.51 87.5 98.95

16 bit
3 × 3 52.09 98.84 78.42 87.52 87.48 98.84
7 × 7 58.05 98.84 84.38 87.51 87.47 98.84

11 × 11 54.17 98.84 85.99 87.51 87.47 98.84

32 bit
3 × 3 48.62 98.84 75.02 87.52 87.43 98.84
7 × 7 59.67 98.84 80.58 87.51 87.42 98.84

11 × 11 55.68 98.84 82.09 87.51 87.42 98.84

Medium

8 bit
3 × 3 53.83 83.38 77.07 87.62 87.61 98.95
7 × 7 60 83.38 83.23 87.71 87.7 98.95

11 × 11 61.67 83.38 84.91 87.81 87.8 98.95

16 bit
3 × 3 52.09 66.71 76.39 87.6 87.56 98.84
7 × 7 58.05 66.71 82.35 87.69 87.65 98.84

11 × 11 59.67 66.71 83.97 87.78 87.74 98.84

32 bit
3 × 3 48.62 66.71 77.78 87.57 87.57 98.93
7 × 7 54.12 66.71 83.33 87.66 87.57 98.93

11 × 11 55.69 66.71 84.85 87.75 87.66 98.93



Electronics 2021, 10, 438 15 of 20

Table 2. Cont.

Benchmark
Address Mapping

BRC
(%)

RBC
(%)

Bit-Rev
(%)

BPBI
(%)

MinOP
(%)

NNAMC
(%)

Large

8 bit
3 × 3 53.83 98.94 73.86 87.52 87.51 98.94
7 × 7 59.99 98.94 80.16 87.55 87.54 98.94

11 × 11 61.65 98.94 81.83 87.58 87.57 98.94

16 bit
3 × 3 52.09 98.94 84.03 87.53 87.49 98.94
7 × 7 58.05 98.94 84.08 87.56 87.52 98.94

11 × 11 59.65 98.94 84.13 87.59 87.55 98.94

32 bit
3 × 3 48.7 66.69 86.71 87.53 87.43 98.93
7 × 7 54.23 66.69 86.76 87.56 87.47 98.93

11 × 11 55.76 66.69 86.83 87.59 87.5 98.93

Figure 11. Comparison of average memory access latency.

The main task of a CNN hardware accelerator is accelerating the convolutional layer
of the CNN. The convolutional layer performs most of the total number of CNN operations.
Accordingly, we increased the calculation operations of all benchmark convolutional layers,
until the 2D access required for the convolution calculation reached the set value. The row
buffer hit ratio results are shown in Table 3, and the access latency is compared in Figure 12.
In all test cases, NNAMC achieved a higher row buffer hit ratio than the other address
mappings. In this mode, our design NNAMC and other address mappings (BRC, RBC,



Electronics 2021, 10, 438 16 of 20

BPBI, Bit reversal, and MinOP) row buffer hit ratio increased by 24.61%, 4.1%, 16.06%,
11.8%, 11.85%, the overall average row buffer hit ratio increased by 13.68%. The system
access latency was reduced by 8.61 ns, 1.44 ns, 5.62 ns, 4.13 ns, 4.16 ns, the overall average
access latency was reduced by 26.3%, and the maximum access latency was reduced
by 37.68%.

The experimental study shows that the memory access performance access perfor-
mance is affected by interference from multiple memory access patterns. It should be noted
that the stride access pattern is that image pixels are stored by vertical mapping to the
memory system, which has a huge impact on the memory access performance. In the
actual CNN accelerator system, the stride access pattern is mainly used for the calculation
of the fully connected layer, and the number of operands required is much lower than
that of the convolution calculation, which can explain the experimental results in the
above-mentioned specific configuration. In general, NNAMC can optimize the row buffer
hit ratio and access latency at the same time by predicting the pattern of memory access
stream and address mapping partition, thereby improving the system performance.

Table 3. Row buffer hit ratios of different address mappings during many convolution operations.

Benchmark
Address Mapping

BRC
(%)

RBC
(%)

Bit-Rev
(%)

BPBI
(%)

MinOP
(%)

NNAMC
(%)

Small

8 bit
3 × 3 67.19 98.29 72.77 87.52 87.51 98.29
7 × 7 84.89 99.74 72.92 87.51 87.5 99.74

11 × 11 88.04 99.9 73.07 87.51 87.5 99.9

16 bit
3 × 3 65.02 98.29 86.45 87.52 87.48 98.29
7 × 7 82.13 99.75 86.51 87.51 87.47 99.75

11 × 11 85.96 99.9 86.65 87.51 87.47 99.9

32 bit
3 × 3 61.3 98.29 83.34 87.52 87.43 98.29
7 × 7 76.62 99.75 86.46 87.51 87.42 99.75

11 × 11 80.21 99.9 86.96 87.51 87.42 99.9

Medium

8 bit
3 × 3 61.66 94.01 83.41 87.62 87.61 98.86
7 × 7 81.71 93.02 83.58 87.71 87.7 98.86

11 × 11 87.38 94.59 83.75 87.81 87.8 98.86

16 bit
3 × 3 59.67 90.12 83.41 87.6 87.56 98.86
7 × 7 79.06 89.12 83.58 87.69 87.65 98.86

11 × 11 84.61 90.23 83.75 87.78 87.74 98.86

32 bit
3 × 3 59.12 90.12 87.6 87.57 87.57 98.86
7 × 7 73.76 89.12 87.78 87.66 87.57 98.86

11 × 11 78.95 90.23 87.99 87.75 87.66 98.86

Large

8 bit
3 × 3 61.66 99.99 78.71 87.52 87.51 99.99
7 × 7 80.71 99.99 78.88 87.55 87.54 99.99

11 × 11 87.45 90.89 78.89 87.58 87.57 99.99

16 bit
3 × 3 59.67 99.99 84.03 87.53 87.49 99.99
7 × 7 79.06 99.99 84.22 87.56 87.52 99.99

11 × 11 84.61 97.57 84.39 87.59 87.55 99.99

32 bit
3 × 3 55.72 90.01 86.74 87.53 87.43 99.99
7 × 7 73.79 90.01 86.89 87.56 87.47 99.99

11 × 11 78.97 89.85 87.09 87.59 87.5 99.99



Electronics 2021, 10, 438 17 of 20

Figure 12. Comparison of average memory access latencies during many convolution operations.

6.2.2. Hardware Resource Utilization

Table 4 gives the hardware resources utilized by the memory controller of NNAMC.
The NNAMC was realized by modifying MIG, mainly, by modifying the address mapping
scheme and SAPU in Verilog HDL. The system energy consumption was not only related
to the row buffer hit ratio, but also related to the system voltage and frequency. A large
number of precharge will cause a lot of energy consumption [2]. The proposed NNAMC
can increase the row buffer hit ratio by 13.68% on average. The system voltage is 1.8 V and
the system frequency is 200 MHz.

Table 4. Utilization of NNAMC’s hardware resources.

FPGA Resources LUT FF BRAM

Available VC707 FPGA 303,600 607,200 1030
NNAMC 28,153 (9.27%) 33,037 (5.44%) 49 (4.75%)

As shown in Table 4, NNAMC occupied few FPGA on-chip resources, leaving a large
resource space for designing the CNN hardware accelerators. Especially, NNAMC con-
sumed few FPGA on-chip storage resources BRAM and FPGA on-chip FFs. The NNAMC
utilization of both logics was approximately 5% of the target FPGA device. Therefore,
the area overhead of NNAMC was deemed appropriate. The proposed method was un-
affected by the number of network parameters and size of the address flow, required no
modification of other system components, and did not affect the design parameters of the
other components.



Electronics 2021, 10, 438 18 of 20

6.2.3. Other Analysis

Finally, we confirmed the performance robustness of NNAMC to changing network
parameters. This test was performed on differently sized images, image pixels, and con-
volution kernel sizes of the CNN model. Subsequently, we tested the memory access
performance of NNAMC on the address sequences corresponding to different parame-
ters. The image sizes were selected as 480 × 720, 600 × 800, 768 × 1024, 960 × 1280,
and 1080 × 1920; the pixel sizes were selected as 4 bits, 8 bits, 16 bits, 32 bits, and 64 bits;
the convolution kernel sizes were typically 2, 3, 5, 7, and 11. The test results are shown in
Figure 13. The average row buffer hit ratio of NNAMC in image sizes, pixel sizes, and con-
volution kernel sizes compared with other address maps increased by 16.17%, 19.96%,
and 14.57%, respectively. Experimental results show that no matter how the image sizes,
pixel sizes and convolution kernel sizes of the network parameters change, NNAMC can
still reflect a high memory access performance.

Figure 13. Comparison of row buffer hit ratios of NNAMC with different network parameters.

7. Conclusions

In this work, we propose a memory controller called NNAMC. NNAMC uses SAPU
to predict the memory access pattern of the CNN hardware accelerator, and uses the BPM
to optimize the address mapping scheme. The experimental results show that NNAMC
suitable for most of the memory access patterns of CNN hardware accelerators provides the
optimal address mapping scheme, and the memory access performance is better than the
address mapping scheme provided by the previous generation. We have also implemented
NNAMC on the hardware system, which has a low on-chip resource occupancy rate and
also leaves a lot of space for other accelerators. In addition, NNAMC has shown superior
performance to mainstream neural networks and can adapt to various network parameters.

Author Contributions: Conceptualization, R.W. and G.S.; methodology, C.C. and C.L.; validation,
C.L.; investigation, C.L.; resources, C.C.; writing—original draft preparation, C.L. and C.C.; writing—
review and editing, R.W., C.L., C.C., G.S., and M.H.; visualization, R.W. and C.L.; supervision, C.C.
and M.H.; project administration, R.W. and G.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (Grant
No. 92064006).

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2021, 10, 438 19 of 20

References
1. Zhang, Z.; Zhu, Z.; Zhang, X. A permutation-based page interleaving scheme to reduce row-buffer conflicts and exploit data

locality. In Proceedings of the 33rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-33), Monterey,
CA, USA, 10–13 December 2000; pp. 32–41.

2. Liu, Y.; Zhao, X.; Jahre, M. Get out of the valley: Power-efficient address mapping for GPUs. In Proceedings of the 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), Los Angeles, CA, USA, 1–6 June 2018;
pp. 166–179.

3. Shao, J.; Davis, B.T. The bit-reversal SDRAM address mapping. In Proceedings of the Workshop on Software and Compilers for
Embedded Systems, Dallas, TX, USA, 29 September–1 October 2005; pp. 62–71.

4. Dimitris, K.; Jeffrey, S.; Lizy, K.J. Minimalist open-page: A DRAM pagemode scheduling policy for the many-core era. In Proceed-
ings of the 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Porto Alegre, Brazil, 3–7
December 2011; pp. 24–35.

5. Rixner, S.; Dally, W.; Kapasi, U.J. Memory access scheduling. In Proceedings of the 27th International Symposium on Computer
Architecture, Vancouver, BC, Canada, 14 June 2000; pp. 128–138.

6. Mutlu, O.; Moscibroda, T. Parallelism-aware batch scheduling: Enhancing both performance and fairness of shared DRAM
systems. In Proceedings of the 2008 International Symposium on Computer Architecture, Beijing, China, 21–25 June 2008;
pp. 63–74.

7. Kim, Y.; Han, D.; Mutlu, O.; Harchol-Balter, M. ATLAS: A scalable and high-performance scheduling algorithm for multiple
memory controllers. In Proceedings of the 2010 The Sixteenth International Symposium on High-Performance Computer
Architecture (HPCA-16), Bangalore, India, 9–14 January 2010; pp. 1–12.

8. Sudan, K.; Chatterjee, N.; Nellans, D.; Awasthi, M.; Balasubramonian, R.; Davis, A. Micro-pages: Increasing DRAM efficiency with
locality aware data placement. In Proceedings of the 15th International Conference on Architectural Support for Programming
Languages and Operating Systems, Pittsburgh, PA, USA, 13–17 March 2010; pp. 219–230.

9. Dong, X.; Xie, Y.; Muralimanohar, N. Simple but effective heterogeneous main memory with On-Chip memory controller support.
In Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and
Analysis, New Orleans, LA, USA, 13–19 November 2010; pp. 1–11.

10. Guan, Y.J.; Yuan, Z.H.; Sun, G.Y.; Cong, J. FPGA-based accelerator for long short-term memory recurrent neural networks.
In Proceedings of the 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Tokyo, Japan, 16–19 January 2017;
pp. 629–634.

11. Guan, Y.J.; Liang, H.; Xu, N.Y.; Wang, W.Q.; Shi, S.S.; Chen, X.; Sun, G.Y.; Zhang, W.; Cong, J. FP-DNN: An automated framework
for mapping deep neural networks onto FPGAs with RTL-HLS hybrid templates. In Proceedings of the IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM 2017), Napa, CA, USA, 30 April–2 May
2017; pp. 152–159.

12. Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.; Venkatesan, R.; Khailany, B.; Emer, J.; Keckler, S.W.; Dally, W.J. SCNN:
An accelerator for compressed-sparse convolutional neural networks. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (ISCA), Toronto, ON, Canada, 24–28 June 2017; pp. 27–40.

13. Zhang, P.; Li, G.; Sun, Y.; Guan, B.; Cong, J. Optimizing FPGA-based accelerator design for deep convolutional neural networks.
In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
22–24 February 2015; pp. 161–170.

14. Zhang, M.; Li, L.P.; Wang, H.; Liu, Y.; Qin, H.B.; Zhao, W. Optimized Compression for Implementing Convolutional Neural
Networks on FPGA. Electronics 2019, 8, 295. [CrossRef]

15. Zhang, X.L.; Wei, X.; Sang, Q.B.; Chen, H.; Xie, Y.Z. An Efficient FPGA-Based Implementation for Quantized Remote Sensing
Image Scene Classification Network. Electronics 2020, 9, 1344. [CrossRef]

16. Alawneh, T.A.; Elhossini, A. A prefetch-aware memory system for data access patterns in multimedia applications. In Proceedings
of the 15th ACM International Conference on Computing Frontiers, Ischia, Italy, 8–10 May 2018; pp. 78–87.

17. Sun, H.; Chen, L.; Hao, X.R.; Liu, C.J.; Ni, M. An Energy-Efficient and Fast Scheme for Hybrid Storage Class Memory in an AIoT
Terminal System. Electronics 2020, 9, 1013. [CrossRef]

18. Xilinx. Memory Interface Generator (MIG). Available online: https://www.xilinx.com/products/intellectual-property/mig.html
(accessed on 10 January 2021).

19. Ghasempour, M.; Jaleel, A.; Garside, J.D.; Lujan, M. DReAM: Dynamic re-arrangement of address mapping to improve the
performance of DRAMs. In Proceedings of the International Symposium on Memory Systems (MEMSYS), Washington, DC, USA,
3 October 2016; pp. 362–373.

20. Shin, W.Y.; Yang, J.M.; Choi, J.; Kim, L.S. NUAT: A non-uniform access time memory controller. In Proceedings of the 2014 IEEE
20th International Symposium on High Performance Computer Architecture (HPCA), Orlando, FL, USA, 15–19 February 2014;
pp. 464–475.

21. Ipek, E.; Mutlu, O.; Martinez, J.F.; Caruana, R. Self-Optimizing memory controllers: A reinforcement learning approach.
In Proceedings of the ACM Sigarch Computer Architecture News (HPCA), Beijing, China, 21–25 June 2008; 2008; pp. 39–50.

http://doi.org/10.3390/electronics8030295
http://doi.org/10.3390/electronics9091344
http://doi.org/10.3390/electronics9061013
https://www.xilinx.com/products/intellectual-property/mig.html


Electronics 2021, 10, 438 20 of 20

22. Alawneh, T. A dynamic row-buffer management policy for multimedia applications. In Proceedings of the 27th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP), Pavia, Italy, 13–15 February 2019;
pp. 148–157.

23. Bojnordi, M.N.; Ipek, E. PARDIS: A programmable memory controller for the DDRx interfacing standards. In Proceedings of the
2012 39th Annual International Symposium on Computer Architecture (ISCA), Portland, OR, USA, 9–13 June 2012; pp. 13–24.

24. Chen, R.; Prasanna, V.K. DRAM Row Activation Energy Optimization for Stride Memory Access on FPGA-Based Systems.
Applied Reconfigurable Computing. In Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland,
2015; Volume 9040, pp. 349–356.

25. Zhou, N.; Qiao, F.; Yang, H.Z. A hybrid cache architecture with 2D-based prefetching scheme for image and video processing.
In Proceedings of the 2013 International Conference on Communication and Signal Processing, Melmaruvathur, India, 3–5 April
2013; pp. 1092–1096.

26. Liu, L.; Cui, Z.H.; Xing, M.J.; Bao, Y.G.; Chen, M.Y.; Wu, C.Y. A software memory partition approach for eliminating bank-level
interference in multicore systems. In Proceedings of the 21st International Conference on Parallel Architectures and Compilation
Techniques (PACT), Minneapolis, MN, USA, 19–23 September 2012; pp. 367–375.

27. Xie, M.L.; Tong, D.; Huang, K.; Cheng, X. Improving system throughput and fairness simultaneously in shared memory CMP
systems via dynamic bank partitioning. In Proceedings of the 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), Orlando, FL, USA, 15–19 February 2014; pp. 344–355.

28. Mi, W.; Feng, X.B.; Xue, J.L.; Jia, Y.C. Software-hardware cooperative DRAM bank partitioning for chip multiprocessors.
In Proceedings of the IFIP International Conference on Network and Parallel Computing, Zhengzhou, China, 13–15 September
2010; p. 329.

29. Liu, L.; Cui, Z.H.; Li, Y.; Bao, Y.G.; Chen, M.Y.; Wu, C.Y. BPM/BPM plus: Software-Based Dynamic Dynamic Memory Partitioning
Mechanisms for Mitigating DRAM Bank-/Channel-Level Interferences in Multicore Systems. ACM Trans. Archit. Code Optim.
2014, 11. [CrossRef]

30. Yun, H.; Mancuso, R.; Wu, Z.P.; Pellizzoni, R. PALLOC: DRAM bank-aware memory allocator for performance isolation on
multicore platforms. In Proceedings of the 20th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
Berlin, Germany, 15–17 April 2014; pp. 155–165.

31. Hur, J.Y.; Rhim, S.W.; Lee, B.H.; Jang, W. Adaptive Linear Address Map for Bank Interleaving in DRAMs. IEEE Access 2019,
7, 129604–129616. [CrossRef]

32. Jang, B.; Schaa, D.; Mistry, P.; Kaeli, D. Exploiting Memory Access Patterns to Improve Memory Performance in Data-Parallel
Architectures. IEEE Trans. Parallel Distrib. Syst. 2010, 22, 105–118. [CrossRef]

33. Sharma, H.; Park, J.; Suda, N.; Lai, L.; Esmaeilzadeh, H. Bit fusion: Bit-level dynamically composable architecture for accelerating
deep neural networks. In Proceedings of the 45th ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA), Los Angeles, CA, USA, 1–6 June 2018; pp. 764–775.

34. Jung, M.; Mathew, D.M.; Weis, C.; Wehn, N.; Heinrich, I.; Natale, M.V.; Krumke, S.O. ConGen: An Application Specifific DRAM
Memory Controller Generator. In Proceedings of the Second International Symposium on Memory Systems, Alexandria, VA, USA,
3–6 October 2016; pp. 257–267.

http://doi.org/10.1145/2579672
http://doi.org/10.1109/ACCESS.2019.2940351
http://doi.org/10.1109/TPDS.2010.107

	Introduction 
	Background 
	Related Work 
	Address Mapping 
	Special Memory Controller 
	Bank Partitioning 

	Motivation 
	Address and Pixel Transaction 
	Motivation—Memory Access of CNN Accelerator 

	Proposed Architecture—NNAMC 
	Overview 
	Accelerator Access Prediction 
	Parameter Reference Table (PRT) 
	Parameter Computing Unit (PCU) 
	Comparative Decision Logic (CDL) 
	Arbitration Logic (AL) 

	Bank Partitioning Model 

	Experimental 
	Experimental Setup 
	Benchmark Selection 
	Experimental Platform 

	Results 
	Experimental Results 
	Hardware Resource Utilization 
	Other Analysis 


	Conclusions 
	References

