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Abstract: This paper addresses the concept of load balancing in the operation of parallel insulated-
gate bipolar transistors (IGBTs), in which the temperature is used as the main control parameter.
In parallel IGBT operation, it is essential to ensure an equal load distribution across all IGBTs. Two ba-
sic algorithm concepts for temperature control were developed for the purpose of balancing. A test
model based on the parallel IGBTs operation was assembled in a laboratory and the developed
algorithms were tested for the chosen parameters. MATLAB was used for final data processing.
The comparison between the two implemented basic algorithms provides insights into the tempera-
ture behavior of parallel IGBTs in terms of individual IGBT’s heating and cooling trajectories and
time constants. All tests were conducted without the heatsinks to obtain the worst-case scenario
in terms of thermal conditions. The test results show that temperature control in the operation of
parallel IGBTs is possible but limited.

Keywords: IGBT paralleling; load balancing; temperature control; embedded system;
control algorithm

1. Introduction

Power electronic converters are used in many segments of modern industry, such
as automotive, biomedical, and renewable energy systems, with a steady growth trend
likely in future [1,2]. Every controllable power electronic converter has a certain type of a
semiconductor implemented (mostly transistors), which in low- to high-power applications
(power supplies, inverters, variable speed drive systems, etc.), is usually an insulated-
gate bipolar transistor (IGBT). For high-power applications [3–5], a single transistor unit
generally does not meet requirements related to current-voltage characteristics, therefore,
parallel and/or series device operation is necessary. If voltage requirements are satisfied,
to increase the required power, paralleling of devices is utilized. Two approaches can be
used for this purpose: paralleling power electronics converters (e.g., inverters), for example,
as presented by Wang et al. [6]; or using one converter with paralleled IGBT operation [7].
The main problem in IGBT parallel operation is the load imbalance due to uneven current
distribution in individual IGBTs. This issue has received significant attention in the research
literature [5,8–14].

Alvarez, Fink and Bernet in [8] present a simulative study on the influence of different
parameters on the current distribution of parallel connected IGBTs. Dynamic problems in
IGBT parallel operation are presented by Schlapbach in [9] and Jadhav, Zhou and Jansen
in [10]. Current sharing problems between paralleled IGBT modules during short circuit
are presented in [11] by Spang and Katzenberger. The influences of differences in switching
behaviors are well presented in [12] by Schrader et al. The same problems regarding current
distribution in parallel transistor operation also occur with different types of transistor,
such as GaN or SiC [14]. In ref. [15], Yang et al. present the effect of unbalanced load
in paralleled IGBTs, in addition to the results of IGBT temperature differences between
individual transistors. Li et al. [16] present the problem of current imbalance in paralleled

Electronics 2021, 10, 429. https://doi.org/10.3390/electronics10040429 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6750-3820
https://orcid.org/0000-0003-2100-242X
https://doi.org/10.3390/electronics10040429
https://doi.org/10.3390/electronics10040429
https://doi.org/10.3390/electronics10040429
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10040429
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/4/429?type=check_update&version=2


Electronics 2021, 10, 429 2 of 17

half-bridge power modules. Paralleling, which dies in power modules, also faces challenges
regarding current distribution balance, as presented in [5].

The remedy for the issue of uneven current distribution between paralleled transistors
is load balancing for IGBTs. According to [17], there are three main categories of parallel
IGBT load balancing: the de-rating method, impedance balancing, and active gate con-
trol. The above methods have their specific advantages and disadvantages. A de-rating
method is the simplest method and is based on the IGBT’s current rating reduction (i.e.,
device oversizing), in which the device current rating is set well above the power (current)
demands [18]. This eliminates the consequences of IGBT’s current imbalances. The dis-
advantages of this method are undesirable €/W ratio, increased device dimensions, etc.
The impedance balancing method includes a snubber (i.e., a resistor with several times
greater resistance than differential resistance of each IGBT or a snubber transformer) in
series with each parallel-connected IGBT. This method ensures almost equal current shar-
ing [19]. A problem with this technique is higher power loss. If balancing transformers are
used, the cost increases with the volume and weight of the device.

The last approach is the active gate control (open-loop and closed-loop) which in-
cludes an automatic control method for individual IGBTs [20–25]. Automated delay time
compensation as an active gate control method is presented in [20] by Alvarez. Chen et al.
in [21] use an active gate control method with two control loops for IGBTs’ parallel opera-
tion current balancing. Du et al. in [22] use parallel and series connected IGBTs balanced
with an active gate control method via FPGA, which is the most common type of micro-
controller unit (MCU) used in active gate control balancing methods. Zeng et al. [23]
propose an artificial neural network control algorithm in the form of embedded hardware
to deal with a current distribution imbalance. Active current balancing, as a form of inde-
pendent delay control aiming to minimize current peaks during switching transients, is
presented in [24] by Tripathi, Tsukuda and Omura. Beushausen, Herzog and Doncker [25]
propose an active gate control in terms of voltage slope duCE/dt closed-loop control in
medium-voltage applications.

The advantages of active gate control methods are precise load balancing, ability to
balance a large number of paralleled IGBTs (depending on the selected embedded system),
and volume and weight does not increase significantly with a higher number of IGBTs.
The disadvantages are complicated control and decreased reliability compared to the de-
rating and impedance balancing methods. All research papers related to IGBT paralleling
are based on the idea of current balancing.

Another option for IGBT load balancing is via the IGBT temperature because the
temperature and current are directly correlated. This idea is even more interesting because
the transistor reliability and lifespan directly depend on IGBT’s operation temperature [26].
Moreover, IGBTs have among the highest failure rates of components in power electronic
converters due to temperature fluctuation, as proposed by Wang in [27]. Thus, the stable
operation temperature of every transistor is important for the reliability of converters with
parallel IGBTs implemented.

To our knowledge, paralleled IGBTs’ load balancing via temperature control (as a
primary or secondary control along the current) has not been explored yet. This paper
provides insights and presents important conclusions regarding the paralleled IGBT tem-
perature control concept. Temperature can be used as the only feedback parameter to
control IGBTs with simple algorithms, as presented in this research. Two original control
algorithms, Nsim and NNr, were developed, implemented on an embedded system board,
and tested on a laboratory IGBT test board. Detailed flowcharts for both algorithms are
presented and elaborated in the paper. IGBTs’ temperature responses to the emitter current
were obtained in the form of diagrams to present the temperature time constants, i.e.,
heating and cooling times for specific parameters. In addition, we developed our own data
logging and data processing system, as presented in the paper and available as Supplemen-
tary Materials in back matter in the form of Arduino codes (NNr_Nsim_Arduino_code.zip)
and MATLAB scripts (MATLAB_code_v1.5.zip).
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The remainder of this paper is organized as follows. Section 2 gives an overview
of the assembled IGBT test boards. The developed algorithms for load balancing via
IGBT temperature control are outlined in Section 3. The experimental analysis is given in
Section 4. Finally, the final section concludes and provides remarks regarding future work.

2. Assembled IGBT Test Board

An initial design idea for the test board was to develop a test model on which different
temperature control algorithms could be tested. Thus, four IGBTs were installed on the
developed test board as a minimal set requirement for two developed algorithms, which are
presented later in the paper. The block schematic of the test model is shown in Figure 1.
Here, four IGBTs (IGBT1–IGBT4) are utilized. IGBT drivers (GD1–GD4) are connected to
every IGBT on one side and to the control unit on the other side. Each IGBT has its own
NTC temperature sensor Cantherm MF58 (Quebec, Montreal, Canada) and current sensor
(transducer) LEM LTS 25-NP (Wisconsin, MKE, USA). The development board with a 32-bit
ARM AT91SAM3X8E Arduino DUE (Torino, Italy) microcontroller was used as a control
unit [28]. The used development board is restricted to sixteen analog inputs (current and
temperature readings), which is acceptable for the assembled test model (four current and
four temperature readings). IGBT drivers are controlled with digital outputs. An auxiliary
power supply of 12 V and 3 A was used as a power supply for the test model.

Figure 1. Test model control diagram.

The list of electronic components of the test model with the markings according to
Figure 2, is given in Table 1. The assembled test board is shown in Figure 2. The used IGBTs
were Fairchild SGH80N60UFD (South Portland, ME, USA) (600 V; 40 A) IGBTs in the TO-3P
package (mark 1; Figure 2) [29]. These transistors do not have integrated temperature
sensors thus, dedicated temperature sensors were installed. The chosen temperature
sensors were 100k NTC thermistors (mark 2; Figure 2). In the bottom-left corner of Figure 2
(magnified), a solution to NTC installation with the IGBTs is illustrated. The NTCs are
attached with thermal glue to the back of the IGBTs (directly connected to the emitter leg).
Special attention was paid to the placement and gluing of the NTCs so that they could
have as identical thermal properties as possible. Other important parts of the test board
were current transducers (In = 8 A)—mark 3; Figure 2, and IGBT drivers Microchip TC4420
(Chandler, Arizona, USA) (CMOS/TTL, Ip = 6 A)—mark 4; Figure 2.



Electronics 2021, 10, 429 4 of 17

Figure 2. Assembled test model.

Table 1. Electronic component list of the test model.

Mark (Figure 2) Item Description

1 Transistor Fairchild SGH80N60UFD
2 Thermistor Cantherm NTC MF58
3 Current Transducer LEM LTS 25-NP
4 Driver Microchip TC4420
5 Voltage regulator Texas Instruments LM7805 *1

6 Calibration circuit Trimmers, capacitors, resistors
7 LED Vishay TLHG6400 *2

8 Connections Banana socket
9, 10, 11 Connections Male Header

12 Board Single-sided

*1 Location: Dallas, TX, USA, *2 Location: Vöcklabruck, Austria

The test board was supplied with +12 V and +5 V stabilized power source for drivers
and sensors (mark 5; Figure 2). The +5 V stable voltage source is crucial for precise current
and temperature measurements. Further, every current and temperature sensor has its own
active circuitry for calibration and fine adjustments realized via multiple-turn trimmers
(mark 6; Figure 2) and other passive components to ensure reliable measurements.

Furthermore, additional useful features were the installed green Light-Emitting Diodes
(LEDs; mark 7; Figure 2), which were activated when IGBTs conduct electricity so the
user can see when IGBTs conduct. The load was connected via 4 mm banana plugs
(mark 8; Figure 2). The control and power sections of the test board had a common ground
(pin headers marked with 9; Figure 2). The four digital outputs of the control unit for
IGBTs control were connected to the input of gate drivers (pin headers marked with 10;
Figure 2). A total of eight pin headers (mark 11; Figure 2) were dedicated for IGBT current
and temperature measurements via the control unit (four current and four temperature).
Control unit analog input pins were set to 10-bit resolution and 250 Hz sampling frequency
per analog input.
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3. Developed Algorithms

In this study, two algorithms were developed for basic IGBT load balancing via tem-
perature control—Nsim and NNr. The basic schematic of both Nsim and NNr algorithms is
shown in Figure 3. These two algorithms are chosen to show two different but similar sim-
ple methods of paralleled IGBT temperature control (one without and one with redundant
IGBTs) and to validate both methods.

Figure 3. (a) Nsim; (b) NNr algorithms’ basic schematics.

The developed algorithms have features regarding safety, such as maximum tempera-
ture and current protection as well as a required system reset when software parameters
change implemented. In the following subsections two algorithms are elaborated on.

3.1. Nsim Algorithm

The Nsim algorithm represents the algorithm for IGBT control in which all IGBTs
work simultaneously. The working principle of the Nsim algorithm is that all IGBTs
work simultaneously until the maximum temperature of any individual IGBT (T2(i)) is
reached (Figure 3). An IGBT with temperature T2(i) or greater is disabled and it cools
down. When the temperature of a given IGBT is T1(i) or lower, the IGBT is engaged again.
This principle is applied to every engaged IGBT.

The algorithm is initialized with the following parameters:

• N—number of engaged IGBTs;
• T2(i), i = 1, 2, . . . , N—upper temperature threshold or the maximum temperature of

the IGBT when the IGBT is disabled;
• T1(i), i = 1, 2, . . . , N—lower temperature threshold or the temperature at which the

IGBT is engaged again after cooling down from T2(i);
• Imax—sum of all IGBT currents or the value of the current at which the system shuts

down all IGBTs and the test ends;
• Imax(i), i = 1, 2, . . . , N—maximum current of an individual IGBT or the value of the

current at which all IGBTs are disabled and the test ends.

The flowchart of the Nsim algorithm is given in Figure 4.
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Figure 4. Flowchart of the Nsim algorithm.

3.2. NNr Algorithm

The NNr algorithm represents the algorithm for IGBT control in which the N IGBTs
are initially engaged as the main IGBTs and Nr as redundant IGBTs, which are engaged if
any of the main IGBTs reaches the upper threshold temperature T2. Initial parameters T2(i),
T1(i), Imax, Imax(i) are the same as those of the Nsim algorithm, with the difference of the
two additional parameters:

• N—number of the main engaged IGBTs;
• Nr—number of redundant IGBTs.

The basic working principle of NNr is that the user first selects the N number of main
IGBTs and Nr number of redundant IGBTs (Figure 3). Redundant IGBTs are simultane-
ously engaged when any of the main IGBTs reaches T2(i). They remain active until all
individual IGBTs from the main group of IGBTs cool down (reaches T1(i)). At this point,
redundant IGBTs are deactivated and only the N main IGBTs conduct again. This algorithm
ensures better stability of the system but also requires a greater number of IGBTs due to
redundancy. The flowchart of the NNr algorithm is given in Figure 5.
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Figure 5. Flowchart of the NNr algorithm.

4. Experimental Results

Both Nsim and NNr algorithms were developed and tested on the test board. The test
bench is shown in Figure 6.
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Figure 6. Test bench for parallel insulated-gate bipolar transistor (IGBT) temperature control.

Table 2 lists the equipment used in the test setup.

Table 2. Equipment used in the test setup.

Component Description Mark
(Figure 6)

DC sources (×2)
ET Systems LAB/HP101000 *1 Umax = 1000 V; Imax = 20 A 1

Auxiliary power supply U = 12 V; I = 3 A 2

IGBT test board Assembled IGBT test board for temperature
control development 3

Control unit (Arduino DUE) 8 analog inputs + 4 digital outputs 4

PC with MATLAB PC with MATLAB R2018b for Data
acquisition and Start/Stop test function 5

Multimeter Multimeter for load current measurement 6

*1 Location: Altlußheim, Germany.

Generally, two working modes—switching and conduction—are significant for IGBT
operation testing. A switching operation mode is significant to test when dynamic current
is controlled and observed due to unavoidable differences in transients during on/off
switching periods. This operation mode allows IGBTs to have room for cooling (during off
periods), which is beneficial for faster cooling (slower heating) transients. The conduction
mode means that IGBT is continuously in the on state during the test. This paper focuses
on the latter operation mode because it is the worst-case scenario in terms of IGBT loading
and heating. Thus, all measurements in the paper were made for a conduction mode. It is
important to mention that all four IGBTs were not from the same batch, and some were
changed a few times due to failure. This creates an even more unbalanced situation between
IGBTs, which is suitable for this research due to an even more pronounced imbalance of
current and temperature characteristics.

Because the main objective is to heat the transistors, to avoid the need for a specific
load and load losses (e.g., in the case of using a DC source in a constant-voltage (CV)
mode and working load), a DC source in a constant-current (CC) mode was used instead.
This simplified the test setup and reduced test setup components. The current source was
set to a constant of 20 A due to DC source limitations.

In addition, it is worth mentioning that all measurements were done without a heatsink
to obtain the fastest IGBT heating and slowest cooling (worst-case scenario). The mea-
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surements are aimed to provide an insight into IGBT temperature behavior and algorithm
analysis for future upgrades. The measurements on the test model are organized in such a
way to analyze the influence of all characteristic parameters.

A block schematic of the test circuit is shown in Figure 7.

Figure 7. Block schematic of the test circuit.

The block schematic (Figure 7) shows the basic blocks of the test setup. Here, the device
under test (DUT) consisted of four paralleled IGBTs with attached drivers, and current and
temperature sensors. An auxiliary power supply fed sensors and drivers. An Arduino
DUE sent control signals to the gate drivers of the IGBTs according to the temperature and
current feedback from the sensors.

A development board (Arduino DUE) has two USB ports—a programming port and
native port. With the programming port, all available algorithm parameters can be set and
uploaded to the MCU via the human-machine interface (HMI) (Figure 8a). Once uploaded,
the algorithm waits for a command from the native USB port to run itself. The native USB
port is used as a virtual serial port for data readings and algorithm control with MATLAB.
An additional MATLAB script was written to enable fast data readings (480 Mbit/s) and
data conversion of the measured values.

Figure 8. The human-machine interface of the test setup: (a) Arduino; (b) MATLAB.

The MATLAB HMI is shown in Figure 8b. In this interface, the test duration and the
processed data display options can be set. The MATLAB script also enables the algorithm
to start when the Run button is pressed. With the same button, the algorithm can be forcibly
interrupted. Upon finishing the test, MATLAB processes the recorded data and draws the
selected graphs as can be seen in Figure 8b.

The processed data example, together with the description of the selected parameters
(Table 3), is given in Figure 9.
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Table 3. Parameter description of the processed MATLAB data.

Parameter Description

T2 (bit) Upper threshold temperature at which the IGBT will be turned
OFF. This value is defined in the algorithm code.

T2 (◦C) Upper threshold temperature (in ◦C).

T1 (◦C) Lower threshold temperature (in ◦C).

Tmax (◦C) Maximum reached temperature in the test.

∆T (bit)
Cooling hysteresis, which defines the lower threshold

temperature at which the IGBT will be turned ON. This value is
defined in the algorithm code.

theating (s) Heating time or the IGBT conduction time (ON time).

tcooling (s) IGBT cooling/resting time (OFF time).

Tovershoot (%) Temperature overshoot in percent.

tovershoot (s) Overshoot duration.

Figure 9. Processed MATLAB data example.

Over 50 measurements with different parameters were made, and the measurement
results for three significant different operating points for both Nsim and NNr algorithms
are presented in the paper (Table 4).

Table 4. Chosen measurement parameters for both algorithms.

Nsim NNr

n N T2 (◦C/Bit) ∆T (Bit) Time
(s) n N + Nr T2 (◦C/Bit) ∆T (Bit) Time

(s)

1 3 74 ◦C/500 50 120 1 2 + 1 74 ◦C/500 50 120
2 3 90 ◦C/700 50 120 2 2 + 1 90 ◦C/700 50 120
3 3 90 ◦C/700 80 120 3 2 + 1 90 ◦C/700 80 120

Because the accuracy of the temperature and current readings is important, sensors
integration is briefly discussed. In addition to the datasheet parameters [30] and MATLAB
resistance calculation, simulation of the NTC circuit was conducted using a SPICE (Sim-
ulation Program with Integrated Circuit Emphasis) program National Instruments (NI)
Multisim [31] to obtain the NTC circuit voltage readings. The test board was calibrated be-
fore the initial measurements via trimmers (mark 6; Figure 2) and all values were rechecked
(and recalibrated if needed) before each set of measurements. The NTC circuit calibration
was done in the idle state for every individual IGBT at the room temperature of 25 ◦C.
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Due to the lack of a temperature test chamber, only a single temperature check point (25 ◦C)
was verified. The accuracy of the temperature measurements relies on temperature charac-
teristics obtained by simulation. The characteristic calculation was undertaken using the
Steinhart-Hart curve fitting method [32]. Taking into account the estimated uncertainty of
the Steinhart-Hart method [32], R25 and B value tolerances of 1% and 2%, respectively [30],
and the NTC installation method, our rough estimation is that the temperature readings
should be within the range of ±5 ◦C at 80–100 ◦C operation temperature.

The current sensor has an accuracy of ±1%, which was confirmed with an additional
current meter METEX M-3650 (Seoul, Geumcheon-gu, South Korea) connected in series
with the load (Figure 6).

4.1. IGBT Current-Temperature Characteristic

Because this paper addresses temperature and current as the two main observed vari-
ables, the current-temperature characteristic is discussed prior to measurements. The only
current-temperature correlation characteristic available from the Fairchild SGH80N60UFD
datasheet [29] is extracted and shown in Figure 10a. In Figure 10b, the recorded current
and temperature characteristic of a single IGBT for the chosen parameters of T2 = 105 ◦C,
I = 20 A, and ∆T = 80 is shown.

Figure 10. (a) IGBT case temperature, collector-emitter voltage, current correlation; (b) recorded
current and the temperature characteristic of a single IGBT for the chosen parameters.

In the case presented in Figure 10a, for the emitter (or collector) current of I = 20 A,
at the chosen operation temperature of the IGBT of T2 = 105 ◦C and the collector-emitter
voltage VCE = 1.6 V, the steady state power losses can be estimated as:

Ploss = VCE·I = 1.6·20 = 32 W

Because the current source is used in the form of the load in this paper, the steady
state IGBT power losses can be easily confirmed by reading the power of the source which,
in this case, amounts to P = 38 W. The deviation between the calculated and measured
values can be attributed to the model design flaws and to the gate-emitter VGE voltage.
In our model, the gate-emitter voltage amounts to 12 V; however, datasheet characteristics
(Figure 10a) are only available for 15 V gate-emitter voltage used for the aforementioned
losses. The lower the VGE, the higher the power losses [29].

The constant current increases IGBT case temperature almost linearly (in this case,
approximately 6.5 ◦C/s) as illustrated in Figure 10b. The temperature compensation in this
case is simply achievable. When IGBT comes to the set temperature T2 = 105 ◦C, it stays at
this working point continuously until the end of the test. Because only a single IGBT is
used in this case, there is no other transistor to compensate for the load. To overcome this,
paralleled transistors can be used.
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4.2. Measurements on Nsim Algorithm

In this subsection, processed measurement data of the implemented Nsim algorithm
are presented. The measurements are done for the selected parameters pursuant to Table 4.
The parameters for the control unit are defined in bits. The temperature values in bits are
converted to ◦C according to the datasheet of MF58 and the designed circuit for temperature
measurement [30]. This conversion was executed in MATLAB. It is worth mentioning that
the parameter ∆T is given only in bit values due to a non-linear NTC characteristic.

The developed test board has four IGBTs installed but only three were engaged in
the experiments due to DC current source limitations. The measurement results for three
paralleled IGBTs are provided in Figures 11 and 12. The processed data summary for these
measurements (Figures 11 and 12) is illustrated in Table 5.

Figure 11. Upper threshold temperature (T2) influence on three paralleled IGBTs for (a) T2 = 74 ◦C; (b) T2 = 90 ◦C.

Figure 12. Temperature hysteresis ∆T influence on three paralleled IGBTs for (a) ∆T = 50; (b) ∆T = 80.
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Table 5. Measurement results of Nsim algorithm for three IGBTs.

3 IGBTs IGBT 1 (Blue) IGBT 2 (Red) IGBT 3 (Yellow)

T2
◦C (bit) 74 ◦C (500) 90 ◦C (700) 74 ◦C (500) 90 ◦C (700) 74 ◦C (500) 90 ◦C (700)

∆T (bit) 50 80 50 80 50 80 50 80 50 80 50 80
T1 (◦C) 72.8 69.5 88.9 86.3 72.7 70.5 89.4 86.5 72.4 69.6 89.0 86.5
T2 (◦C) 73.8 73.4 90.4 90.3 72.0 70.1 89.5 90.5 74.2 74.7 90.0 90.6

Tmax (◦C) 76.6 76.6 93.1 92.7 97.8 99.2 116 118 89.1 88.3 105 105
theating (s) 1.10 2.00 1.00 2.00 0.700 2.10 1.00 2.40 2.80 2.90 1.90 3.70
tcooling (s) 16.2 20.8 12.8 14.8 25.4 76.7 49.4 63.9 65.9 77.7 53.2 62.7

Tovershoot (%) 4.00 4.00 3.00 3.00 36.0 41.0 29.0 30.0 20.0 18.0 17.0 15.0
tovershoot (s) 3.20 2.60 2.70 3.00 6.20 6.60 8.50 7.00 11.9 12.4 11.1 12.1

The current distribution in the case of three paralleled IGBTs is uneven, as shown
in Figure 11. In this case, the red IGBT takes most of the current and heats up fastest
(below 1 s). Physical placement of the red IGBT is between yellow and blue, thus it is
additionally heated through the bus by the adjacent IGBTs. It should be noted that the
imperfection in the physical design of the test model (bus placement and design, differences
in impedance paths) and IGBT temperature overloading during the previous tests can lead
to greater unevenness of IGBT current distribution. The red IGBT has the largest overshoot
(>30%; Table 5), which can damage the transistor. The overshoot phenomenon, in fact,
damaged a few IGBTs during the tests, so transistors had to be replaced with new ones.
Consequently, T2 must be carefully chosen. The proposed test model does not have any
cooling option, thus, even the current of 10 A for this type of a transistor will be relatively
high. In real applications, where the heatsink is used, the overshoot is expected to be
diminished. The higher the value of T2, the longer the device operates.

The influence of different values of ∆T is shown in Figure 12. In the case of higher ∆T,
the IGBT cooling time is longer.

A few observations must be mentioned regarding the Nsim algorithm measurements.
The data in Figures 11 and 12, and those in Table 5, indicate that the operation of the system
will be interrupted at some point. Regardless of the settings implemented in the algorithm,
due to the lack of a heatsink, even a small amount of current (e.g., less than 1 A) will raise
the temperature to the desired limit within a given specific time. The most important
parameters are heating and cooling times (time constants) of IGBTs, which, in the best-case
scenario, amount to 3.7 s for heating and 12.8 s for cooling (Table 5). For the worst-case
scenario, the opposite is true, i.e., when heating is the fastest (0.7 s) and cooling is the
slowest (77.7 s). Finally, the device operation time can be prolonged (if no heatsink is used
and with the same load added) either by increasing the threshold temperature T2 or by
increasing the number of parallel IGBTs.

4.3. Measurements on NNr Algorithm

The NNr algorithm was developed as an alternative to Nsim and to be able to prolong
the operation time before the first interruption of the test device (slower heating). Physically,
everything was the same as with the Nsim algorithm. The measurements were done for
the selected parameters pursuant to Table 4. The measurement results for two main and
one redundant IGBT are presented in Figures 13 and 14.
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The influence on IGBT temperature characteristics when parameter T2 is changed
is demonstrated in Figure 13. As with the Nsim algorithm, with a higher value of the
upper threshold temperature, the device operation is prolonged. The current distribution
is nearly identical for both T2 measurements (about 10 A per IGBT). The redundant IGBT
activates later if a higher T2 is used, which is expected. The operation time of the NNr
2 + 1 algorithm (two main and one redundant IGBT; three IGBTs in total) is over 40 s,
as presented in Table 6. The influence of different values of ∆T in the 2 + 1 NNr algorithm
is shown in Figure 14.

Table 6. Measurement results of NNr algorithm for two main and one redundant IGBTs.

2 + 1 IGBTs IGBT 1 (Blue) IGBT 2 (Red) IGBT 3 (Yellow)

T2
◦C (bit) 74 ◦C (500) 90 ◦C (700) 74 ◦C (500) 90 ◦C (700) 74 ◦C (500) 90 ◦C (700)

∆T (bit) 50 80 50 80 50 80 50 80 50 80 50 80
T1 (◦C) 73.1 70.2 89.3 87.1 72.6 69.5 89.0 87.2 70.2 - 84.6 82.2
T2 (◦C) 74.0 73.9 90.1 90.6 74.4 73.9 91.0 90.9 74.2 73.1 90.7 82.8

Tmax (◦C) 76.0 77.4 93.3 93.1 76.6 77.5 93.7 93.7 85.0 89.8 105 98.9
theating (s) 1.90 1.90 1.80 4.00 2.50 2.20 3.10 3.50 3.70 - 7.40 8.80
tcooling (s) 10.6 24.5 9.80 13.6 14.7 34.2 13.1 18.5 67.3 - 65.6 63.4

Tovershoot (%) 3.00 5.00 4.00 3.00 3.00 5.00 3.00 3.00 15.0 23.0 16.0 19.0
tovershoot (s) 3.80 2.70 2.90 2.50 3.30 3.50 3.40 3.40 11.3 11.5 11.2 11.9

The hysteresis ∆T influence is presented in Figure 14. Parameter ∆T dictates the
duration of the redundant IGBT interaction. Thus, with the optimal choice of ∆T, the device
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operation can be prolonged including more efficient balancing. A detailed data analysis for
2 + 1 NNr algorithm measurements is given in Table 6.

A few crucial points regarding the NNr algorithm measurements need to be addressed.
The current distribution is almost the same across all IGBTs, although some current discrep-
ancies can be seen in Figures 13 and 14. This influences uneven temperature rising for red
and blue IGBTs (the higher the current, the faster the heating). When higher threshold tem-
perature T2 is used, the device operation time is significantly prolonged. The measurement
results (Table 6) lead to an assumption that an optimal number of redundant IGBTs exist.
This can be determined by the physical dimension of the device, control unit capability,
and price.

4.4. Nsim and NNr Algorithm Comparison

Because this paper addresses temperature control, three measured values, namely
heating time, cooling time, and overshoot, directly depend on IGBT thermal conditions.
Pursuant to Tables 5 and 6, a chart is presented (Figure 15) for both Nsim and NNr
algorithms for the chosen parameters of T2 = 90 ◦C and ∆T = 80 which compares the three
most important measured values.
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Figure 15. Nsim and NNr temperature characteristics comparison chart.

As can be seen from Figure 15, all IGBTs in both algorithms are heated to the threshold
temperature T2 = 90 ◦C in less than 4 s, with the exception of IGBT 3 in the NNr algo-
rithm because that is the redundant IGBT which has more time to rest than the other two
(Figures 13 and 14). The most pronounced overshoot of 30% is in the Nsim algorithm in
IGBT 2, which is induced by the largest emitter current of about 10 A, whereas the remainder
of the current of 10 A is shared between the other two transistors (Figures 11 and 13). This also
produced the longest cooling time (63.9 s) of the IGBT 2 transistor. When compared to the
Nsim algorithm, within the same number of engaged IGBTs, the NNr algorithm operates
significantly longer than the Nsim algorithm (over 40 s versus less than 25 s).

5. Conclusions

The main problem in the parallel operation of IGBTs is the uneven current distribution,
which leads to temperature differences among individual transistors. This directly affects
IGBT lifespans. In contrast to the common method for current balancing, an alternative
approach that implies simple temperature control is proposed in this paper.

A physical test model was built for the verification of the results. In the case of the
presented model, the higher IGBT operation temperature of 90 ◦C (measured on the back
of the IGBT) is preferable because it prolongs operation time by more than 10% for every
measurement and produces more suitable temperature time constants (slower heating
and faster cooling). Without heatsinks, the IGBTs produced a significant temperature
overshoot (in some cases over 40%). Due to this upper threshold, the temperature must be
carefully chosen.
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The unbalanced operation of paralleled IGBTs is significantly emphasized in Nsim
measurements, in which a single IGBT conducted over 50% of the total current in a short
time, which led to a current overshoot of 30% for that particular IGBT.

The NNr algorithm provided longer device operation (over 40 s versus 20 s for Nsim)
and resulted in more balanced current distribution than the Nsim algorithm for the total of
three utilized IGBTs in both cases.

The concept of temperature balancing with more advanced control algorithms remains
open for future work.

Supplementary Materials: The following are available online at https://doi.org/10.6084/m9.figshare.
c.5296645.v1, MATLAB scripts: MATLAB_code_v1.5.zip, Arduino algorithm codes: NNr_Nsim_Ardui
no_code.zip.
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