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Abstract: The accurate and effective classification of household solid waste (HSW) is an indispensable
component in the current procedure of waste disposal. In this paper, a novel ensemble learning model
called EnCNN-UPMWS, which is based on convolutional neural networks (CNNs) and an unequal
precision measurement weighting strategy (UPMWS), is proposed for the classification of HSW via
waste images. First, three state-of-the-art CNNs, namely GoogLeNet, ResNet-50, and MobileNetV2,
are used as ingredient classifiers to separately predict and obtain three predicted probability vectors,
which are significant elements that affect the prediction performance by providing complementary
information about the patterns to be classified. Then, the UPMWS is introduced to determine the
weight coefficients of the ensemble models. The actual one-hot encoding labels of the validation
set and the predicted probability vectors from the CNN ensemble are creatively used to calculate
the weights for each classifier during the training phase, which can bring the aggregated prediction
vector closer to the target label and improve the performance of the ensemble model. The proposed
model was applied to two datasets, namely TrashNet (an open-access dataset) and FourTrash, which
was constructed by collecting a total of 47,332 common HSW images containing four types of waste
(wet waste, recyclables, harmful waste, and dry waste). The experimental results demonstrate the
effectiveness of the proposed method in terms of its accuracy and F1-scores. Moreover, it was found
that the UPMWS can simply and effectively enhance the performance of the ensemble learning model,
and has potential applications in similar tasks of classification via ensemble learning.

Keywords: waste classification; ensemble learning; convolutional neural network; unequal
precision measurement

1. Introduction

With the tremendous growth of the population and consumption, a huge amount of
municipal solid waste (MSW) is generated every day, especially in developing countries [1].
MSW in developing countries is composed mainly of household garbage (55–80%) and
commercial waste (10–30%) [2]. China has a population of 1.4 billion people and is the
most populated developing country in the world. According to a survey conducted by the
Ministry of Ecology and Environment of the People’s Republic of China, the investigated
200 large and medium-sized cities generated 21,147.3 million tons of household solid
waste (HSW) in 2018 [3]. Landfilling, the dominant waste disposal technology in China,
has introduced serious water contamination to over half of the existing landfills due to
the limited available land space in cities and the lack of high-cost permeate collection
equipment in treatment systems [4]. As another important method by which to dispose
of waste, incineration is expensive to operate and maintain, and also easily introduces
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air pollution if there is a lack of air pollution control equipment [5]. Moreover, the large
amount of dioxin emitted in the process of incineration aggravates global warming. Thus,
solid waste disposal has become a challenging problem in China.

In the modern procedure of waste disposal, which includes waste separation, col-
lection, transportation, and final treatment, recyclables and compostable waste account
for 89.3% of HSW [6,7]. The accurate and efficient classification of waste can prevent
waste pollution caused by mixing waste of different types, and can preclude the need
for secondary sorting. As the initial point of the entire waste recycling process and the
fundamental condition for ensuring effective recycling, the classification of waste can both
enhance the efficiency of recycling and effectively protect the environment [8]. In other
words, waste sorting is an effective way to reduce waste [9]. Because various types of
waste require different types of disposal, a proper HSW standard is imperative in waste
classification [10].

Waste classification is the procedure by which waste is assigned to specific classes
based on its properties, characteristics, and/or components [6]. In past years, to effectively
dispose of waste in China, the general criterion of municipal waste separation has been to
divide waste into two types: recyclables and non-recyclables [6]. Nevertheless, to keep up
with the practical demands of economic and environmental development, Beijing enacted
a new waste classification policy in 2020 based on the policies of developed countries,
including Japan [11] and Germany [12]. The new standard is to classify waste into four
types, namely wet waste, recycling, harmful waste, and dry waste [13]. The ways by which
to improve the efficiency of waste treatment rely not only on scientific criteria of waste
classification, but also on the reliable and fast implementation of waste classification [14].

At present, waste classification mostly relies on inefficient manual work, which has
many shortcomings, such as high work intensity, high cost, and potential harm to the
health of workers [15]. Recently, automatic waste sorting and recycling facility systems
based on the common sensor spectrum have been proposed. For example, Wu et al. [16]
proposed an automatic plastic sorting system; they focused on sorting different plastics
from waste electrical and electronic equipment based on near-infrared (NIR) spectroscopy.
Additionally, Riba et al. [17] presented an approach for the sensing and classification of
parts of an automatic waste textile sorting machine based on the infrared spectra of textile
samples. These two studies respectively focused on the more refined classification of
plastics and textiles. However, to gather spectral data for further processing, particular
equipment is required, including NIR spectrometers, such as the NIR512 spectrometers by
Ocean Optics, and the NIR radiation provided by a halogen light source. The equipment is
expensive and complicated, and requires operation by professional personnel. In contrast,
waste classification based on waste images via machine learning is accurate, simple, and
convenient, and could therefore be used to construct an automatic smart waste sorter to
alleviate the difficulties inherent in manual waste classification.

With the development of machine learning in recent years, deep learning has been
widely used in speech recognition, visual object recognition, object detection, and many
other fields [18–20]. A convolutional neural network (CNN) is a typical model that has
been extensively used in image recognition and detection problems. Most recently, image
recognition techniques in the computer vision field have been applied to waste classification.
For instance, Xie et al. [21] proposed a framework based on a multilayer hybrid deep
learning system (MHS) to recognize waste in urban public areas as recyclables or other
types of waste. AlexNet [22] was used to extract representative features from waste images,
and multiple functional sensors were used to obtain other information about the waste.
While a high accuracy of over 90% was achieved, only two categories of waste were
considered.

Thung et al. [23] released a dataset called TrashNet, which consists of 2527 images of
waste divided into six different classes, namely glass, paper, plastic, metal, cardboard, and
trash. The authors of Reference [24] proposed a model called RecycleNet, which achieved
a classification accuracy of 81% on the TrashNet dataset. The authors of Reference [25]
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proposed a combined model called Inception-ResNet, which achieved a classification
accuracy of 88.6% on the TrashNet dataset. However, the size of this dataset is not large
enough for deep learning, and easily leads to overfitting. Moreover, the performance
results of these models have room for improvement.

In the context of classification tasks, ensemble-based methods have been employed to
minimize the test errors [26]. There also exist several ensemble strategies for the combina-
tion of the prediction abilities of many different models. For example, Szegedy et al. [27]
proposed an ensemble method that averages the softmax probabilities over all the in-
dividual classifiers to obtain the final prediction results, and this method was found to
outperform single classifiers. Additionally, Chen et al. [28] adopted majority voting to
combine models, and obtained a similar result. However, neither majority voting nor
softmax probability averaging consider the differences between classifiers, and set the
same weights for classifiers. Moreover, these methods may easily generate false predictions
rather than correct predictions, as the integrated classifier regards the individual classifiers
with the same reliability. In weight integration, each weight coefficient should be properly
set, which is essential for the final prediction results [29].

Unequal precision measurement (UPM) is common in practice. Bar-Shalom et al. [30]
proposed a one-step target tracking system solution for measurements obtained in discrete
time, and Prieto et al. [31] proposed an adaptive likelihood method for robust data fusion
in location systems. These models both fuse data by processing data of different types and
with unequal precision, and parameter estimation can be improved with the assistance of
data fusion. In the process of data fusion, the fusion weights of multiple heterogeneous
unequal-precision data obtained under several different conditions are significant for the
improvement of the precision of the measurement result [32].

Based on the preceding discussion, this paper proposes an ensemble learning model
called EnCNN-UPMWS, which is based on three CNNs with different architectures and a
UPM weighting strategy (UPMWS). The CNN ensemble couples the superior capabilities
of the individual CNNs in terms of learning and exploring the patterns in waste image
data, which improves the accuracy of the ensemble. Three state-of-the-art (SOTA) CNNs,
namely GoogLeNet [27], ResNet-50 [33], and MobileNetV2 [34], are chosen as ingredient
classifiers, and their performance on waste datasets is also demonstrated. To achieve further
improvement in waste classification, the UPMWS, which involves the determination of
the weights for UPM, is introduced in the CNN ensemble. It is worth mentioning that the
UPMWS, which measures values in the process of data fusion, has never before been used
in ensemble learning, let alone in an ensemble of CNNs. The main contributions of this
work lie in the following three aspects:

1. In this study, 47,332 images of waste belonging to four different classes, namely wet
waste, recyclable waste, harmful waste, and dry waste, were collected from several
open-access datasets and the Internet to create the FourTrash dataset;

2. The proposed framework consists of several diverse SOTA CNNs (GoogLeNet,
ResNet-50, and MobileNetV2) with different structures to deeply learn the features
and explore the implicit information in waste images. These networks are treated as
ingredient classifiers in the CNN ensemble;

3. UPMWS is introduced to obtain reliable predictions by multiplying the result of each
classifier and its corresponding weight coefficient. This can provide more robust
results during the aggregation of the forecasting results of the CNNs.

The remainder of this article is organized as follows. Information about the materials
and methods is provided in Section 2, and the proposed methods are presented in Section 3.
The experimental results and discussion of this study are explained in Section 4. Finally,
the conclusions are given in Section 5.

2. Materials and Methods

The related materials and methodologies employed in the proposed framework are
introduced as follows.
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2.1. Dataset

The performance of the proposed waste classification framework was evaluated on
two datasets, namely the TrashNet dataset and the self-constructed FourTrash dataset.
Each image in each dataset contains only one object. Hence, the aim of the two datasets is
waste material classification, rather than the detection of waste items.

The TrashNet dataset was created by Thung et al. It contains 2527 images of waste
divided into six different classes, namely glass, paper, plastic, metal, cardboard, and
trash [23]. Some sample images are displayed in Figure 1.

The FourTrash dataset contains images of four different classes of waste, namely dry
waste, wet waste, recyclables, and harmful waste. The 47,332 waste images in this dataset
were partially collected from existing waste classification datasets [35], while other samples
were collected from public websites. A few samples in this dataset are shown in Figure 2.
Specifically, some objects of each class in the FourTrash dataset are described in Table 1.

Figure 1. Images from the TrashNet dataset: (a) cardboard; (b) glass; (c) metal; (d) paper; (e) plastic;
(f) trash.

Figure 2. Images from the FourTrash dataset: (a) dry waste; (b) recyclables; (c) wet waste;
(d) harmful waste.
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Table 1. Some subclasses in the FourTrash dataset.

No Class Objects

1 Recycling power bank, bag, plastic toy, plastic basin, pop can, glass, carton, etc.
2 Dry waste broken dishes, bamboo chopsticks, disposable fast food box, etc.
3 Wet waste leftovers, fruit peel, vegetable leaves, eggshell, fishbone, etc.
4 Harmful waste dry battery, ointment, expired drugs, glue, cosmetic packaging, etc.

To validate the capacity of the proposed framework, the FourTrash dataset was
randomly split into a training set (70%) and test set (30%). In the process of splitting,
the dataset was divided based on subclasses, e.g., a bag of recyclables, instead of large
categories, e.g., recyclables. The distribution results are shown in Table 2.

Table 2. Distribution of the FourTrash dataset.

Training Test Total

Recycling 17,178 7361 24,539
Dry waste 3818 1636 5454
Wet waste 10,939 4692 15,631

Harmful waste 1196 512 1708
Total 33,131 14,201 47,332

2.2. Convolutional Neural Network

CNNs have been used as image classifiers in most computer vision fields that require
a simple and high-accuracy classifier [36,37]. CNN models also serve as backbones in
object detection [38–40].

In the 2012 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) competition,
a deep CNN called AlexNet was proposed and achieved the best performance [22]. As
a stunning result, the network achieved an error rate that was half the error rate of the
best previous approach. This success brought about a revolution in computer vision. In
recent years, many variant CNNs have been proposed in the ILSVRC competition, and
the accuracy achieved by these models has almost reached its apex. In the following
subsections, CNNs and three SOTA networks used in this work are respectively discussed.

2.2.1. A Brief Introduction of CNNs

Generally, a CNN architecture consists of convolutional layers, pooling layers, and
fully connected (FC) layers [22]. Each convolutional layer extracts features from previous
feature maps. Stacked convolutional layers are applied to extract feature maps from
low-level abstraction to high-level abstraction [18]. The three types of layers and several
important concepts in CNNs are subsequently introduced.

Convolutional layers are used to extract features from an input by applying convolu-
tional operations. In these layers, convolution filters move over the feature map to generate
features for the next layers, and the application of diverse convolution filters can yield
different feature maps. The mathematical operation used in a convolutional layer can be
expressed as follows:

Xl
i = ΣMi

k=1 f (xl−1
k ∗ωl

ki + bl
i), (1)

where Xl
i represents the i-th feature map of the l-th layer, xl−1 is the k output feature maps

of the former layer, and ωl
ki represents the convolutional filter which used to map the k-th

feature map in the (l − 1)-th layer to the ith feature map in the next layer (the l-th layer).
Additionally, the symbol “∗” is the convolutional operator sign, Mi denotes the size of the
input, and bl

i denotes the bias of the convolutional layer. A nonlinear activation function,
such as the rectified linear units (ReLU) function or sigmoid function, f (·), is commonly
used in the convolutional layer.
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The pooling layer is used after each convolutional layer, and it conducts sub-sampling
to decrease the spatial size of the feature map and further minimize the number of pa-
rameters. The types of pooling include max-pooling and average-pooling operations.
The max-pooling operation passes the maximum value in a local window, which can be
defined as

Pi = max
S

Xl
i , (2)

where S is the size of the local window, and Xl
i is the i-th feature map of the l-th layer. Via

the operations mentioned previously, the CNN can achieve automatic feature extraction.
The FC layer connects the previous layer by flattening the features from the foregoing

layer into a one-dimensional vector:

Fl = f (wl(Fl−1) + bl) (3)

where Fl represents the output of the l-th layer, wl represents the weight of the FC layer,
and bl is the corresponding bias. Moreover, f (·) is a non-linear function.

At the top of the previous layers, a logistic regression function is used to construct
a categorical output. The softmax layer connects the output of the previous layer, which
is usually an FC layer, and generates a probability distribution of the categories via the
softmax function as follows:

Pc(x) = exp(y(x))/ΣC
c=1 exp(y(x)). (4)

The operation in softmax layer can be expressed as

Z = so f tmax(Y), (5)

where Z is the output vector that implies the probability of an element belong to the
corresponding category, and Y represents the output of the last layer.

The cross-entropy loss function is usually used in classification tasks, and can be
defined as

L = − 1
B

ΣB
i=1 log(P(z = Ci|Mi), θ), (6)

where B is the training batch size, z is the output of the network, (Mi, Ci) is a pair of input
data and a label, and θ represents the weight parameters in the network that need to be
updated. The CNN is trained by a certain number of iterations with gradient descent, and
the weight parameters θ in the network can be updated until reaching the set threshold.

2.2.2. GoogLeNet

GoogLeNet [27] was proposed in the ImageNet Large-Scale Visual Recognition Chal-
lenge 2014 (ILSVRC14), and its architecture combines multiple convolutional layers with
different filter sizes and pooling layers as a new module called the Inception module to
increase the depth and width of the CNN. The main concept of Inception is to explore
optimal local sparse structures in networks and determine how to cover them by the
available dense components. As shown in Figure 3, an Inception module consists of 1× 1
convolutions, which are used to reduce the model parameters and flexibly adjust the num-
ber of channels. Different filter sizes of 3× 3 and 5× 5 convolutions are designed to gain
multi-scale features; thus, more discriminatory features can be obtained from the input
data. These modules are stacked on each other, and their outputs tend to be diversified in
terms of statistical correlation. One of the main advantages of this architecture is that the
computational burden does not increase substantially despite the significant promotion of
the representation capacity of the network. Another advantage is that the diverse sizes of
filters can match various scales of visual information, and are then aggregated so that the
next module can extract features from different scales.

GoogLeNet, the most successful instance, includes 9 stacked Inception modules,
namely Inception (3a), Inception (3b), Inception (4a), Inception (4b), Inception (4c), In-
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ception (4d), Inception (4e), Inception (5a), and Inception (5b). Additionally, several
max-pooling layers are used between modules to adjust the dimensions of the outputs in
the network. Eventually, the network is designed to be 22 layers deep, and can be efficiently
run while consuming limited computational resources. Moreover, two auxiliary classifiers
in the original GoogLeNet are connected to intermediate layers, and their loss is added to
the total loss of the network. The operation of the two classifiers is an effective method
by which to propagate gradients back through all the layers and obtain discriminatory
features from relatively low-level layers.

Considering that the four-class classification task considered in the present study
is less complex as compared to the classification tasks of the ILSVRC, which involves
1000-class objects, and to maintain the capacity of the network, only the output size of the
last FC layer is changed to reflect the corresponding number of categories.

Filter concatenation

1 1 convolutions

3 3 convolutions 5 5 convolutions

3 3 max pooling

Previous layer

1 1 convolutions 1 1 convolutions

1 1 convolutions

Figure 3. The Inception module.

2.2.3. ResNet

The residual neural network (ResNet) [33] is a network-in-network architecture that
relies on many stacked residual blocks [41]. This module can alleviate the problem of the
occurrence of a vanishing gradient when training very deep convolutional networks, and
increases the relative depth of the network [41]. The main concept of this module is that it
learns the difference between the input and output by adding a skip shortcut. In a plain
CNN, the input of the (l + 1)-th layer is generally used as the output of the l-th layer, which
is denoted as xl+1 = f (xl). Unlike a plain CNN, ResNet adds a shortcut connection that
performs identity mapping to the stacked layers, as shown in Figure 4. The output can be
defined as

xl+1 = f (xl) + xl , (7)

where xi is the input, and the function f (·) is the residual mapping to be learned. The resid-
ual module adds the input and the output, which has passed through some layers, together
in one or n steps. In this manner, ResNet stacks several residual blocks to obtain a deep
CNN. Furthermore, the representation power of the network is tremendously promoted by
increasing the depth, as well as by the residual blocks with shortcut connections.

ResNet-50 is a 50-layer version of ResNet, and uses 3-layer bottleneck containing 1× 1,
3× 3 and 1× 1 convolutions, respectively. The 1× 1 convolutional layer is used to adjust
the dimensions. Similar to the modification of GoogLeNet, in this work, only the output
dimension of the last FC layer is changed to the corresponding number of categories.
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 n

Figure 4. The residual block.

2.2.4. MobileNetV2

MobileNetV2 [34] is a lightweight model designed for mobile and embedded vision
devices. The model is inherited from MobileNetV1 [42], and its main contribution is the
introduction of a novel module, namely an inverted residual with a linear bottleneck.

The linear bottleneck removes non-linearities in the narrow layers, as non-linearities
destroy information in low-dimensional space. Hence, the linear bottleneck maintains the
power of representation. As shown in Figure 5, the input goes through a 1× 1 convolution,
depthwise 3× 3 convolution, and 1× 1 convolution, and a residual architecture is applied
in the block. It should be noted that the first 1× 1 convolution uses ReLU6 as a non-linearity
instead of the ordinary ReLU, as ReLU6 is more robust when used with low-precision
computation. Depthwise separable convolution [43] can be used to reduce the number
of parameters, and thus makes computation effective. The inverted residuals in this
architecture can relieve the vanishing gradient problem. The process of this module can
also be described as a low-dimensional input first being expanded to a high dimension and
filtered with a lightweight depthwise convolution. Features are then subsequently projected
back to a low-dimensional representation with a linear convolution. From the theoretical
aspect, this module also decouples the input/output domains from the expressiveness of
the transformation [34].

MobileNetV2 stacks several bottlenecks and significantly decreases the number of
operations and amount of memory. In this study, the last 1× 1 convolutional layer in the
original MobileNetV2 is substituted with an FC layer, the output dimension of which is the
number of categories.

Add

Input

Conv 1 1, Linear

Dwise 3 3, ReLU6

Conv 1 1, ReLU6

Figure 5. The convolutional block of MobileNetV2.
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2.3. Multiple Classifier Integration

Multiple classifier integration originates from ensemble learning, and has been em-
ployed in some studies to achieve better generalization based on multiple base learners [44].
Furthermore, to obtain a better ensemble, the classifiers should be more diversified [45].
Two ensemble methods comprising bagging [46] (bootstrap aggregating) and boosting [47]
are used to generate and exploit base learners. The concept of bagging was introduced
in the work by Galar et al. [45]. It is based on bootstrap sampling to generate different
training datasets from the original dataset. Consequently, different classifiers can be trained
from these sampling sets. Regarding boosting, it has been demonstrated that weak learners
can be promoted to strong learners by constantly adjusting the distribution of the train-
ing set [47]. During the process of training with adjustment, multiple base learners are
generated. These classifiers are then combined via weighting.

Regarding classification tasks, multiple classifiers with different architectures poten-
tially offer complementary information about the patterns to be classified [48]. Conse-
quently, this could enhance the final performance of the integrated classifiers.

When combining several different base classifiers during the final period of ensemble
learning, different combination strategies can yield different results. For example, bagging
is a simple and comprehensive approach by which to obtain a strong learner. Its main
concept is the construction of a strong classifier by combining multiple weak classifiers in a
particular way [44]. Majority voting is usually used as a simple and effective combination
method; each classifier first predicts a class based on a test sample, and the class with
the most occurrences is then determined from these classes as the final prediction result.
This method is simple and effectively benefits from integration [49]. The majority voting
strategy generally directly exploits categorical labels. However, in the classification task, the
predicted class possibility for sample x can also be considered to be the output. For the i-th
base learner, its prediction of one sample x can be expressed as Pi(x) : (p(1), p(2), . . . , p(C)),
where p(n) denotes the probability value for class n and C denotes the number of categories,
n ∈ (1, 2, · · · , C). In this manner, weighted voting can be adopted as a combination
strategy, as given by Equation (8), where wi is the weight coefficient of Pi(x), n represents
the number of classes, and T represents the number of classifiers.

H(x) = arg max
n

ΣT
i=1wiPi(x) (8)

2.4. Weights in Unequal Precision Measurement

UPM is ubiquitous in practice. Generally, a series of measurements conducted under
the same conditions is called an equal precision measurement. However, measurements
are conducted under different conditions in most instances, e.g., by different personnel,
with different instruments, and by employing different methods. Thus, the reliability
of the measurement results will inevitably be different, and this type of measurement is
called UPM.

The final result of equal precision measurement is an average of the measured values.
However, UPMs usually have different reliabilities; thus, the average cannot be taken
as the final result. To achieve more precise measurement results from observed UPM
values, the weight coefficients of measurements under different conditions should be
determined by uncertainty. Moreover, the uncertainty can be reflected by the variance of
the measurement results.

If the different conditions in UPM are assumed to only reflect different measurement
instruments, the weight coefficients of different measurement instruments can be deter-
mined by variances calculated by corresponding measured values for the same object.
Theoretical results [32] indicate that the weights are inversely related to the variance of
the measurement values, as given by Equation (9), where wj is the weight coefficient of
the j-th instrument. In addition, the measured variance of σ2

j is calculated from a group of
measured values. In this way, assuming that there are measurements x1, x2 . . . xj respec-
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tively measured by j measuring tools, the final measurement result X can be calculated by
Equation (10).

w1 : w2 : · · · : wj =
1
σ2

1
:

1
σ2

2
: · · · :

1
σ2

j
(9)

X = Σj
i=1wixi (10)

3. Proposed Method

This section describes the proposed waste classification model. First, in Section 3.1,
the UMPWS is employed to obtain the weight coefficient of each classifier. Then, the main
mechanism of the EnCNN-UPMWS model is described in Section 3.2.

3.1. UPMWS Method

The framework of the proposed CNN ensemble learning strategy is illustrated in
Figure 6, and contains two stages. In the training stage, three classifiers with diverse
architectures, namely GoogLeNet, ResNet-50, and MobileNetV2, are trained separately.
As discussed previously, different classifiers can offer potential information concerning
patterns to be classified. However, there exists no explicit theory for the use of diverse
forecasting results from diverse classifiers. Most conventional ensemble models only
employ simple averaging to integrate the prediction results. However, the forecasting
performance of diverse classifiers can be improved if an appropriate method of weight
setting is used. Furthermore, in the case of some samples in the four waste classes being
similar and difficult to recognize, the three SOTA CNNs with powerful image classification
capacity are used to recognize the type of waste.

Training Stage

Test Stage

Figure 6. The structure of the ensemble learning strategy.

To make the most of each classifier and make the prediction results closer to the target,
a method for setting the weights of UPM called UPMWS is proposed. According to the
method described in Section 2.4, the UPMWS in the proposed ensemble strategy for the
CNN classifiers is described as follows.

First, the input of the classifier is an image, and the output of each classifier is a
probability vector. The dimension of the vector is the number of categories to be classified.
After obtaining three probability vectors, weighted voting is employed as the ensemble
strategy to aggregate these vectors to a final prediction vector in the testing phase. In
general, each classifier is usually based on experience to set the weight. However, the
differences between classifiers are not considered, and the performance of each classifier
cannot be fully reflected. To a certain extent, if the classifier is treated as a measurement
tool, the process of evaluating the classifier on all the samples in the validation set can be
considered to be a measurement performed by a measurement tool.

Then, during the training process, a series of different prediction vectors on the
validation set for each classifier is obtained. Furthermore, different classifiers often yield
different prediction vectors. Therefore, these predictions can be regarded as classifiers
with unequal precision obtaining different measurement results on the same validation
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set. This process can be treated as UPM, which is a common problem in practice. In this
way, for each classifier, the results of each valid metric should be considered to evaluate
its reliability. In this article, the accuracy of the classifier in the validation set is used
to determine whether its measurement is valid. In the training stage, each classifier is
trained on the same training set and evaluated by the same validation set. Moreover, each
classifier is evaluated once in each epoch. When the accuracy on the validation set is high
enough, the prediction vectors and the one-hot encoding vector of the target label are used
to calculate the weight coefficients. The UPMWS module presented in Figure 7 describes
the proposed method by which to obtain the weight coefficients. The detailed calculation
process is described as follows.

M C
N

The structure of the proposed ensemble 

model EnCNN-UPMWS

N M C

 M C

Figure 7. The structure of the proposed EnCNN-UPMWS.

For each model, the input is assumed to be x, the output is a C-dimension predicted
probability vector P, and Y corresponds to a C-dimension one-hot encoding vector of the
target label. Therefore, for all samples in the validation set, the measurement results can
also be represented as M× C matrices (A), and the corresponding target data label can
be denoted as M× C matrices (B). Moreover, a finite set (1, 2, · · · , C) is assumed, where
C denotes the number of classes. In this study, each model has N results, the accuracies
of which have reached a high level on the validation set during training. The actual
label vector (one-hot) is viewed as the expected prediction value, and the deviation of the
prediction results for each model is calculated as

σ =
ΣN

n=1ΣM
m=1|Ym − P(n,m)|

N
, (11)

where M is the number of samples in the validation set.
The weight coefficient wj of each model can be calculated by Equations (12) and (13)

as follows.
Σ3

j=1wj = 1 (12)

w1 : w2 : w3 =
1
σ1

:
1
σ1

:
1
σ3

(13)
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According to the obtained weight coefficients and the three predicted possibility
vectors, the final prediction vector can be calculated as

Y∗(x) = Σ3
j=1wjPj(x), (14)

where x denotes the input data. Then, Y∗ is dealt with similar to Equation (8), and the final
predicted label P is calculated as

P = arg max
c

Y∗(x), (15)

where c ∈ (1, 2, · · · , C).

3.2. The Proposed Framework

This section presents an ensemble model based on three CNNs with diverse architec-
tures and UPMWS integration for the improvement of the waste classification performance.
The detailed structure of the proposed EnCNN-UPMWS model is shown in Figure 7.
First, in the training stage, three SOTA CNN classification models, namely GoogLeNet,
ResNet-50, and MobileNetV2, are trained on the training set. After sufficient training, three
classifiers and corresponding weight coefficients are also obtained. The process of the
training stage is presented in Figure 8.

Figure 8. Process of the training stage in the EnCNN-UPMWS model.

In the testing stage, the three prediction results are interpreted by the UPMWS inte-
gration method, by which the weight coefficients are calculated and the final prediction
results are obtained. The process of the testing stage is described in Figure 9.

Figure 9. Process of the testing stage in the EnCNN-UPMWS model.

The structure of the proposed EnCNN-UPMWS model is shown in Figure 7, and its
main steps of are described as follows:

1. Three diverse CNNs are used to explore the potential information concerning patterns
of waste images to be classified. They are regarded as base learners in the CNN
ensemble learning model;
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2. The UPMWS method, which can make the prediction result closer to the target, is
introduced to obtain weight coefficient for each classifier. The details of UPMWS are
given in Section 3.1;

3. Three individual CNNs are used as competitors to demonstrate the classifying per-
formance of the EnCNN-UPMWS by comparing it with GoogLeNet, ResNet50 and
MobileNetV2 as well as the majority voting of the prediction results of the three CNNs.

4. Experimental Results and Discussion
4.1. Evaluation Metrics

In this study, the accuracy and two types of F1-score namely weighted and macro
F1-scores, are used as performance metrics to assess the waste classification prediction
performance. The accuracy is calculated by Equation (16):

Accuracy =
(TP + TN)

(TP + TN) + (FP + FN)
, (16)

where TP (true positive) and TN (true negative) represent the numbers of samples correctly
recognized as positive and negative, respectively, whereas FP (false positive) and FN (false
negative) correspond to incorrectly estimated positive and negative samples, respectively.
The F1-score can be interpreted as a weighted average of the precision and recall; its best
value is 1, and its worst value is 0. The relative contributions of precision and recall to the
F1-score are equal. The F1-score for each class is computed via the precision (P) and recall
(R), which are defined as follows.

P =
TP

TP + FP
(17)

R =
TP

TP + FN
(18)

F1 score =
(2PR)
(P + R)

(19)

For multi-class cases, there are several ways to calculate the F1-score according to
weighting, among which the macro and weighted F1-sores are chosen in this study. The
macro F1-score is a metric calculated by the unweighted mean of each label, and is defined as

Macro F1 score =
ΣC

i=1F1 scorei

C
, (20)

where F1 scorei represents the F1-score of the i-th class, and C is the total number of classes.
As shown in Equation (20), this metric is easily affected by a label with a high F1-score;
thus, the weighted F1-score is introduced. The weighted F1-score takes label imbalance into
account via support (the number of true instances for each label). The equation of this
metric is as follows:

Weighted F1 score = ΣC
i=1wiF1 scorei, (21)

where F1 scorei represents the prediction F1 score of the i-th class, and wi represents the
weight coefficient, which is defined as:

wi =
Ni
M

, (22)

where Ni is the total number of the i-th class for testing, and M represents the total number
of samples for testing.
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4.2. Results and Discussion

In this study, two sets of experiments, namely experiment A (FourTrash) and ex-
periment B (TrashNet), were conducted on PyTorch, an open deep learning framework,
to evaluate the performance of the proposed method. All coding was conducted on an
NVIDIA GTX 2080Ti and Intel Xeon E5-2600 v4 3.60 GHz CPU. The input size of the images
was resized to 224 × 224 to be compatible with GoogLeNet, MobileNetV2, and ResNet-50.
To improve the convergence speed and generalization performance, the parameters of each
model were initialized by a pre-trained model from ImageNet.

Furthermore, to promote the generalization performance of each classifier, some
data augmentation strategies were respectively applied in the training process. These
strategies included random center cropping, random rotation, and random horizontal and
vertical flipping.

The same training configuration was used in the experiments, and is described as
follows. The initial learning rate was set as 10−3, the Adam optimizer was used for training,
and the cross-entropy loss function was used for the multi-class classification task in the
training process. The number of a mini-batch was 64.

In both experiments A and B, the performance of the three CNNs with the corre-
sponding datasets were first determined, and the results were compared with each other.
The performance of the proposed method was then determined, and the results were
compared with those of the majority voting method. Detailed performance information
and comparisons with the proposed framework were reflected by the multiple metrics
mentioned in Section 4.1.

4.2.1. Experiment A (FourTrash)

First, the original training set of the FourTrash dataset was split into a training set and
validation set at a ratio of 9:1 to apply the UPMWS. To obtain a set of predicted probability
vectors for each classifier, the accuracy trend of the validation set was observed to choose
a proper range during training. The accuracy was found to achieve a high level from the
20th epoch, which indicates that the model had already been trained well, as shown in
Figure 10. In this experiment, the epochs in the range of [20, 50) were chosen to calculate
the weight coefficients, and the results are reported in Table 3. The experiments reveal that
GoogLeNet was more reliable than the other two models because its weight coefficient was
the highest.

 ! " # $ % 

 &'

 &(

 &)
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ResNet-50

Figure 10. Validation accuracy during the training process on the FourTrash dataset.

The experimental results in terms of the accuracy and F1-scores are shown in Table 4.
To analyze the performance of the UPMWS for the ensemble strategy, EnCNN-Voting
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represents that each classifier voted for the final result based on the majority. Overall, the
EnCNN-UPMWS framework outperformed the other approaches on the FourTrash dataset.

Table 3. Weight coefficients calculated by the UPMWS in Experiment A.

Model Weight Coefficient

GoogLeNet 0.3872
MobileNetV2 0.3588

ResNet-50 0.2540

Table 4. Accuracy, macro and weighted F1-scores of different CNNs, EnCNN-Voting and EnCNN-
UPMWS on the FourTrash dataset.

Model Macro F1-Score Weighted F1-Score Accuracy

EnCNN-UPMWS 0.8825 0.9264 92.85%
EnCNN-Voting 0.8761 0.9216 92.32%

ResNet-50 0.8243 0.8878 89.00%
GoogLeNet 0.8565 0.9081 90.97%

MobileNetV2 0.8417 0.8994 90.07%

Specially, EnCNN-UPMWS achieved an accuracy of 92.85%, while ResNet-50, GoogLeNet,
MobileNetV2, and EnCNN-Voting achieved accuracies of 89.00%, 90.97%, 90.07%, and 92.32%,
respectively. Moreover, because the FourTrash dataset is extremely unbalanced, to evaluate
the comprehensive performance of the models, the F1-scores of the models are also reported.
Please note that the methods including the integration of CNNs achieved higher macro and
weighted F1-scores than any single trained model. This demonstrates that both proposed
ensemble methods can achieve better classification results by using the results of multiple
classifiers. In addition, the macro and weighted F1-scores of EnCNN-UPMWS were 0.8825
and 0.9264, which were the best results among all the methods. This indicates that UPMWS
is more effective than voting, which implies that giving the classifiers different weights can
benefit more from the integration than simple averaging (i.e., setting the same weight).

To compare the classification results for each category, the F1-score for each waste
category is reported in Table 5. Please note that EnCNN-UPMWS achieved the best F1-
score in each class. To analyze the classification accuracy of each category, two confusion
matrixes were obtained from the prediction results of voting and the proposed method,
as presented in Figure 11. In a confusion matrix, the index of each column corresponds
to a predicted label, and the indices of each row denote the actual label. Most incorrect
predictions based on the proportion for the FourTrash dataset were made in the dry waste
and harmful waste categories, which were misclassified as recyclable materials. The main
reasons for the misclassifications include the following: (1) the numbers of samples of these
two types were too few compared with recyclable and dry waste. As a result, the model
could not learn enough information in these categories; (2) some subclasses in the two
categories had similar characteristics with some subclasses in the recyclable category, i.e.,
the low inter-class differences concerning recyclable materials, harmful waste, and dry
waste, which was also confirmed by the manual inspection of the related images.

Table 5. F1-scores of different CNNs, EnCNN-Voting, and EnCNN-UPMWS on the FourTrash dataset.

Class ResNet-50 GoogLeNet MobileNetV2 EnCNN-Voting EnCNN-UPMWS

Dry 0.6775 0.7452 0.7391 0.7742 0.7845
Wet 0.9321 0.9441 0.9346 0.9529 0.9568

Recyclable 0.9142 0.9283 0.9215 0.9406 0.9442
Harmful 0.7734 0.8082 0.7714 0.8385 0.8445
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(a) Voting (b) UPMWS

Figure 11. Confusion matrixes using (a) voting and (b) the UPMWS on the FourTrash dataset.

4.2.2. Experiment B (TrashNet)

TrashNet, an open-access waste image dataset, has been used to evaluate various
image classification models [23]. First, to ensure the fairness of the comparison of the
experimental results, the dataset splitting method described previously was used [25].
Similar to the process described in the previous section, to calculate the weight coefficients
based on UPMWS, the trend of the accuracy of the validation set was observed. As exhibited
in Figure 12, the accuracy reached a high level and then became steady. Therefore, epochs
in the range of [20, 50) were selected to calculate the weight coefficients, and the results are
exhibited in Table 6. The results demonstrate that MobileNetV2 was more reliable than the
other two models, as it had the highest weight coefficient. This also indicates that the same
models exhibited different performance on different datasets.
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Figure 12. Validation accuracy during the training process on the TrashNet dataset.
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Table 6. Weight coefficients calculated by the UPMWS in Experiment B.

Model Weight Coefficient

GoogLeNet 0.3521
MobileNetV2 0.3588

ResNet-50 0.3011

As shown in Table 7, EnCNN-UPMWS exhibited good performance and achieved
the best accuracy of 93.50%, which was higher than those of EnCNN-Voting (92.58%),
ResNet-50 (90.95%), GoogLeNet (91.88%), and MobileNetV2 (91.42%). Its weighted F1-
score was 0.9351, which was higher than those of EnCNN-Voting (0.9258), ResNet-50
(0.9099), GoogLeNet (0.9193), and MobileNetV2 (0.9136). Moreover, its macro F1-score
was 0.9315, which was higher than those of EnCNN-Voting (0.9208), ResNet-50(0.8979),
GoogLeNet (0.9125), and MobileNetV2 (0.9014). Furthermore, the classification results of
the five models for each waste category (glass, paper, cardboard, plastic, and metal) were
compared. As shown in Table 8, compared to the other models, EnCNN-UPMWS exhibited
good performance in terms of the F1-score. The experimental results demonstrate the
effectiveness of the UPMWS, which could improve the integration performance of CNNs.

Moreover, Figure 13 presents the confusion matrices of voting and the UPMWS. The
UPMWS correctly classified more paper, cardboard, metal, and trash samples than did the
voting strategy, whereas these methods performed the same for glass samples. Overall,
EnCNN-UPMWS achieved the best performance on the TrashNet dataset.

Table 7. Comparative analysis of the classification indices of different CNNs, EnCNN-Voting, and
EnCNN-UPMWS on the TrashNet dataset.

Model Macro F1-Score Weighted F1-Score Accuracy

EnCNN-UPMWS 0.9315 0.9351 93.50%
EnCNN-Voting 0.9208 0.9258 92.58%

ResNet-50 0.8979 0.9099 90.95%
GoogLeNet 0.9125 0.9193 91.88%

MobileNetV2 0.9014 0.9136 91.42%

Table 8. F1-scores of different CNNs, EnCNN-Voting, and EnCNN-UPMWS on the TrashNet dataset.

Indices ResNet-50 GoogLeNet MobileNetV2 EnCNN-Voting EnCNN-UPMWS

Glass 0.9036 0.9500 0.9125 0.9375 0.9317
Paper 0.9450 0.9252 0.9352 0.9401 0.9493

Cardboard 0.9481 0.9565 0.9429 0.9496 0.9565
Plastic 0.9116 0.8889 0.8974 0.9007 0.9139
Metal 0.8593 0.8921 0.9130 0.9078 0.9286
Trash 0.9197 0.8620 0.8077 0.8889 0.9091
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(a) Voting (b) UPMWS

Figure 13. Confusion matrixes obtained using (a) voting and (b) the UPMWS on the TrashNet dataset.

The experimental results suggest that the integration of multiple classifiers can slightly
promote the accuracy of waste image recognition. Multiple SOTA classifiers with diverse
architectures can potentially offer complementary information about the patterns to be
classified. The proposed UPMWS can be used to obtain more accurate measurement results,
and different weight values are applied in combination with the prediction vectors; thus, a
more accurate probability vector can be obtained. Ultimately, the overall framework was
found to achieve good generalization and robust final prediction via the combination of
the three classifiers.

5. Conclusions

In this paper, a framework (EnCNN-UPMWS) based on an ensemble learning strat-
egy of three CNNs (GoogLeNet, ResNet-50, and MobileNetV2) and integration with the
unequal precision measurement weighting strategy (UPMWS) was presented for HSW
classification. In the proposed EnCNN-UPMWS model, three different types of CNN
models are separately trained and saved. During training, the UPMWS is used to compute
the weights for individual models. The three trained classifiers are then combined by
adding the weighted predicted probability vectors together to obtain the final result for
test samples. To evaluate the performance of the developed framework, it was compared
with existing SOTA models in terms of four metrics (accuracy, F1-score, weighted F1-score,
and macro F1-score) on two waste image datasets, namely FourTrash and TrashNet. In
addition, the use of the majority voting method in the ensemble was also compared with
the UPMWS.

Via the comparison of the results presented in Section 4, the proposed EnCNN-UPMWS
was found to exhibit enhanced classification performance as compared to GoogLeNet,
ResNet-50, and MobileNetV2. Moreover, the experimental results imply that the ensem-
ble learning strategy outperformed the single models, and the proposed UPMWS method
for weight setting outperformed the majority voting. On the FourTrash dataset, the over-
all accuracy of the proposed model for the four waste classes was 92.85%, which was
1.88% higher than the best accuracy of the single models and 0.53% higher than that of
voting. Moreover, the macro and weighted F1-scores were respectively 0.8825 and 0.9264,
which were respectively 0.026 and 0.0183 higher than the best indices of the single models
and respectively 0.0064 and 0.0048 higher than voting. Furthermore, the proposed frame-
work exhibited superior F1-scores for each class. For TrashNet, the overall accuracy of the
proposed model for the six waste classes was 93.50%, which was 1.62% higher than the
best accuracy of the single models and 0.92% higher than that of voting. Moreover, the
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weighted and macro F1-scores were respectively 0.9351 and 0.9315, which were respectively
0.0158 and 0.019 higher than the best index of the single models and respectively 0.0093 and
0.0107 higher than voting. Furthermore, the proposed framework was superior to the other
models in terms of the F1-score for most categories. Finally, the overall results demonstrate
that the proposed EnCNN-UPMWS model can be considered to be a candidate for waste
image classification.

The proposed UPMWS method, via which a set of proper weight coefficients is
provided for base classifiers, works better than the majority voting method, via which the
same weight coefficients are set for classifiers, and can therefore be applied in ensemble
learning for classification tasks. In the future, the potential of the EnCNN-UPMWS model
to solve more complicated tasks in waste image detection will be explored from the
perspective of complex backgrounds.
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