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Abstract: A high-performance vector quantization (VQ) codebook search algorithm is proposed
in this paper. VQ is an important data compression technique that has been widely applied to
speech, image, and video compression. However, the process of the codebook search demands a
high computational load. To solve this issue, a novel algorithm that consists of training and encoding
procedures is proposed. In the training procedure, a training speech dataset was used to build
the squared-error distortion look-up table for each subspace. In the encoding procedure, firstly,
an input vector was quickly assigned to a search subspace. Secondly, the candidate code word
group was obtained by employing the triangular inequality elimination (TIE) equation. Finally, a
partial distortion elimination technique was employed to reduce the number of multiplications. The
proposed method reduced the number of searches and computation load significantly, especially
when the input vectors were uncorrelated. The experimental results show that the proposed algorithm
provides a computational saving (CS) of up to 85% in the full search algorithm, up to 76% in the TIE
algorithm, and up to 63% in the iterative TIE algorithm. Further, the proposed method provides CS
and load reduction of up to 29–33% and 67–69%, respectively, over the BSS-ITIE algorithm.

Keywords: vector quantization (VQ); codebook search; line spectrum frequency (LSF); speech codec

1. Introduction

Vector quantization (VQ) is a high-performance technique for data compression.
Due to its simple coding and high compression ratio, it has been successfully applied
to speech, image, audio, and video compression [1–6]. It is also a key part of the G.729
Recommendation. A major handicap is that a remarkable computational load is required
for the VQ of line spectrum frequency (LSF) coefficients of the speech codec [7–12]. Thus, it
is necessary to reduce the computation load of VQ.

Conventionally, a full search algorithm is employed to find the code word that is best
matched with an arbitrary input vector. However, the full search algorithm demands a
large computation load. To reduce the encoding search complexity, many approaches have
been proposed [13–28]. These approaches can be classified into four main types, according
to their base techniques. The first type is the tree-structured VQ (TSVQ) technique [13–17],
the second type is the triangular inequality elimination (TIE)-based approach [18–21],
the third type is the equal-average equal-variance equal-norm nearest neighbor search
(EEENNS) method [22–24] based on the statistical characteristic values of the input signal,
and the last type is the binary search space-structured VQ (BSS-VQ) [25–28] method.

In the TSVQ approaches [13–17], the search complexity can be reduced significantly.
However, the reconstructed speech quality is poor because the selected code word is not
necessarily the best matched to the input vector. In contrast, the TIE-based method [18–21]
can achieve an enormous computational load reduction without loss of speech quality. By
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employing the high correlation between the adjacent frames, a TIE method is used to reject
the impossible candidate code words. However, the performance of computational load
reduction is weakened when the input vectors are uncorrelated. The EEENNS technique
employs the statistical characteristics of an input vector, such as the mean, the variance, and
the norm, to reject the impossible code words. In order to further reduce the computational
load, the BSS-VQ method [25] is proposed, in which the number of candidate code words
is closely related to the distribution of the hit probability, and a sharpened distribution
at specific code words yields an enormous computational load. However, the probability
distribution is not uniform; some subspaces are concentrated, and some are flattened. Thus
sometimes the performance is not good.

To solve the above issues, an efficient VQ codebook search algorithm is proposed.
Even though the input vectors are uncorrelated, it can still reduce the computational load
significantly while maintaining the quantization accuracy. Compared with previous works
on the full search algorithm [6], TIE [18], ITIE [21], and the BSS-ITIE [28], the experimental
results show that the proposed algorithm can quantize the input vector with the lowest
computational load.

The rest of this paper is organized as follows. Section 2 describes the encoding
procedure of the LSF coefficients in G.729. Section 3 presents the theory of the proposed
algorithm in detail. Section 4 shows the experimental results and performance comparison
between the proposed algorithm and previous works. Finally, Section 5 concludes this
work.

2. LSF Coefficients Quantization in G.729

The ITU-T G.729 [29] speech codec was selected as the platform to verify the perfor-
mance of the proposed algorithm. Thus, before introducing the theory of the proposed
method, the principle of the LSF quantization in G.729 is introduced here.

The LSF coefficients are obtained by an equation ωi = ar cos(qi), where qi is the LSF
coefficient in the cosine domain, and wi is the computed LSF coefficient in the frequency
domain.

The procedure of the LSF quantize is organized as follows: a switched 4th moving
average (MA) prediction is used to predict the LSF coefficients of the current frame. The
difference between the computed and predicted coefficients is quantized using a two-stage
vector quantizer. The first stage is a 10-dimensional VQ using a codebook L1 with 128
entries (7 bits). In the second stage, the quantization error vectors of the first stage are split
into two sub-vectors, which then are quantized by a split VQ associating two codebooks, L2
and L3, each containing 32 entries (5 bits). Figure 1 illustrates the structure of the two-stage
VQ for LSF coefficients.
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Figure 1. Structure of the two-stage vector quantization (VQ) for line spectrum frequency (LSF) coefficients. Figure 1. Structure of the two-stage vector quantization (VQ) for line spectrum frequency (LSF) coefficients.
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To explain the quantization process, it is convenient to describe the decoding process
first. Each quantized value is obtained from the sum of the two code words, as follows:

l̂i =

{
L1i(l1) + L2i(l2) i = 1, . . . , 5
L1i(l1) + L3i−5(l3) i = 6, . . . , 10

, (1)

where l1, l2, and l3 are the codebook indices. To guarantee that the reconstructed filters
are stable, the vector l̂i is arranged such that adjacent elements have a minimum distance
of dmin. This rearrangement process is done twice. First, the quantized LSF coefficients,
ω̂i

(m), for the current frame, m, are obtained from the weighted sum of previous quantizer
outputs, l̂(m−k)

i , and the current quantizer output, l̂m
i .

ω̂i
(m) =

(
1−

4

∑
k = 1

P̂i,k

)
l̂m
i +

4

∑
k = 1

P̂i,k l̂(m−k)
i i = 1, . . . , 10. (2)

where p̂i,k are the coefficients of the switched MA predictor as defined by parameter, p0.
For each of the two MA predictors the best approximation to the current LSF coefficients
has to be found. The best approximation is defined as the one that minimizes the weighted
mean-squared error (MSE).

Els f =
10

∑
i = 1

Wi(ωi − ω̂i)
2. (3)

The weights emphasize the relative importance of each LSF coefficient. The weights,
Wi, are made adaptive as a function of the unquantized LSF parameters.

W1 =

{
1.0 ,i f ω2 − 0.04π − 1 > 0
10(w2 − 0.04π − 1)2 + 1 , otherwise

. (4)

Wi, f or 2 ≤ i ≤ 9 =

{
1.0 ,i f ωi+1 −ωi−1 − 1 > 0
10(ωi+1 −ωi−1 − 1)2 + 1 , otherwise

. (5)

W10 =

{
1.0 , i f −ω9 + 0.92π − 1 > 0
10(−ω9 + 0.92π − 1)2 + 1 , otherwise

. (6)

Then, the weights ω5 and ω6 are multiplied by 1.2 each. The vector to be quantized
for the current frame, m, is obtained from Equation (7).

Ii
(m) =

[
ω
(m)
i −

4

∑
k = 1

p̂i,k Î(m−k)
i

]
/

(
1−

4

∑
k = 1

p̂i,k

)
, i = 1, . . . , 10. (7)

The first codebook, L1, is searched and the entry, l1, that minimizes the unweighted
MSE is selected. Then the second codebook, L2, is searched by computing the weighted
MSE, and the entry l2, which results from the lowest error is selected. After selecting the
first stage vector, l1, and the lower part of the second stage, l2, the higher part of the second
stage is searched from the codebook, L3. The vector, l3, that minimizes the weighted MSE
is selected. The resulting vector, Îi, i = 1, . . . , 10, is rearranged twice using the above
procedure. The procedure is done for each of the two MA predictors defined by p0, and the
MA predictor that produces the lowest weighted MSE is selected. Table 1 shows the two
groups of coefficients of the MA predictor. When the first group of coefficients is selected,
the value of p0 is 0. Otherwise, the value of p0 is 1. Table 2 shows the bit allocation of the
LSF quantizer.
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Table 1. The value of the MA predictor coefficients.

p0 k MA Predictor Coefficients

0

1 0.2570 0.2780 0.2800 0.2736 0.2757 0.2764 0.2675 0.2678 0.2779 0.2647
2 0.2142 0.2194 0.2331 0.2230 0.2272 0.2252 0.2148 0.2123 0.2115 0.2096
3 0.1670 0.1523 0.1567 0.1580 0.1601 0.1569 0.1589 0.1555 0.1474 0.1571
4 0.1238 0.0925 0.0798 0.0923 0.0890 0.0828 0.1010 0.0988 0.0872 0.1060

1

1 0.2360 0.2405 0.2499 0.2495 0.2517 0.2591 0.2636 0.2625 0.2551 0.2310
2 0.1285 0.0925 0.0779 0.1060 0.1183 0.1176 0.1277 0.1268 0.1193 0.1211
3 0.0981 0.0589 0.0401 0.0654 0.0761 0.0728 0.0841 0.0826 0.0776 0.0891
4 0.0923 0.0486 0.0287 0.0498 0.0526 0.0482 0.0621 0.0636 0.0584 0.0794

Table 2. Bit allocation of the LSF quantizer.

Procedure Code Index Bits

First stage 10th order l1 7

Second stage 5th low order l2 5
5th high order l3 5

Selection of predictive filter p0 1

Total 18

3. Proposed Search Algorithm

In this paper, a fast codebook search algorithm of vector quantization is proposed to
reduce the computation load of the LSF coefficients’ quantization in the G.729 speech codec.
Even though the input vectors are uncorrelated, this can still reduce the computation load
significantly, while maintaining the quantization accuracy.

In the BSS-VQ method [25], the number of candidate code words is strongly related to
the distribution of the hit probability for each subspace, and a sharpened distribution at
specific code words yields an enormous computational load while maintaining the quanti-
zation accuracy. However, the probability distribution is not uniform: some subspaces are
concentrated, and some are flattened. Thus, sometimes its performance is poor. The TIE
algorithm [18] uses the strong correlation between adjacent values to narrow the search
range. However, its performance is poor when the inputs are uncorrelated.

Considering the drawbacks of the above methods, to further reduce computational
load, especially when the inputs are uncorrelated, a novel algorithm is proposed. After
the statistical analysis, the code word corresponding to the highest hit probability for each
subspace is obtained and selected as the reference code word, and a squared-error distortion
look-up table for each subspace is built. The adjacent code word is highly correlated due
to the squared-error distortion changing slightly in the squared-error look-up table. The
reference code word corresponding to the highest probability is regarded as the best-
matched code word. Thus, the smaller the squared-error distortion with the reference code
word, the more likely the candidate code word is to be the best matched. Therefore, the TIE
technique can be employed to reject the impossible code words. The proposed algorithm
consists of the training procedure and encoding procedure. The structure of the proposed
algorithm is illustrated in Figure 2, and the theory of the proposed algorithm is presented
in detail as follows.
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3.1. Training Procedure

In the three-stage training procedure, the squared-error look-up table for each sub-
space is prebuilt. At stage 1, each dimension is dichotomized into two subspaces. Then, an
input vector is assigned to a corresponding subspace according to the entries of the input
vector [25]. For instance, when the input is a 10-dimensional vector, there are 210 = 1024
subspaces in G.729. Before the encoding procedure, a look-up table that contains the hit
probability statistical information on the code words is prebuilt.

The dichotomy position for each dimension is defined as the mean of all the code
words from the codebook, presented as:

mean(k) =
1

CSize

CSize

∑
i = 1

ci(k), 0 ≤ k < Dim, (8)

where ci(k) is the k-th component of the i-th code word ci, and mean(k) is the average value
of all the i-th components. For instance, in the first stage of the LSF coefficients quantization
in G.729, CSize = 128, Dim = 10 in the codebook L1. A parameter vn(k) is defined for
vector quantization on the n-th input vector xn, symbolized as:

vn(k) =

{
2k, xn(k) ≥ mean(k)
0, xn(k) < mean(k)

, 0 ≤ k < Dim, (9)

where xn(k) is the k-th component of xn. Then, xn is assigned to a subspace j
(
bssj

)
, where

j is the sum of vn(k) over all the dimensions, presented as:

xn ∈ bssj|j =
Dim−1

∑
k = 0

vn(k). (10)

For instance, given an input xn = {0.44, 0.08, 0.51, 0.87, 1.26, 1.40, 2.10, 2.18, 2.30, 2.42},
vn(k) = {1, 0, 0, 8, 16, 0, 64, 128, 0, 0} for each k, j = 217 is obtained by (8) and (9), respec-
tively. Then, the input vector xn is assigned to the subspace bssj with j = 217. This means
that an input vector can be assigned to a corresponding subspace quickly, with only a few
basic operations.
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At stage 2, the hit probability table for each subspace is prebuilt through a training
mechanism, which includes the probability for each code word to be the best-matched
code word in each subspace. This is defined as follows: Phit

(
ci
∣∣bssj

)
, where 1 ≤ i ≤ CSize,

1 ≤ j ≤ Snum, and Snum = 2Dim is the number of subspaces. Subsequently, the table
is sorted in descending order by the hit probability value. For example, when i = 1,
Phit
(
i
∣∣bssj

)
|i = 1 = max

ci

{
Phit(ci)

∣∣bssj
}

represents the highest hit probability in bssj and the

corresponding code word. The sum of all the hit probabilities for each subspace is 1.0. The
hit probability Phit

(
ci
∣∣bssj

)
is computed by Equation (11), and the cumulative probability

of the top N code words is symbolized as Equation (12):

Phit
(
ci
∣∣bssj

)
=

the number o f times that codeword ci f alls in the subspace bssj

the total number o f times that all the candidate codewords f alls in subspace bssj
, (11)

Pcmu
(

N
∣∣bssj

)
=

N

∑
i = 1

Phit
(
n
∣∣bssj

)
, 1 ≤ N ≤ CSize, (12)

which represents the number of possible candidate code words. Further, to control
the quantization accuracy and computational load, a variable named threshold of quan-
tization accuracy (TQA) is defined. This is given a quantity,Nj(TQA), which means the
minimum number N that satisfies the equation Pcmu

(
N
∣∣bssj

)
≥ TQA in a subspace, bssj,

is expressed as:

Nj(TQA) = argmin
N

{
N : Pcum

(
N
∣∣bssj

)
≥ TQA

}
, 1 ≤ N ≤ CSize, 0 ≤ j ≤ Snum, (13)

At stage 3, the highest hit probability code word in each subspace is selected as the
reference code word cr, then the squared-error distortion among the reference code word
and all the other code words, ci, in the codebook is calculated by (14).

d(cr, ci) = ‖cr − ci‖ =
k−1

∑
i = 1

(cr − ci)

2

(14)

Subsequently, the squared-error distortion look-up table for each subspace is built
and then is sorted in ascending order. Algorithm 1 shows the pseudo-code of the training
procedure.

Algorithm 1. Training procedure of the proposed algorithm

Step 1. Give a training speech dataset and a value, TQA.
Step 2. The input vector is assigned to a corresponding subspace, bssj, by (9) and (10).
Step 3. Repeat Step 2 until all the input vectors are encoded.
Step 4. The hit probability table is obtained by (11) and (12) and then sorted in descending order.
Step 5. Select the highest hit probability code word as the reference code word, the squared-error

distortion among the reference code word and other code words, ci, in the codebook is
calculated by (14).

Step 6. The squared-error distortion look-up table is prebuilt for each subspace and is sorted in
ascending order.

3.2. Encoding Procedure

Given a testing speech set and a value for TQA, in step 1, an input vector is assigned
to a search subspace by (9) and (10). In step 2, a triangular inequality elimination (TIE) for-
mulation is used to reject the impossible candidate code words [18]. If d(cr, ci) > 4d(cr, x),
then d(ci, x) > d(cr, x), thus the computation of d(ci, x) is eliminated. Where x is the input
vector, cr is the reference code word. A group composed of all the code words, ci, which
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satisfy the above conditions is selected, then a group defined as a candidate search group
(CSG) is built, and the number of code words in the CSG is symbolled as N(cr).

TIE : CSG(cr) = {ci|d(cr, ci) < 4d(cr, x)}, 1 ≤ i ≤ CSize. (15)

In step 3, after the CSG(cr) is obtained, the squared-error distortion between the input
vector and each candidate code word is computed. The best-matched code word is the one
that makes the squared-error distortion between the input vector, xn, and the candidate
code word, ci, minimized.

As stated by BEI [30], a minimum squared-error distortion computation method called
partial distortion elimination (PDE) is employed to reduce the number of multiplication
operations. This method can decide whether the current code word is the best matched or
not before the whole squared-error distortion is calculated. The pseudo-code of the PDE
method is shown in Algorithm 2, where CSize, Dim, dmin, C(i, j) are the codebook size, the
dimension of the input vector, the minimum distortion value, and the code word in the
codebook, respectively. After the abovementioned description, the encoding procedure of
the proposed algorithm can be summarized as Algorithm 3.

Algorithm 2. Pseudo-code of the PDE algorithm

1 j = 0, dmin = 2̂8
2 whilej < CSize
3 dist = 0
4 i = 0
5 while (dist < dmin)
6 tmp = x(j)− C(i, j)
7 dist = dist + tmp ∗ tmp
8 i = i + 1
9 end
10 if ((i = = Dim) && (dist < dmin))
11 dmin = dist
12 index = j
13 end
14 j = j + 1
15 end

Algorithm 3. Encoding procedure of the proposed algorithm.

Step 1. Given a testing speech set and a value for TQA.
Step 2. The input vector is quickly assigned to a corresponding subspace, bssj, by (9) and (10).
Step 3. The number of candidate code words, Nk(TQA), is found directly from the prebuilt

squared-error distortion look-up table for each subspace.
Step 4. The code word corresponding to the highest hit probability is selected as a reference, cr,

compute d(cr, x), and then the CSG(cr) and N(cr) are obtained by (15).
Step 5. Starting at k = 1, the d(cr, ck) is obtained directly from the squared-error distortion look-up

table.
Step 6. If (d(cr, ck) < 4d(cr, x)), then compute d(ck, x) by Algorithm 2, k = k + 1; repeat Step 4

until k = N(cr). Then the index of the best-matched code word is obtained.
Step 7. Output index of the best-matched code word.
Step 8. Repeat Steps 2–6 until all the input vectors are encoded.

4. Experiment and Results
4.1. Experimental Environment

Here, the first-stage quantization procedure of LSF coefficients in G.729 was selected
as a platform to illustrate the performance of the proposed algorithm. The first-stage
codebook included 128 code words, and each code word was a 10-dimensional vector.
There were 1024 subspaces. The Aurora speech dataset [31] was used as the training and
testing speech data. There were 1001 clean speech files and 1001 speech files with noise
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from Test-A set, spoken by 50 males and 50 females used in this paper. The testing speech
signals were sampled at 8 kHz with a resolution of 16 bits per sample.

4.2. Selection of the Training Dataset

As introduced in Section 3, the proposed method included a training procedure and
an encoding procedure. The training procedure provided a squared-error look-up table for
the encoding procedure. The selection of the training speech dataset directly affected the
application scope of the squared-error look-up table. Further, it affected the computation
loads and quantization accuracy of the subsequent encoding process. Therefore, we discuss
the influence of the selection of the training dataset on the application scope of the squared-
error look-up table.

The Aurora Test-A set included 1001 clean files and 1001 noisy speech files that were
used to train and test the robustness of the proposed algorithm. Here we will compare the
performance of the proposed method with three experimental environments. To evaluate
the quantization accuracy of the proposed algorithm, a parameter defined as error rate (ER)
was proposed, symbolized as ER =

uncorrected quantized frames
total input frames . The average search times

are symbolized as ASN, and the reduction of the ASN is presented as a computational
saving (CS) and symbolized as CS = ASN1−ASN2

ASN1
, given to evaluate the reduction of the

computational load. The following three experimental results were all obtained with the
value TQA = 0.99.

For the first experimental conditions, the 1001 clean files, which included 350,866 speech
frames, were all selected as the training set, then a squared-error look-up table which
is symbolized as table A was obtained after the training procedure. Then, table A was
employed in the encoding process. The testing datasets were clean files and noisy speech
files, respectively. When there were 500 clean files, which included 174,630 speech frames
used as the testing dataset, the experimental results show that there were 1412 uncorrected
quantized frames, thus ER = 0.81%, and ASN = 18.82. When there were 201 speech files
with noise, which included 70,170 frames used as a testing dataset, the experimental results
show that there were 2579 uncorrected quantized frames, thus t ER = 3.7% and ASN = 18.9.

For the second experimental conditions, the training dataset included 500 clean speech
files and 500 speech files with noise, which included 348,724 frames. Then, when the
training dataset was used as a testing dataset, the experimental results show there were
1062 uncorrected quantized frames, thus ER = 0.7% and ASN = 18.8. When the other
201 clean speech files, which included 70,170 frames used as testing data, the experimental
result shows that there were 2038 uncorrected quantized frames, thus ER = 2.9% and
ASN = 19.3. When the other 201 speech files with noise, which included 70,170 frames used
as a testing set, the experimental results show that there were 1975 uncorrected quantized
frames, thus ER = 2.8% and ASN = 18.9.

For the third experimental conditions, the training dataset included 1001 clean files
and 1001 speech files with noise, which included 701,508 frames. When there were 201 clean
speech files used as a testing set, the experimental results show that there were 556 uncor-
rected quantized frames, thus ER = 0.79% and ASN = 20. When there were 201 speech
files with noise, which included 70,170 frames used as a testing set, the experimental results
show that there were 605 uncorrected quantized frames, thus ER = 0.8% and ASN = 19.9.

Details of the above three experiments and the corresponding experimental results
can be found in Table 3. Even under the worst training conditions, 1, where the training
set was clean speech and the testing set was speech files with noise, the experimental
results show that ER = 3.7% and ASN = 18.9. Under the best training conditions, 3, the
experimental results show that ER = 0.8% and ASN = 20. Comparing the results of these
three conditions, the ER value ranges from 0.7% to 3.7%, and the ASN value ranges from
18.82 to 20. It can be concluded that when the training set was large enough, the selection
of the training set had no significant influence on the encoding process. The robustness of
the prebuilt squared-error look-up table was good. The variation ranges of ER and ASN
were within acceptable limits.
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Table 3. The selection of the training dataset.

Experimental
Conditions Training Set Testing Set ER ASN

Conditions 1 1001 clean files
500 clean files 0.81% 18.82

201 files with noise 3.7% 18.9

Conditions 2 500 clean and 500 files
with noise

Training set 0.7% 18.8

201 clean files 2.9% 19.3

201 files with noise 2.8% 18.9

Conditions 3 1001 clean and 1001 files
with noise

201 clean files 0.79% 20

201 files with noise 0.8% 19.9

4.3. Performance of the Proposed Method

Here we choose experiment 1 to illustrate the performance of the proposed method.
The generation of the squared-error look-up table is a very important process of the
proposed algorithm. Thus, we extracted some intermediate experimental data as examples
to illustrate the created procedure. Figure 3 illustrates the design procedure of the squared-
error look-up table of the proposed algorithm. It shows that the generation of the squared-
error look-up table can reduce the number of candidate code words significantly and
reduce the search range.
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The computational load and the quantization accuracy are compared for the proposed
algorithm with TIE [18], ITIE [21], and BSS-ITIE [28] approaches. With the performance of
the full search algorithm as the benchmark, Table 4 gives the comparison of ER, ASN, and
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CS for the proposed algorithm with TIE [18], ITIE [21], and BSS-ITIE [28] approaches. The
experimental results show that the proposed algorithm provided CS of up to 92% when
TQA = 0.90 and when TQA = 0.99, it still reduced the computational load by 85%.
Compared to the TIE and ITIE methods, the proposed method provided CS of up to 76%
and 63% with almost the same quantization accuracy.

Table 4. Comparison of the computational load and ER of various methods.

Methods ER ASN CS

Full search algorithm 0 128 Benchmark
TIE 0 78.37 38.77%
ITIE 0 51.21 60%

BSS-ITIE (TQA)

0.90 13.85% 10.39 91.88%
0.91 13.10% 10.84 91.53%
0.92 12.20% 11.35 91.13%
0.93 11.32% 11.88 90.72%
0.94 10.38% 12.54 90.20%
0.95 9.28% 13.28 89.63%
0.96 8.28% 14.11 88.98%
0.97 7.02% 15.23 88.10%
0.98 5.97% 16.53 87.09%
0.99 4.66% 18.47 85.57%

Proposed (TQA)

0.90 7.89% 10.16 92.06%
0.91 7.15% 10.60 91.72%
0.92 6.37% 11.10 91.33%
0.93 5.65% 11.65 90.90%
0.94 4.86% 12.33 90.37%
0.95 4.08% 13.10 89.77%
0.96 3.35% 13.98 89.08%
0.97 2.47% 15.17 88.15%
0.98 1.67% 16.61 87.02%
0.99 0.81% 18.82 85.30%

To further evaluate the reduction of computational load, the comparison of the average
number of basic operations, including addition, multiplication, and comparison, is shown
in Table 5 and is illustrated as a bar graph in Figure 4. The multiplication operation was the
dominant computation, with the highest computational complexity. The reduction in the
number of multiplications is the load reduction (LR), symbolized as LR = MulN1−MulN2

MulN1
,

where MulN is the number of multiplications. The proposed algorithm provided LR up to
90% in the full search algorithm, with almost the same quantization accuracy.

Table 5. Comparison of the basic operation numbers between the proposed method and other methods.

Methods TQA Additions MulN Comparisons LR

Full search algorithm - 2560 1280 128 Benchmark

TIE - 1654 794 206 38%

ITIE - 978 628 369 51%

BSS-ITIE 0.99 379 291 106 77%

Proposed
0.99 518 125 50 90%
0.95 387 95 37 92.5%
0.94 369 91 36 92.8%
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Table 6 and Figure 5 give the comparison results with the BSS-ITIE [28] as the bench-
mark. When TQA = 0.99, the ASN of the BSS-ITIE algorithm was 18.47 with ER = 4.66%.
In comparison, the ASN of the proposed algorithm was 18.82 with ER = 0.81%, and
LR = 57%. This indicates the proposed algorithm can obtain a better speech quality
than the BSS-ITIE algorithm with great reduction of the number of multiplications. On
the other hand, when TQA = 0.95, the ASN of the proposed algorithm was 13.10 with
ER = 4.08%. When TQA = 0.94, the ASN of the proposed algorithm was 12.33 with
ER = 4.86%. This indicates the proposed algorithm provided CS of about 29–33%, and
LR up to 67–69%, over the BSS-ITIE algorithm with almost the same ER.

Table 6. Computational savings comparison between the BSS-ITIE [28] method and the proposed
algorithm.

Methods TQA ER ASN MulN LR CS

BSS-ITIE 0.99 4.66% 18.47 291 Benchmark

Proposed
0.99 0.81% 18.82 125 57% 0
0.95 4.08% 13.10 95 67% 29%
0.94 4.86% 12.33 91 69% 33%
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Figure 6 shows that when ASN was about equal to 19, the ER of the proposed method
was equal to 0.81%, while with the BSS-ITIE it was equal to 4.66%. For instance, when ASN
was approximately equal to 13, the ER of the proposed method was lower than that of
the BSS-ITIE method by about 5%. When ER was approximately equal to 4%, the ASN of
the proposed method was about 5.5 lower than that of the BSS-ITIE method. Thus, the
proposed algorithm had a significantly better performance than the BSS-ITIE method.
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In addition, to better measure the quantization error, the average vector quantization
error (AVQR) was defined as the absolute error value between the quantized code word
and the best-matched code word. The AVQR was computed by Equation (16).

AVQR =

i = L
∑

i = 1
abs(ĉi − ci)

L
, (16)

where ĉi was the quantized code word, and ci was the best-matched code word with the
input vector which was searched by the full search algorithm. L was the total number of
input speech frames. The AVQR value of the BSS-ITIE [22] and the proposed algorithm
were computed, while the TQA ranged from 0.90 to 0.99, respectively. Table 7 shows the
AVQR comparison between the BSS-ITIE [22] method and the proposed method. The
experimental results show that all the AVQR values of the proposed method were lower
than 0.1, and the AVQR value of the BSS-ITIE method ranged from 0.0695 to 0.2324. Further,
the max value of AVQR for the proposed method was 0.0974 when TQA = 0.90, which
is about equal to the AVQR value of the BSS-ITIE method when TQA = 0.98. Thus, the
experimental results show that the proposed method can obtain a much lower quantization
error than the BSS-ITIE method.

Table 7. Average vector quantization error comparison between the BSS-ITIE [28] method and the
proposed method.

TQA BSS-ITIE Proposed

0.90 0.2324 0.0974
0.91 0.2166 0.0872
0.92 0.1993 0.0764
0.93 0.1821 0.0673
0.94 0.1648 0.0572
0.95 0.1450 0.0475
0.96 0.1273 0.0386
0.97 0.1074 0.0278
0.98 0.0905 0.0185
0.99 0.0695 0.0089

5. Conclusions

In this paper, an efficient codebook search algorithm for the VQ of the LSF coefficients
is proposed to reduce the computation load. A squared-error look-up table was prebuilt
in the training procedure and then the encoding procedure began. An input vector was
quickly assigned to a search subspace, then the CSG was obtained by employing the
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TIE equation. Subsequently, a PDE technique was employed to reduce the number of
multiplications. The experimental results show that the proposed algorithm provided a CS
of up to 85% in the full search algorithm, up to 76% in the TIE algorithm, and 63% in the
iterative TIE (ITIE) algorithm when TQA = 0.99. Compared to the BSS-ITIE algorithm,
the proposed method provided a CS and LR of up to 29–33% and 67–69%, respectively,
with almost the same quantization accuracy. Further, a trade-off between the computation
loads and quantization accuracy could easily be made to meet a user’s requirement when
performing VQ encoding. This work would be beneficial for reaching the energy-saving
requirement when implemented in a speech codec of mobile devices, and the reduction
of computation load is helpful for the G.729 Recommendation’s application in real-time
speech signal processing systems.
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Abbreviations

VQ Vector quantization
LPC Linear prediction coding
LSF Line spectrum frequency
BSS-VQ binary space search vector quantization
CSG candidate search group
TQA threshold of quantization accuracy
TIE triangular inequality elimination
ITIE iterative triangular inequality elimination
PDE partial distortion elimination
ASN average search numbers
CS computational saving
LR load reduction
CS-ACELP conjugate-structure algebraic-code-excited linear prediction
EEENNS equal-average equal-variance equal-norm nearest neighbor search
AVQR average vector quantization error.
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