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Abstract: Medical image segmentation has gained greater attention over the past decade, especially in
the field of image-guided surgery. Here, robust, accurate and fast segmentation tools are important for
planning and navigation. In this work, we explore the Convolutional Neural Network (CNN) based
approaches for multi-dataset segmentation from CT examinations. We hypothesize that selection of
certain parameters in the network architecture design critically influence the segmentation results.
We have employed two different CNN architectures, 3D-UNet and VGG-16, given that both networks
are well accepted in the medical domain for segmentation tasks. In order to understand the efficiency
of different parameter choices, we have adopted two different approaches. The first one combines
different weight initialization schemes with different activation functions, whereas the second
approach combines different weight initialization methods with a set of loss functions and optimizers.
For evaluation, the 3D-UNet was trained with the Medical Segmentation Decathlon dataset and
VGG-16 using LiTS data. The quality assessment done using eight quantitative metrics enhances the
probability of using our proposed strategies for enhancing the segmentation results. Following a
systematic approach in the evaluation of the results, we propose a few strategies that can be adopted
for obtaining good segmentation results. Both of the architectures used in this work were selected on
the basis of general acceptance in segmentation tasks for medical images based on their promising
results compared to other state-of-the art networks. The highest Dice score obtained in 3D-UNet for
the liver, pancreas and cardiac data was 0.897, 0.691 and 0.892. In the case of VGG-16, it was solely
developed to work with liver data and delivered a Dice score of 0.921. From all the experiments
conducted, we observed that two of the combinations with Xavier weight initialization (also known
as Glorot), Adam optimiser, Cross Entropy loss (GloAdam

CE ) and LeCun weight initialization, cross
entropy loss and Adam optimiser LecAdam

CE worked best for most of the metrics in a 3D-UNet setting,
while Xavier together with cross entropy loss and Tanh activation function (Glotanh

CE ) worked best for
the VGG-16 network. Here, the parameter combinations are proposed on the basis of their contributions
in obtaining optimal outcomes in segmentation evaluations. Moreover, we discuss that the preliminary
evaluation results show that these parameters could later on be used for gaining more insights into
model convergence and optimal solutions.The results from the quality assessment metrics and the
statistical analysis validate our conclusions and we propose that the presented work can be used as a
guide in choosing parameters for the best possible segmentation results for future works.

Keywords: medical image segmentation; deep learning; convolutional neural networks; radiology
images; computed tomography
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1. Introduction

Over the past 20 years, Image Guidance Systems (IGS) have gained greater attention
due to their numerous benefits of better control over the surgical procedure, reduced mor-
bidity, shortened OR times and overall better patient outcomes [1]. Accurate segmentation
(the process of extracting the region of interest) of organ structures in the medical images
is a key part of IGS systems [2]. This assists the clinicians during diagnosis to localize
the abnormalities, evaluate tissue volume and plan for the treatment pre-operatively and
intra-operatively [3]. Computed tomography (CT) images, magnetic resonance imaging
(MRI) and ultrasound (US) images are the widely used modalities for segmentation. Semi-
automatic and fully automatic segmentation methods performed on these modalities using
different techniques has been an active area of research for a long time [4]. However, there
are still certain challenges to be overcome while performing medical image segmentation,
especially for those organs like the liver that have a remarkable intensity similarity with
the adjacent organs like heart, stomach and spleen. Also, intensity in-homogeneity of-
ten contributed by imaging artifacts and pathological conditions can make the process
challenging [4].

In recent years, the application of machine learning (ML) and deep learning (DL)
contributed widely to the development of automatic segmentation methods in medical
imaging [5,6]. Deep learning-based algorithms have been applied to a wide variety of
problems and have been proven efficient compared to traditional techniques in many
aspects including accuracy, speed and robustness. Deep learning refers to stacked neural
networks, which is a linear combination of many functions. The stacked neural networks
represent several layers that combine the whole architecture. Each layer is made up of
different nodes where the computations happen when they receive inputs. While training,
each layer extracts features from a low level to a higher level. Variables that define the
network structure and how the network is to be trained are called the hyper-parameters.
Hyper-parameters are very influential on parametric values, where the values of weights
and bias are a result of the selection of these hyper-parameters. For the model selection
process, we start with an initial hypothesis set. Once the decision on the model to be
used from this hypothesis set is made, training using whole training data is initiated.
After training, the model is validated on the validation dataset, and later on test data to
measure the accuracy. The selection of hyper-parameters is very crucial in determining
the performance of the network model. There is always a trade-off between these choices
with the quality of solutions and the computation time required [7]. Often referred to as
the trickiest part of designing the network models, these parameters can deliver premature
convergence or least convergence of models if not chosen wisely. Usually, this process
could be a trial and error method, but researchers are investigating on proposing better
combinations of these hyper-parameters [8]. In this research paper, we are considering
different aspects of these variables that determine the network architecture. We will be
exploring the different possible combinations and their influence in deciding the network
efficiency for predicting accurate segmentation results on medical image modality CT data.
Finally, we open a possible combination of these parameters that have been applied to a
pre-trained model and make a performance analysis of each of them. The main objective of
this research work underlies in finding the significance of choosing optimal parameters and
their effect on training performance and tasks to be done. Following our findings, in-fact
for dealing with the possibility of generalization, we conducted different experiments
on different datasets such as the liver, pancreas and cardiac data. The promising results
from these experiments prove that we can introduce these combinations as a generalized
approach for achieving improved segmentation results.

In this paper, we methodically studied the impact of different combinations that
influence the network performance on the prediction of results.

• We tested different combinations of parameters for organ segmentation on CT modal-
ity, including liver, cardiac and pancreas.

• Analysis of incremental performance while using these combinations were carried out.
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• We present persistent results on the pre-trained CNN models using the proposed
combinations, which convincingly provide better performance on multi-dataset seg-
mentation on CT images.

2. Related Works

In the past 10 years, there has been a significant research contribution worldwide
for the development of CNN for various tasks, including image segmentation, detection,
classification, etc. [9,10]. The image segmentation process of enormous medical data
can be done using different architectures mainly based on 2D CNN and 3D CNN. The
2D CNN architectures usually work in a slice-by-slice fashion whereas for volumetric
analysis 3D CNNs are employed [11]. End-to-end training of models for pixel-wise semantic
segmentation is done using FCNs [12], whereas 3D U-Net is more likely accepted by the
researchers [13,14]. Another architecture that has proved its efficiency in multi-tasks of
classification, detection and segmentation are VGG-16 [15].

Regardless of the network used, designing a deep learning-based model is a multi-
phase process. From the collection of data to obtaining results perhaps requires more
attention and wise decisions to be made. Once the data has been gathered, data preparation
processes such as data pre-processing and data augmentation make it suitable for training.
For the next step, we design the network architecture, either by building or choosing
a suitable base-architecture followed by training the network using the collected data
and evaluation on task performance. Finally, the results obtained will be analyzed and
strategies to improve network performance will be adopted. This process includes training
data analysis, tweaking of hyper-parameters, use of different parameter choices or even
changing the entire architecture [16]. In the literature, few of the works focused on studying
different characteristics of ML algorithms, investigating the features of backpropagation
and weight updates [17]. To better understand the working of the designed network
architecture, we need to have knowledge of different underlying concepts. This includes the
number of layers to be introduced, units per layer, type of layers, cost function, optimizing
algorithms, etc. [18] studied the impact of weight initialization together with momentum
in obtaining desired results. Proper weight initialization is an important factor with a
strong impact on deciding the training time as well as the quality of the resulting network
model [19]. In fact, an improper weight initialization scheme can result in poor convergence
of the model [20]. Reference [21] demonstrated the impact of choosing the right activation
function on training dynamics and model performance. In [22], the authors proposed
a strategy for the selection of hyperparameters that includes learnable parameters such
as weights and biases of each layer, including the number of filters, strides, kernel sizes
and the number of units per layer. In [23], the authors worked on studying different
loss functions used in deep neural networks with the objective of knowing the impact
of particular choices in learning dynamics for classification as a task. In [24], authors
worked on improving the accuracy of the CNN model by experimenting with different
combinations of weight initialization and activation functions. Breuel [25] conducted large
scale experiments to observe the effect of hyperparameters including learning rate, batch
size and depth of the network based on a simple SGD training. In [26], the author presents
a wide research on the effect of batch normalization in deep neural networks. The paper
concludes that batch normalization is a beneficial addition to neural network problems.
Reference [27] proposes a new method of hyperparameter optimization by combining
Bayesian optimization and Hyperband. In [28], the authors implemented a CNN that
works for Natural Language Processing, where they varied different parameters to study
on the effect of these on CNN performance. The authors conclude that less-complex CNN
have small amout of parameter adjustments that can achieve significant improvement.
Recently in [29], the authors studied on the influence of activation functions on CNN model.
This CNN model designed for facial recognition has been tested on five different activation
functions including Sigmoid, Tanh, ReLU, leaky ReLUs and softplus–ReLU, and also with
a new activation function that is proposed in the paper. In [30], the authors experimented
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on large number of hyperparameter configurations to investigate on how they effect the
performance of deep neural networks (DNNs) and identifies activation function, dropout
regularization, number hidden layers and neurons plays a critical role. A comparative
analysis of hyperparameter effects were carried out on [31], and proposes that right choice
of parameter selection directly affects the learning and predictions. Inspired from the
literature works, in this paper, we also focus on experimenting with different combinations
of these parameters to analyze the impact on accuracy on making the choices by evaluating
it with a wide range of quality metrics.

This paper is organized as follows. Section 1 gives an introduction to the paper.
Section 2 describes the background and the related work. In Section 3, various methods,
datasets and metrics used to evaluate the results are being presented. In Section 4, the
experiments comparing different hyper-parameters and their corresponding results are
discussed. In Section 5, the conclusion and future work are presented.

3. Materials and Methods

In this work, we have adopted two different approaches to perform automatic seg-
mentation by using the network to learn from combinations of base activation functions
and weight initialization techniques. We present our work through two well-known ar-
chitectures 3D U-Net and VGG-16, on two standard datasets (Medical Decathalon and
LiTS), showing that there are possibilities for substantial improvements in the overall
network performance. For the experiment with 3D U-Net, we focused on comparing the
performance with several weight initializers with different optimizers and loss functions,
keeping ReLU as an activation function. For the VGG-16 network, we tried experimenting
with different weight initializers combining different activation functions.

3.1. Convolutional Neural Networks

Different from regular networks, convolutional neural networks maintain a different
architecture. The layers of a CNN model are organized accordingly giving 3-dimensional
information. These correspond to the width, height and depth. Nodes in one layer are
not necessarily connected to all other nodes in the next layer and can be connected with a
selected portion of the same. The output is reduced to probability scores represented as a
single vector which is organized along the depth dimension. These convolutional layers are
responsible for identifying the low-level and high-level features in all locations of the input
data. Convolution refers to a mathematical expression of combining two mathematical
functions where the outcome is another function. This can be interpreted as integrating
different information to deliver new information. The convolution process is performed
using convolution kernels which then produces feature maps after convolving with the
input data representations. The main two network models that we use in this experiment
is VGG-16 and 3D U-Net. The main reason for selecting these models was their wide
acceptance for biomedical image segmentation [10,32–34].

In this work, the experiments were done using two sets of parameters, one that worked
solely for the liver segmentation and the other for a generalized version that worked for
multi-dataset segmentation. For both, we experimented with the same values and selected
the best choices to present in the paper. From our results and observations, we infer that
the presented combinations can be used for getting better segmentation results. Figure 1
represents the workflow of the whole evaluation process we followed. In general, we split
the dataset as training, validation and test data. The selected parameter combinations are
applied to the network architecture chosen, later on the trained/learned model will be
tested using the test data and predictions were analysed using the quality metrics. The
quality metrics chosen for this study to evaluate the segmentation predictions were based
on the recommendations given in [35].
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Figure 1. Workflow of the proposed method.

We used VGG-16 as the base architecture for the initial liver segmentation model.
VGG-16 is now widely used for different tasks including segmentation, detection and clas-
sification.

In neural networks, the role of hyperparameters is very important in predicting the
outcome. Each node in a network has one or more scalar inputs and a single output. The
edges that link between these nodes from layer to layer have a scalar weight and a bias
factor. Each node has an output that can be represented using Equation (1).

f (∑ wixi + b) (1)

Here xi’s are the inputs that are coming to the node, wi’s are the weights associated with
edges that make connections to that particular node and b is the bias factor. The f (x) is the
activation function that determines the output of that particular node.

We will be exploring many of these activation functions to come up with better perfor-
mance.

3.2. Weight Initialization

Neural networks are more than a convex problem. This stands for the fact that for
neural networks there are multiple possibilities of having local minima, where one can be
better than the other. So the weight initialization is an important factor in reaching the
required local minima.

3.2.1. LeCun Initialization

Reference [36] initialize the weights with scaled Gaussian distribution where each
element of the array is initialized by the value drawn independently from Gaussian distri-

bution whose mean is 0, and the standard deviation is
√

1
nin

using,

Var(Wi) =
2

nin
(2)

where nin is the number of input units in the weight tensor.

3.2.2. Xavier Initialization

Reference [37] experimented with the influence of non-linear activation function. The
non-linear logistic sigmoid activation function is not suited for random initialization of deep
neural network due to its non-zero mean value which can drive especially the top layers
of the network into saturation. The authors proposed a new linear initialization method
that saturates less often and substantially brings faster convergence [37]. The initialization
method is known as Glorot/Xavier initialization. This initializer keeps the scale of the



Electronics 2021, 10, 431 6 of 25

gradients roughly the same in all layers. Its derivatives are based on the assumption that
the activations are linear. The method initializes the weights by drawing the samples from

a truncated normal distribution centered on zero with a standard deviation of
√

2
nin+nout

.

Var(Wi) =
2

(nin + nout)
(3)

3.2.3. He Initialization

Reference [19] proposed a robust initialization method built on Xavier initialization
that particularly considers the rectified non-linearities. Unlike Xavier initialization, the
method can make an extremely deep neural network to converge. In He initialization
method, the weights are initialized based depending on the size of the previous layer. The
weights are still random but differ in the range based on the size of the previous layer of
neurons. The method draws samples from a truncated normal distribution centered on

zero with a standard deviation of
√

2
nin

using,

Var(Wi) =
2

nin
(4)

Wi is the initialization distribution; nin is the number of input units in the weight tensor.
He initialization generally works better on ReLU and PReLU activation functions.

3.2.4. Random Normal Initialization

One of the most commonly used initialization is the random normal, where all the
weight metric values will be initialized as random numbers. Although this type of ini-
tialization is susceptible to vanishing gradients or exploding gradient we used in this
experiment as mentioned in [38], random weights perform well at times.

3.3. Optimizers

Optimizers play an important role in minimization during the training phase. Relating
to the loss function, the optimizers deals with molding the model in its best possible ways.
We have used the following optimizers for our experiments mentioned in this work.

3.3.1. RMSprop

RMSprop is an adaption of Rrop algorithm [39] to the mini-batch learning rate. RM-
Sprop is also similar to Adagrad [40], but RMSprop deals with the radically diminishing
learning rates occurring in Adagrad. RMSprop divides the learning rate for weight by a
running average of the magnitudes of recent gradients for that weight. RMSprop keeps
the moving average of the squared gradients for each weight and divides the gradient by
square root the mean square.

θt+1 = θt −
η√

E[g2]t + ε
gt (5)

where E[g] is moving average of squared gradients, gt is gradient of the cost function with
respect to the weight, and η is the learning rate.

3.3.2. Adam

Adaptive Moment Estimation (Adam) [41] method is another adaptive learning rate
method. Like Adadelta and RMSprop, Adam stores an exponentially decaying average of
past squared gradients vt. In addition, Adam also keeps an exponentially decaying average
of past gradients mt, similar to momentum. mt and vt are estimates of the first moment
and the second moment of the gradients respectively. The Adam update rule is given by,
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θt+1 = θt −
η√

v̂t + ε
m̂t (6)

where m̂t and v̂t are bias corrected estimates of the first moment and the second moment of
the gradients respectively.

3.4. Loss Functions

In loss functions Softmax-Cross-Entropy and Dice loss were used.

3.4.1. Softmax-Cross Entropy Loss

The softmax-cross entropy loss is a combination of softmax activation function and
cross-entropy (CE) loss. The CE loss is defined as

CE = −
C

∑
i

tilog(si) (7)

where ti is the ground-truth and si is the score for each class i in C. In softmax-cross entropy
loss, the softmax activation function is applied to the scores before the CE loss computation. So,

CE = −
C

∑
i

tilog( f (s)i) (8)

where f (s)i is the softmax activation of the score which is given by,

f (s)i =
esi

∑C
j esj

(9)

3.4.2. Dice Loss

Dice loss is based on Sørensen–Dice coefficient (DSC), a statistic to estimate the
similarity between two samples. The range of DSC is between 0 and 1, with 1 being the
better. Thus 1-DSC is used to maximize the overlap between two sets.

DSC =
2|Sg ∩ St|
|Sg|+ |St|

(10)

Dice Loss = 1−DSC (11)

3.5. Activation Functions

The parameter that largely contributes towards the making of a neural network model
is the activation function chosen. The non-linearity behavior of the network is introduced
by this mathematical functions that also decides whether the specific neuron should be fired
or not. Activation functions permit the network models to compute arbitrarily complex
functions. In this experiment, we decided to work with the popular activation functions
such as Tanh, Sigmoid and Relu.

3.5.1. Tanh Activation Function

A widely used non-linear activation function that squashes the real-value to the range
of [−1,1]. Figure 2 plots the graph of Tanh activation function and its derivative.

tanh(z) =
ez − e−z

ez + e−z (12)
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Figure 2. Tanh and its derivative [42].

3.5.2. Sigmoid Activation Function

The monotonic activation function takes real values as input and outputs a value in the
range [0,1] see Figure 3, gives a smooth gradient and is considered to be a good classifier.

S(z) =
1

1 + e−z (13)

Figure 3. Sigmoid and its derivative [42].

3.5.3. ReLU Activation Function

Rectified Linear Units abbreviated as ReLU is often chosen for its ability of handling
vanishing gradient problems with the range of [0, ∞]. Figure 4 shows the ReLU activation
function and its derivative.

R(z) =

{
z if z > 0
0 if z ≤ 0

(14)
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Figure 4. ReLU and its derivative [42].

3.6. Dataset

For the experiments, we have tried to include different datasets for the purpose of
giving a generalization for the proposed combinations. Thus we did multi-organ segmenta-
tion as a part of testing this proposed approach. Apart from the liver data, we also used
pancreas and cardiac data.

3.6.1. Liver—LiTS

The Liver Tumor Segmentation Challenge (LiTS) [43] dataset contains in-total of 201
contrast-enhanced 3D abdominal CT scans and ground truth segmentation for liver and
lesions. The resolution of the images is considered to be 512 × 512 in each axial slice. For
training, there exist 131 scans with ground-truth labels and 70 that can be used for testing.
The slice spacing ranges from 0.45 mm to 5.0 mm and the in-plane resolution from 0.60 mm
to 0.98 mm.

3.6.2. Medical Segmentation Decathlon

Medical Segmentation Decathlon(MSD) challenge datasets [44] consists of 10 different
semantic segmentation tasks. Our experiments are based on only liver, pancreas and
cardiac datasets. The liver dataset has 131 labeled volumes with two labels for segmenting
liver and tumor from CT modality. The pancreas dataset has 282 labeled volumes for
segmenting pancreas and tumor from CT modality. The cardiac dataset has 20 labeled
volumes for segmenting the left atrium from MRI modality. The resolution of the liver and
pancreas dataset is 512 × 512 and the resolution of the cardiac dataset is 320 × 320 pixels in
each axial slice. All the datasets are scaled to an isotropic resolution of 1 × 1 × 1 mm and
normalized to have zero mean and unit variance. The ground truth labels are binarized in
the liver and pancreas dataset to only have liver and pancreas labels respectively.

3.7. Experiment 1

For the experiment, we used the implementation of VGG-16 implemented in Tensor-
flow for the purpose of segmenting the liver parenchyma in axial CT images. We have
varied the activation functions in the hidden layers by applying the sigmoid 1

(1+e−x)
, hy-

perbolic tanh(x) and reLU functions. For the final layer we have applied Softmax function
s(x)k =

exk

∑n
j=1 exj . The initial learning rate (lr) used here is 1× 10−4and the weight decay is

0.0002. All the experiments are done using NVIDIA Tesla V100 (Nvidia, Sabta Clara, CA,
USA) using public datasets SLIVER07 for the purpose of training and testing.
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3.8. Experiment 2

In this experiment, the chainer implementation of the 3D U-Net is used to segment
the liver parenchyma and pancreas parenchyma from CT volumes and left atrium from
MRI volumes. The 3D patches of 64 × 64 × 64 were used as the input to the network. The
different combinations of weight initialization methods along with different loss functions
and optimizers have been experimented with. We used Glorot, He and LeCun initialization
methods, in combination with loss functions including Softmax cross-entropy and Dice
loss, and optimizers including Adam and RMSProp. In total, 12 different combinations
have been experimented with for each dataset. We used the initial learning rate of 0.0001
and ReLU activation for all the combinations of this experiment. The Medical Segmentation
Decathlon (MSD) challenge datasets were used for the purpose of training, validation and
testing in this experiment. The models for all the combinations were trained on the NVIDIA
DGX2 server with Tesla Volta GPUs.

As both the experiments were done simultaneously, we employed two different
servers for handling the computations. Also, in our experiments, we used 70% data for
training, 20% for validation and 10% for testing.

3.9. Segmentation Evaluation Methods

In order to compare different configurations, we have selected eight evaluation metrics.
These include spatial overlap-based assessment methods like DICE, spatial distance-based
metrics like Hausdorff Distance (HD), Average Hausdorff Distance (AVD) and Mahalanobis
distance (MD), information theoretic-based measures like Mutual Information (MI) and
Variation of Information (VOI), probabilistic measure like Area under ROC curve (AUC)
and finally volume-based called Volumetric Similarity (VS). The selection of these metrics
is based on the target of the segmentation methods being applied for this study based on
the recommendations given in [35].

3.9.1. Dice Coefficient (DICE)

The Dice coefficient (DICE) is the most commonly used metric for validation of
medical image segmentation [35]. It is used to find the overlap between the ground-truth
segmentation Sg and the test segmentation St using

DICE =
2|Sg ∩ St|
|Sg|+ |St|

(15)

where |Sg| and the |St| are the cardinalities of the two sets.

3.9.2. Hausdorff Distance (HD)

The Hausdorff Distance (HD) [45] is a spatial-distance based metric used to evaluate
dissimilarity between two segmentation contours. Like other distance-based measures, the
spatial distance is measured using spatial positions of the voxels. For two finite point sets,
HD is defined in terms of directed Hausdorff distance h(A, B) as

HD(A, B) = max(h(A, B), h(A, B)) (16)

where
h(A, B) = max

a∈A
min
b∈B
||a− b|| (17)

with ||.|| is some norm like the Euclidean distance. A smaller value of HD implies better
segmentation results.
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3.9.3. Average Hausdorff Distance (AVD)

One of the drawbacks of HD is that it is sensitive to outliers. Average Hausdorff
Distance (AVD) [45], as the name suggests, is the average of HD for all points. AVD is
generally more stable and is defined as

AVD(A, B) = max(d(A, B), d(A, B)) (18)

where d(A, B) is the directed average Hausdorff distance defined as

d(A, B) =
1
N ∑

a∈A
min
b∈B
||a− b|| (19)

3.9.4. Mahalanobis Distance (MHD)

Mahalanobis Distance (MHD) [46] uses the means of two comparing point clouds (seg-
mented images) µA and muB and their common covariance matrix S to give the following
distance measure

MHD(A, B) =
√
(µA − µB)TS−1(µA − µB) (20)

where common covariance matrix S is given as

S =
α1S1 + α2S2

α1 + α2
(21)

In the above equation, S1 and S2 are the co-variance matrices of sets of voxels with α1
and α2 number of voxels respectively.

3.9.5. Mutual Information (MI)

In information theory, Mutual information (MI) between two random variables pro-
vides a measure of the amount of information that can be obtained about one variable by
looking at the other. It can also be used to find similarity between two segmentation [47].
It is linked to the marginal entropies H(Sg) and H(St) and the joint entropy H(Sg, St) of
the two variables, i.e., segmented images Sg and St and is defined as

MI(Sg, St) = H(Sg) + H(St)− H(Sg, St) (22)

3.9.6. Variation of Information (VOI)

This is another information-theory based measure. The Variation of Information
(VOI) [48] is based on marginal entropies and MI and provides a measure of gain or
loss in information when changing from one variable to another. It is defined by the
following equation

VOI(Sg, St) = H(Sg) + H(St)− 2MI(Sg, St) (23)

3.9.7. Area under ROC Curve (AUC)

Receiver Operating Curve (ROC) is a plot of True Positive Rate (TPR) against False
Positive Rate (FPR). In the case of segmentation, TPR refers to the ratio of positive (fore-
ground/segmented) voxels identified correctly out of the total number of positive voxels
in the ground-truth. Similarly, FPR refers to the ratio of voxels identified incorrectly as
positives out of the total number of negative (background) voxels in the ground-truth. The
area under ROC curve (AUC) is a measure of separability for a classifier telling how well it
is in distinguishing between classes (positive and negative voxels). Based on the definition
by [49], AUC is defined as

AUC = 1− 1
2
(

FP
FP + TN

+
FN

FN + TP
) (24)
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where FP, TN, FN and TP refer to as False Positive, True Negative, False Negative and
True Positive respectively.

3.9.8. Volumetric Similarity (VS)

Volumetric Similarity (VS) is used to compare the volume of segmented regions in the
two images. The volumes used for comparison are the absolute ones and not only of the
overlapped regions. It is evaluated by subtracting from 1 the volumetric distance which is
defined as the absolute difference between two volumes divided by the sum of the two [50]

VS(SR
g , SR

t ) = 1−
||SR

t | − |SR
g ||

|SR
t |+ |SR

g |
(25)

4. Experimental Results and Discussion

We performed segmentation of different organs data using two different networks
3D-UNet and VGG-16. The former has been used for the segmentation of cardiac, liver
and pancreas whereas the latter for the segmentation of the liver alone. The 3D-UNet
model used for the segmentation of different organs has been tested with a combinatorial
approach of weight initialization methods together with loss functions and optimizers. For
the liver segmentation model, we used the approach of combining weight initialization
with activation functions. From both the experiments we tried to gather information using
different evaluation metrics. This has been done, as it is hard to set an optimal parameter
value that says the segmentation obtained from the particular combination works better.
So we decided to choose multiple sets of quality assessment metrics. Figures 5 and 6 shows
the predictions from both best combinations that gives high Dice score and those that gives
lower values of Dice score displayed using ITK-SNAP Viewer [51]. These visualizations of
the results conveys the significant difference of each choices made. It is possible to view
the qualitative results from these experiments on ITK-SNAP in four different views axial,
coronal, sagittal and the 3D view of predictions (see Figure 7).

Comparison and Discussion of Results

In order to assess and compare the results of segmentations resulting from different
combinations of hyper-parameters, we have used the eight evaluation metrics described
in Section 3.9. The metrics have been evaluated using the VISCERAL evaluation soft-
ware package [35]. Tables 1–3 show the mean values of metrics for each configuration
applied to liver, heart and pancreas databases respectively. These configurations vary in
initialization, loss function and optimizer used. Each configuration in these tables is repre-
sented using the notation like Initoptim

loss where Init = {Glo, He, Lec}, loss = {DC, CE} and
optim = {Adam, Rms}. Here Glo and Lec are short names used for Glorot and LeCun initial-
izations and DC and CE are used for Dice loss, and Cross-entropy loss respectively. Table 4
on the other hand gives a comparison combining weight initialization choices with combi-
nation of activation functions. The configurations we used in the table are represented using
notations Initactivation, whereas the initialization constitutes Init = {Glo, RandNorm, He}
and activation functions consist of activation = {tanh, relu, sigm}. We have represented all
the parameters used in this study in Table A1.
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Figure 5. Axial and 3D view of prediction overlayed on ground truth segmentation of liver, Left Atrium and Pancreas
(1a) Liver segmentation result using GloCE

Adam (best dice), (1b) Liver segmentation result using HeDC
Adam (lower dice),

(2a) Left Atrium segmentation result using HeDC
Rms (best dice), (2b) Left Atrium result using LecDC

Adam (lower dice),
(3a) Pancreas segmentation result using LecCE

Adam (best dice), (3b) Pancreas segmentation using HeCE
Adam (lower dice).

Table 1. Mean and standard deviation values for Segmentation metrics on Liver Database (higher values represented in
bold and lower values in italics with underline).

Configuration DICE HD AVD MHD MI VOI AUC VS

GloCE
Adam 0.897 ± 0.100 291.24 ± 93.73 2.553 ± 3.02 0.163 ± 0.153 0.138 ± 0.076 0.071 ± 0.057 0.938 ± 0.069 0.952 ± 0.107

GloCE
Rms 0.870 ± 0.191 298.39 ± 96.38 3.62 ± 4.15 0.200 ± 0.194 0.133 ± 0.078 0.076 ± 0.066 0.929 ± 0.101 0.927 ± 0.200

GloDC
Rms 0.866 ± 0.147 316.81 ± 74.69 4.33 ± 4.75 0.213 ± 0.156 0.131 ± 0.076 0.082 ± 0.062 0.925 ± 0.087 0.936 ± 0.153

HeCE
Adam 0.871 ± 0.146 293.74 ± 95.25 2.88 ± 2.96 0.183 ± 0.160 0.131 ± 0.074 0.081 ± 0.065 0.923 ± 0.087 0.937 ± 0.155

HeCE
Rms 0.863 ± 0.205 295.67 ± 96.23 4.24 ± 4.68 0.232 ± 0.261 0.132 ± 0.079 0.078 ± 0.063 0.929 ± 0.105 0.923 ± 0.216

HeDC
Adam 0.858 ± 0.177 294.17 ± 77.70 3.60 ± 4.00 0.208 ± 0.236 0.129 ± 0.077 0.082 ± 0.065 0.916 ± 0.097 0.925 ± 0.185

HeDC
Rms 0.860 ± 0.185 297.14 ± 101.46 3.82 ± 4.03 0.203 ± 0.173 0.129 ± 0.076 0.082 ± 0.066 0.921 ± 0.099 0.924 ± 0.196

LecCE
Adam 0.883 ± 0.148 287.11 ± 89.97 2.40 ± 2.73 0.160 ± 0.150 0.134 ± 0.078 0.073 ± 0.062 0.929 ± 0.087 0.935 ± 0.156

LecCE
Rms 0.873 ± 0.168 295.23 ± 99.38 3.47 ± 4.10 0.210 ± 0.220 0.133 ± 0.078 0.076 ± 0.062 0.928 ± 0.094 0.934 ± 0.177

LecDC
Adam 0.860 ± 0.191 302.52 ± 95.88 3.80 ± 4.01 0.214 ± 0.217 0.130 ± 0.078 0.081 ± 0.064 0.921 ± 0.100 0.928 ± 0.202

LecDC
Rms 0.867 ± 0.199 311.64 ± 76.32 3.54 ± 4.23 0.204 ± 0.226 0.133 ± 0.080 0.076 ± 0.062 0.926 ± 0.102 0.927 ± 0.209
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Figure 6. Axial and 3D views of Liver prediction overlayed on ground truth segmentation (1a) using best combination
(Glotanh), (1b) using worst combination (Hesigm) viewed in ITK-Snap Viewer [51].

Table 2. Mean and standard deviation values for Segmentation metrics on Heart Database (higher values represented in
bold and lower values in italics with underline).

Configuration DICE HD AVD MHD MI VOI AUC VS

GloCE
Adam 0.874 ± 0.006 136.84 ± 51.41 0.374 ± 0.078 0.132 ± 0.005 0.025 ± 0.004 0.014 ± 0.003 0.916 ± 0.002 0.948 ± 0.014

GloCE
Rms 0.884 ± 0.015 36.76 ± 21.20 0.310 ± 0.021 0.084 ± 0.007 0.026 ± 0.003 0.013 ± 0.004 0.921 ± 0.007 0.951 ± 0.001

GloDC
Adam 0.872 ± 0.008 52.04 ± 11.46 0.658 ± 0.367 0.174 ± 0.096 0.025 ± 0.004 0.015 ± 0.002 0.919 ± 0.005 0.961 ± 0.004

GloDC
Rms 0.884 ± 0.003 110.88 ± 75.91 0.494 ± 0.168 0.146 ± 0.055 0.026 ± 0.004 0.014 ± 0.003 0.792 ± 0.005 0.964 ± 0.019

HeCE
Adam 0.891 ± 0.010 36.44 ± 22.20 0.311 ± 0.013 0.101 ± 0.019 0.026 ± 0.004 0.013 ± 0.003 0.927 ± 0.001 0.957 ± 0.008

HeCE
Rms 0.882 ± 0.003 71.70 ± 19.61 0.360 ± 0.015 0.143 ± 0.015 0.026 ± 0.004 0.014 ± 0.003 0.921 ± 0.010 0.954 ± 0.028

HeDC
Adam 0.881 ± 0.006 111.29 ± 81.84 0.359 ± 0.101 0.115 ± 0.031 0.026 ± 0.004 0.014 ± 0.003 0.922 ± 0.003 0.957 ± 0.015

HeDC
Rms 0.892 ± 0.001 153.89 ± 18.03 0.310 ± 0.012 0.117 ± 0.050 0.026 ± 0.004 0.013 ± 0.002 0.929 ± 0.006 0.961 ± 0.013

LecCE
Adam 0.879 ± 0.007 106.52 ± 77.41 0.375 ± 0.107 0.101 ± 0.003 0.026 ± 0.004 0.014 ± 0.003 0.919 ± 0.002 0.951 ± 0.015

LecCE
Rms 0.879 ± 0.012 113.72 ± 76.83 0.568 ± 0.346 0.155 ± 0.074 0.026 ± 0.005 0.014 ± 0.002 0.918 ± 0.017 0.949 ± 0.028

LecDC
Adam 0.871 ± 0.022 54.26 ± 51.20 0.414 ± 0.149 0.142 ± 0.095 0.025 ± 0.005 0.014 ± 0.001 0.914 ± 0.022 0.946 ± 0.030

LecDC
Rms 0.873 ± 0.014 55.87 ± 3.03 0.341 ± 0.051 0.145 ± 0.066 0.025 ± 0.005 0.014 ± 0.002 0.911 ± 0.019 0.936 ± 0.033
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Figure 7. Segmentation results of Liver in axial, coronal, sagittal and 3D view using Glotanh with best Dice score viewed in
ITK-Snap Viewer [51].

Table 3. Mean and standard deviation values for Segmentation metrics on Pancreas Database (higher values represented in
bold and lower values in italics with underline).

Configuration DICE HD AVD MHD MI VOI AUC VS

GloCE
Adam 0.679 ± 0.148 117.03 ± 50.96 4.02 ± 6.83 0.382 ± 0.262 0.012 ± 0.005 0.020 ± 0.010 0.834 ± 0.098 0.848 ± 0.159

GloCE
Rms 0.681 ± 0.156 119.79 ± 56.51 3.49 ± 7.03 0.370 ± 0.251 0.012 ± 0.005 0.020 ± 0.010 0.827 ± 0.099 0.834 ± 0.173

HeCE
Adam 0.659 ± 0.165 117.58 ± 51.82 3.89 ± 5.94 0.372 ± 0.266 0.012 ± 0.005 0.020 ± 0.010 0.814 ± 0.104 0.826 ± 0.187

HeCE
Rms 0.686 ± 0.156 111.14 ± 52.88 3.623 ± 7.14 0.339 ± 0.257 0.013 ± 0.005 0.020 ± 0.011 0.836 ± 0.099 0.849 ± 0.168

LecCE
Adam 0.691 ± 0.148 121.52 ± 57.92 2.97 ± 4.25 0.325 ± 0.264 0.013 ± 0.006 0.019 ± 0.009 0.837 ± 0.097 0.848 ± 0.168

LecCE
Rms 0.672 ± 0.156 117.91 ± 50.82 3.74 ± 5.23 0.357 ± 0.274 0.012 ± 0.005 0.020 ± 0.010 0.825 ± 0.102 0.845 ± 0.171
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Table 4. Mean and standard deviation values for Segmentation metrics on LiTS Database (higher values represented in bold
and lower values in italics with underline).

Configuration DICE HD AVD MHD MI VOI AUC VS

Glotanh 0.921 ± 0.034 474.95 ± 131.44 1.32 ± 2.08 0.302 ± 0.179 0.124 ± 0.048 0.056 ± 0.050 0.969 ± 0.026 0.962 ± 0.031

RandNormrelu 0.853 ± 0.063 499.38 ± 92.03 2.30 ± 1.92 0.507 ± 0.190 0.113 ± 0.030 0.093 ± 0.078 0.951 ± 0.053 0.906 ± 0.067

Hesigm 0.857 ± 0.063 511.43 ± 92.94 2.40 ± 2.43 0.515 ± 0.201 0.110 ± 0.034 0.087 ± 0.072 0.952 ± 0.047 0.913 ± 0.061

It is important to note that in each of Tables 1–3 only those configurations have been
included for which there was a segmentation result obtained. Hence configuration GloAdam

DC
for the liver database and all Dice-loss-based configurations for the pancreas database have
not been considered. The values in bold in these tables highlight the best two values for
each metric whereas those in italics with an underline depict the worst value. Overall
we see small (but mostly statistically significant) differences in the values of most of the
metrics. However, from Table 1 we can observe that both GloAdam

CE and LecAdam
CE have been

evaluated as the best by all the metrics. On the contrary, both GloRms
DC and HeAdam

DC give the
worst results for at least four of the total eight metrics.

These conclusions can further be verified using the box plots for all metrics as illus-
trated in Figure 8. From the box plot of DICE, it can be observed that the results for both
GloAdam

CE and LecAdam
CE are more consistent having a small inter-quartile range and are also

uniformly spread around the median value. The outliers for these two configurations are
also fewer and less far away from the minimum value. The same trend of a smaller inter-
quartile range can also be seen for other metrics like AVD, MHD and AUC. Contrary to that,
looking at the configurations which have the worst mean values, they tend to have a larger
spread for most metrics. The results further indicate that the use of the Cross-entropy loss
function has a better performance as compared to DICE for liver segmentation. This can be
easily verified from the table and the box plots if we compare each pair of configurations
having the same initialization and optimizer function but differing in the loss function.

Even for the segmentation results for the pancreas, the use of DICE as a loss function
failed to give any results for any configuration. From amongst the remaining configura-
tions, we observe that LecAdam

CE again performs amongst the best as can be seen in Table 3.
However, in this case, it is accompanied as the second-best by configuration using He ini-
tialization with RMSProp optimization, i.e., HeRms

CE . The box plots in Figure 9 also illustrate
that for the majority of metrics these two configurations have a smaller spread as compared
to the others.

For the heart database, we can see from Table 2 that the configuration HeAdam
CE gives

the best results. Two other configurations of GloRms
CE and HeRms

DC also fare better than the
other configurations in terms of at least three metrics excluding the non-discriminant
metrics of MI and VOI. From Figure 10, it is visible that HeAdam

CE gives good consistency
and better values for DICE, HD, AVD, AUC and VS. GloRms

CE has a good performance with
HD, AVD, MHD and VS whereas HeRms

DC gives better values and consistency for DICE,
AVD, AUC and VS. Hence, for the heart database we see a discrepancy that a configuration
with DICE as loss function is also amongst one of the better configurations. However, it
is important to note here also that the testing dataset for the heart database was also very
small as compared to the other two and it could be interesting to see the results with a
bigger dataset.

Table 4 shows a comparison of the two configurations on LiTS dataset which differ
in initialization and activation functions. Amongst the two configurations, we can clearly
observe that Glotanh outperforms the RandNormrelu and Hesigm configuration.
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Figure 10. Box plots of metrics for Heart Database.

In order to verify the statistical significance of the differences between the multiple
configurations, we have further performed a paired t-test of the best configuration with
each of the other configurations for each dataset. This test is performed for each of the eight
quality metrics used. The null hypothesis for the paired t-test is rejected when p ≤ 0.05.
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However, due to the limited data in the case of Heart database, we haven’t performed
statistical analysis on its results. Table 5 shows the comparisons with GloAdam

CE configuration
for the Liver Dataset. The checkmarks in the table denote that the p-value is less than or
equal to 0.05 implying statistical significance in differences. From the table, we can see
that except for VS and HD all the metrics show that by selecting different loss functions,
initializations and optimizers, the improvements in the output are significant. Moreover,
as expected, for the LeAdam

CE , which was the second best configuration and hence closer
to the GloAdam

CE in terms of results, we see none of the metric values to be significantly
different except MI. Additionally, we also see from Table 5 that for all initializations with a
combination of CE loss and Rms optimizer, both DICE and AUC do not change significantly
but the AVD, MHD, MI and VOI provide an insight into the significant changes in outcomes
between these configurations.

Table 5. Statistical Significant differences (p ≤ 0.05) denoted by checkmark for each configuration in
comparison to GloAdam

CE for Liver Dataset.

Configuration DICE HD AVD MHD MI VOI AUC VS

GloCE
Rms ! ! !

GloDC
Rms ! ! ! ! ! ! !

HeCE
Adam ! ! ! ! ! !

HeCE
Rms ! ! !

HeDC
Adam ! ! ! ! ! !

HeDC
Rms ! ! ! ! ! !

LecCE
Adam ! !

LecCE
Rms ! ! ! !

LecDC
Adam ! ! ! ! ! !

LecDC
Rms ! ! ! !

Similarly, Table 6 shows the statistical analysis results for the Pancreas dataset with
checkmarks highlighting statistical significance in comparison to the best LecAdam

CE config-
uration. Here again we can observe that both HD and VS metrics mostly do not show
significant differences except for the case where the best and the worst configurations are
compared to each other. The p-value of less than 0.5 for all the rest of the metrics in most
cases signify that the choice of parameters does have a noticeable impact on improving
the segmentation results for Pancreas database. Moreover, with similar results as for the
case of the second best configuration of HeRms

CE , the null hypothesis is not rejected for the
majority of the metrics used.

Finally, we have performed paired t-tests on the values in Table 4 for the comparison
of configurations varying in initialization and activation functions. The comparison was
performed between each configuration and the best one, i.e., Glotanh. Table 7 shows the
p-values for all the metrics. From the table, we can clearly see that for all the metrics the
p-values are much lower than the significance value of 0.05. This suggests that the null
hypothesis is rejected and there are significant differences between the best configuration
and the rest in terms of segmentation results.
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Table 6. Statistical Significant differences (p ≤ 0.05) denoted by checkmark for each configuration in
comparison to LecAdam

CE for Pancreas Dataset.

Configuration DICE HD AVD MHD MI VOI AUC VS

GloCE
Adam ! ! ! !

GloCE
Rms ! ! ! !

HeCE
Adam ! ! ! ! ! ! !

HeCE
Rms !

LecCE
Rms ! ! ! !

Table 7. p-Values for t-test with Glotanh performed for Segmentation metrics on LiTS Database.

Configuration DICE HD AVD MHD MI VOI AUC VS

RandNormrelu 4.43 ×10−8 6.74 ×10−4 4.14 ×10−3 1.05 ×10−9 4.36 ×10−3 6.82 ×10−6 1.36 ×10−2 2.83 ×10−6

Hesigm 9.75 ×10−8 5.97 ×10−4 1.36 ×10−3 1.12 ×10−9 1.42 ×10−3 2.61 ×10−6 4.71 ×10−3 1.45 ×10−6

As we can see, the configurations used for both the experiments are different from
each other and we employed 3D-UNet for multi-dataset segmentation as well as VGG-16
based segmentation model for a single dataset study. We have seen in the literature [11–14],
the most promising successor of FCN is 3D-UNet. Used widely for multi-class segmenta-
tion [52,53] and often referred to as a universal segmentation model, we decided to follow
the same idea of employing 3D-UNet for multi-dataset segmentation. We used different
combinations of the parameters including weight initialization, loss functions and optimiz-
ers keeping ReLU as the activation function considering two main reasons.According to
the literature, ReLU performed well with the U-Net architecture [54,55] and is considered
to be six times faster than sigmoid/tanh activation functions. Here, as we were handling
multi-dataset we need to reduce the computational cost, hence followed the principle of
keeping ReLU as the activation function for all the experiments carried out in 3D-UNet. For
the single dataset study on VGG-16 based segmentation model, we followed the combina-
tions or activation functions combined with weight initialization keeping the loss function
constant (CE). Although, VGG-16 is considered to be best for classification tasks, here we
tried to come up with a solution for liver segmentation together with a study of parameter
choices. “Training algorithms for deep learning models are usually iterative in nature
and thus require the user to specify some initial point from which to begin the iterations.
Moreover, training deep models is a sufficiently difficult task that most algorithms are
strongly affected by the choice of initialization” [56], as mentioned in this statement, the
motivation was to propose a better initialization scheme that works with the activation
function. From the observations from the quality matrices, we could agree that the tanh
activation function can be a good alternative to sigmoid and works well with Glorot/Xavier
weight initialization [55].

5. Conclusions

In this research work, chainer implementation of 3D-UNet and VGG-16 networks
were applied for segmentation tasks of the medical image dataset. The main observations
from the experiments conducted show that perhaps there are interactions between the
architectural parameters that enhance the output scores. The research work has been
concentrated more on initialization schemes rather than the famous hyper-parameter
searching techniques. We made two different approaches, a multi-dataset segmentation
study and single-dataset segmentation evaluation. From both the experiments, we propose
few of the combinations that may work better for segmentation results although it is
hard to make a concise conclusion from the values in quality matrices. In best of our
knowledge, there is no best algorithm proposed for the purpose of generalised medical
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image segmentation, but studies show that there can be best choices we can make while
designing the architecture [22–24]. From our experimental results, we have observed that
two of the combinations with Xavier weight initialization (also known as Glorot), Adam
optimiser, Cross Entropy loss (GloAdam

CE ) and LeCun weight initialization, cross entropy
loss and Adam optimiser LecAdam

CE worked best for most of the metrics in 3D-UNet setting,
while Xavier together with cross entropy loss and Tanh activation function (Glotanh

CE ) worked
best for VGG-16 network. The quantitative and qualitative analysis performed during
the development of this work (see Tables 1–7 and Figures 5 and 6) shows the significant
importance of the proposed combinations for the future development and designing of
network architectures. We believe that this research can provide new perspective for
the related researches in the medical domain, and also help fellow researchers to choose
appropriate combinations for their network structure and to be aware of the possible
challenges and the solutions. As an extension to this work, we would like to experiment
with the combinations with better results on a multi-domain network that works for
segmentation analysis in data from two different domains, for example, CT/MR images.
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Appendix A. Different Parameters and Abbreviations

We have experimented on the following parameters, combining them and observing
the impact on segmentation results, and chose the best working combinations to present in
the paper.

Table A1. Parameters experimented under each category, and their abbreviations.

Weight Initialization Activation Function Loss Function Optimizer

Xavier or Glorot (Glo) Tanh (tanh) Cross Entropy (CE) Adam (Adam)

He Initialization (He) ReLU (relu) Dice loss (DC) RMSprop (Rms)

LeCun (Le) Sigmoid (sigm)

Random Normal (RandNorm)
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