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Abstract: Some Internet of Things (IoT) platforms use blockchain to transport data. The value
proposition of IoT is the connection to the Internet of a myriad of devices that provide and exchange
data to improve people’s lives and add value to industries. The blockchain technology transfers data
and value in an immutable and decentralised fashion. Security, composed of both non-intentional
and intentional risk management, is a fundamental design requirement for both IoT and blockchain.
We study how blockchain answers some of the IoT security requirements with a focus on intentional
risk. The review of a sample of security incidents impacting public blockchains confirm that identity
and access management (IAM) is a key security requirement to build resilience against intentional
risk. This fact is also applicable to IoT solutions built on a blockchain. We compare the two IoT
platforms based on public permissionless distributed ledgers with the highest market capitalisation:
IOTA, run on an alternative to a blockchain, which is a directed acyclic graph (DAG); and IoTeX, its
contender, built on a blockchain. Our objective is to discover how we can create IAM resilience against
intentional risk in these IoT platforms. For that, we turn to complex network theory: a tool to describe
and compare systems with many participants. We conclude that IoTeX and possibly IOTA transaction
networks are scale-free. As both platforms are vulnerable to attacks, they require resilience against
intentional risk. In the case of IoTeX, DIoTA provides a resilient IAM solution. Furthermore, we
suggest that resilience against intentional risk requires an IAM concept that transcends a single
blockchain. Only with the interplay of edge and global ledgers can we obtain data integrity in a
multi-vendor and multi-purpose IoT network.

Keywords: IoT; blockchain; decentralised ledger; complex networks; identity and access manage-
ment; data authentication; data integrity; intentional risk

1. Introduction
1.1. Internet of Things

Since the last years of the past 20th century, the Internet has contributed greatly to the
connection between human beings. In October 2020, 59% of the world’s population was
active on the Internet, i.e., 4.66 billion people. Ninety-one percent of those Internet users
do it via mobile devices [1]. The former US Vice-President Al Gore referred to the Internet
as the information superhighway.

Connecting things with other things and servers via the Internet is the next big
step taking place in these first decades of the 21st century. The Internet of Things (IoT)
enables the connection to the Internet of a multitude of small electronic devices to facilitate
their use, handling, data exchange and management. By the end of 2018, the number
of IoT-connected devices surpassed the 20 billion mark [2] with a forecast of 30 billion
IoT-connected devices for 2030 [3]. This information superhighway is now being extended
with many additional lanes that carry information from, among many other things, sensors,
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actuators, personal health devices and geolocation trackers. Reference [4] defines an IoT
device as one having at least one transducer (sensor or actuator) to interact directly with the
physical world and at least one network interface (Ethernet, Wi-Fi, Bluetooth) to interface
with the digital world.

1.2. Blockchain Can Contribute to a Secure IoT World

Some IoT projects use a blockchain to transport data. We study how blockchain can
add security to the IoT world. A blockchain is a type of distributed ledger. The blockchain
technology can answer a considerable subset of the cybersecurity requirements for IoT
mentioned by ETSI [5] and NIST [6] (see Section 2.1), i.e., integrity, secure communication
and resilience. Simultaneously, a blockchain could add additional security properties such
as availability and accessibility together with a reliable micropayment functionality. Given
the large number of things connected via the Internet, the blockchain implementation that
could fit the needs of the IoT would need to have no or very low transaction fees, real
growth possibilities and a scalable identity management process. Blockchain technology
transfers data and value in an immutable and decentralised fashion. These two properties
are valuable for implementing resilient IoT platforms. However, blockchain does not
answer all IoT security requirements: confidentiality and protection of personal data would
require encryption on top of the blockchain.

1.3. Complex Networks Analysis: A Useful Tool to Feature Systems

The analysis of systems with many participant nodes via complex networks can
provide useful information to better understand the system and draw useful conclusions.
Newman (2009) ([7] p. 2) defines a network (also named a graph) as a set of vertices
(or nodes) and connections (or edges) between them. The complexity comes when the
number of elements in the network is high and the use of advanced mathematical and
statistical tools enters into play [8–10]. The value of this multidisciplinary field comes from
the possibility to describe complex interactions [11], some of them dynamic ([12] p. 177),
happening in the real world (social networks, disease spreading, traffic control, etc.) with
models based on complex networks ([13] p. 179). We study two blockchain-based IoT
networks with complex network theory. This complex network analysis provides us with
their network profiles.

1.4. Intentional Risk Management Via Complex Networks Analysis

Intentional risk management is one of the two effective pillars in cybersecurity accord-
ing to Chapela et al. (2016) ([11] pp. 2–3). The other pillar is non-intentional (traditional,
mostly accidental) risk management. Non-intentional risk has already been the subject of
thorough study ([14] pp. 27–36). Typically, risk management methodologies were focused
on non-intentional risks and were based on an actuarial approach, using the well-known
equation risk = probability x impact. The probability is based on observation of the frequency
of past events.

Intentional risks are effected by an active agent—a threat agent ([15] p. 2) that is
looking for a specific profit ([11] p. 2) while running a limited risk. Chapela et al. (2016)
([11] p. 11) stated that complex-network-based intentional risk management can be applied
to any information system if it can be modelled as a complex network, especially when the
relations among their nodes are not linear ([11] p. 11). Once we obtain the network profiles
of the two IoT platforms we study, we apply the equations proposed by [11] to increase
their resilience against intentional risk.

1.4.1. Intentional Risk Management in IoT

The deployment of IoT devices is taking off exponentially: logistics, health, leisure,
mobility and supply chains are just a few use cases where the exchange of sensor and
actuator data brings value to society. This value can only materialise long term with a suffi-
cient degree of data security in IoT. Simultaneously, blockchain technology is continuously
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improving and it can be an appropriate platform to provide data integrity, immutability
and scalability to IoT implementations. The high number of IoT devices and related infor-
mation technology (IT) elements (e.g., edge and cloud servers) compose a complex system
subject to be studied as a complex network, where the nodes are IoT devices and other IT
elements and the edges the communications between them. This complex-network-based
characterisation contributes to explaining the resilience of different IoT implementations
against intentional risk and possible improvement paths.

1.4.2. Structure of the Paper

This paper is structured as follows. We first present the current developments on secu-
rity requirements for IoT devices. Second, we describe how blockchain can answer some
of those IoT security requirements. Third, we explain IOTA (a distributed ledger-based
IoT implementation) with its present and future design decisions together with its main
known security incidents. Fourth, we introduce IoTeX (a blockchain based IoT solution)
and a collection of security incidents in public blockchains. Fifth, we link identity and
access management (IAM) in IoT with edge and cloud computing and we analyse a data
authenticity protection framework for IoT systems. Sixth, we highlight how complex net-
work analysis can contribute to intentional risk management; and finally, we complete this
paper with empirical results based on complex network analysis and provide conclusions
on how to improve IAM resilience against intentional risk in IoT platforms.

2. Related Works
2.1. Security Requirements for IoT

The communication of data to and from a digital gadget via the public Internet
facilitates remote management and real-time data transfer, both frequent user requirements
in many use cases within different industries. One of the challenges for IoT is how to satisfy
these requirements in a secure manner. The global standards development organisation
ETSI has released a security baseline for Internet-connected consumer products [5] that
provides a basis for future IoT certification schemes [16]. A large number of IoT devices
do not display a minimum set of security features, endangering consumers’ privacy and
rendering these connected products as a formidable platform from where to launch massive
distributed denial of services attacks, like the Mirai botnet already in 2016 [17]. Table 1
summarises the key requirements of this baseline.

Table 1. ETSI technical specifications. Cybersecurity for consumer IoT.

Provision Key Topic

1 No universal default passwords
2 Report vulnerabilities
3 Keep software updated

4 Securely store credentials and
security-sensitive data

5 Communicate securely
6 Minimised exposed attack surfaces
7 Ensure software integrity
8 Protect personal data
9 Make systems resilient to outages

10 Examine system telemetry data
11 Make deletion of personal data easy
12 Facilitate installation and maintenance
13 Validate input data

The National Institute of Standards and Technology from the U.S. Department of
Commerce (NIST) acknowledges the evolution of IoT technology and its integration into
US federal information systems [18], and the requirement to add security at the device-level
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to cope with the increasing scale, heterogeneity and pace of IoT deployment [18]. NIST
proposed a list of device cybersecurity capabilities [6]. See Table 2.

Table 2. Device cybersecurity capabilities. NIST-IR 8259D.

Capability Key Abilities

Device identity Unique physical and digital device identifier
Device configuration Display and device configuration control

Data protection Cryptographic capabilities and secure storage
Logical access to interfaces Authentication, authentication, use and interface control

Software update Possibility to update code
Cybersecurity state awareness Event logging and monitoring, audit trail protection

Device security Secure operation and communication

In addition to the technical capabilities, NIST [6] also proposed non-technical support-
ing capabilities for IoT. See Table 3.

Table 3. Non-technical supporting capabilities for IoT providers. NIST-IR 8259D.

Capability Key Abilities

Documentation Device acquisition and maintenance description
during device lifetime

Information and query reception Cybersecurity reports and queries
Information dissemination Software maintenance and cybersecurity alerts
Education and awareness Device and cybersecurity awareness

2.2. Blockchain. The Internet of Value Applied to IoT

When something is highly valuable it needs to be wholeheartedly protected. An an-
cient strategy is to distribute it, as we infer from [11]. The Internet was born in the 1960s
out of the United States Department of Defence with the aim of avoiding centralised gov-
ernance. This innate approach was embraced by the cyberpunk community in the early
Internet days. The absence of a centralised entity that would orchestrate the governance
of the network was also highly appreciated by this pioneer community as being close to
their egalitarian and libertarian identity. Blockchain in essence is a distributed system
as well. The interplay of many nodes, each with a trustworthy copy of the database,
makes it a distributed system ([19] part 1). Sharing transactions of data and value in a
common distributed database (a common ledger in a blockchain), agreed by consensus
(i.e., “the longest block wins”) and replicated multiple times across participating nodes
without a central governance element acting as a trust provider is an attractive concept with
many potential use cases. Public blockchains constitute the Internet of value. Bitcoin [20]
and Ethereum [21] are by far the two most popular public permissionless blockchain
implementations in terms of market capitalisation [22].

Proposed IoT implementations based on Ethereum using smart contracts yet present
some challenges: incurred costs [23,24] and transaction confirmation delays [23] are still
obstacles for their industry-wide implementation. Currently, the number of transactions
per second (tps) that public permissionless blockchain implementations cope with cannot
compete with traditional centralised payment solutions. Transaction figures are controver-
sial and highly dependant on the source: [25] mentions that Visa averaged 5000 transactions
per second during 2H2018. Bitcoin executes on average 3 to 4 tps with pikes of 7 tps [26].
Ethereum copes with an average of 12 tps [27]. On blocktivity.info, EOS, a public permis-
sionless blockchain that aspires to compete with Ethereum, leads the tps ranking with over
61 million operations (equivalent to over 36 tps) [28]. The EOS web site itself has even
reported a new record of 9656 tps in its jungle testnet [29]. Regardless of the precise figures,
it is a fact that the current centralised payment systems process numbers of transactions
that are two orders of magnitude higher (see Table 4). In addition to the number of transac-
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tions, both Bitcoin and Ethereum carry fees per transaction, which renders their use for
IoT devices questionable, as a high number of communications per device would increase
operational costs considerably.

Table 4. Typical transactions per second (tps).

Processor Architecture Tps

Visa Centralised 5000
Bitcoin Distributed 3 to 4, pikes of 7

Ethereum Distributed 12 on average
IOTA Distributed below 10
IoTeX Distributed f(chain)
EOS Distributed 36

We select the two most capitalised IOT related blockchain implementations: IOTA and
IoTeX. See Figure 1. We use market capitalisation as a proxy for potential user adoption
and future growth. In January 2021, the market capitalisation of MIOTA, IOTA’s coin,
surpassed USD 1.3 B with a 24 h trading volume of USD 179 M, and the market value of
IOTX, IoTeX’s coin, reached USD 81 M with a 24 h trading volume of USD 4.5 M [22,30].
In December 2020, MIOTA had a market capitalisation of USD 800 M with a 24 h trading
volume of USD 34 M, and the market value of IOTX reached USD 37 M with a 24 h trading
volume of USD 6 M. The gap in both capitalisation and daily trading volume between
both IoT coins is considerable but they rank in position 1 and 2 considering these two
parameters as the ranking criteria.

Figure 1. Market capitalisation of IoT coins on 18 January 2021.

2.3. IOTA

IOTA was created in 2015 by David Sønstebø, Dominik Schiener, Sergey Ivancheglo
and Serguei Popov. It is a public, permissionless, open-source distributed ledger with no
transaction fees that exchanges value between humans and machines [31]. There are no
blocks nor miners, and the creators claim that it requires very low resources. It uses a
directed acyclic graph (DAG) instead of a blockchain. Every participant needs to validate
two other transactions when they send an IOTA transaction. Nodes in IOTA use the balance
model, in contrast with the unspent transaction output (UTXO); i.e., the balance of a user is
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simply a list of unspent transactions in different addresses. The balance model, i.e., keeping
track of the account balance as a unique global state, is simpler and more efficient but
prone to double-spending attacks [32]. The average number of transactions per second is
below 10 tps most of the time [33]. There are around 291 active public IOTA nodes [34],
many of them in servers located in Germany.

2.3.1. IOTA DAG. The Tangle

IOTA designers decided not to use a chain of blocks to guarantee scalability but
a directed acyclic graph (DAG) called the tangle, allowing for a theoretically infinite
throughput as the network grows. Every participant that issues a transaction needs
to approve two previous transactions (a trunk transaction and a branch transaction, as
depicted in Figure 2), thereby contributing to the integrity of the tangle. A bundle is a
collection of transactions validated simultaneously. A typical transfer in IOTA is a bundle
consisting of four transactions. The genesis transaction consists of an address containing
all the tokens existing in IOTA and sending them to other founder addresses [35]. Most
of the attacks on the tangle foreseen in its white paper [35] are related to identity; e.g.,
an attacker could have a myriad of Sybil identities. In a Sybil attack, the attacker tries to
subvert a reputation system creating multiple identities [36]. To prevent that, reference [35]
suggests using statistical Markov chain Monte Carlo (MCMC) algorithms for the nodes to
create “random walks” through non-confirmed transactions (called “tips”) and to provide
weights to each of those tips. These weights are related to the numbers of direct and indirect
approvers a transaction has. The preference for using MCMC compared to uniform random
tip selection (URTS) has been confirmed in a computer simulation of the tangle [37].

Figure 2. Ideal IOTA tangle representation.

2.3.2. The Coordinator of the Tangle

The theoretical mathematical foundation laid in [35] has a lot of potential in a suffi-
ciently meshed and sized network; however, the tangle still makes use of a “bootstrapping”
security measure to avoid attacks: a confirmed transaction needs to be referenced, di-
rectly or indirectly, by a signed transaction issued by a unique node: the coordinator
(Coo). Those signed transactions are called milestones. This Coo constitutes an element of
centralisation [38] that allows IOTA to create a consensus on accepting transactions. The
IOTA design team confirmed that this is a temporary measure. Since its inception, IOTA
has embarked on a continuous algorithm and protocol improvement effort [39–41]. They
are working on eliminating the figure of the coordinator in a project called “Coordicide.”

2.3.3. The Coordicide Preparing IOTA Consolidation

This complex project consists of technical workstreams [38], most of them rotating
around the concept of identity management:
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1. Global node identities: Using off-tangle non-post-quantum public key cryptography
to identify nodes. Every node would then add its public key to every signed message.

2. Sybil attack protection via a reputation system: Providing a reputation value (called
mana) to every node, equivalent to the total number of funds transferred by that
node. This is a specific kind of proof of ownership. They distinguish between pending
mana (based on the tokens the node holds) and mana (spent tokens by that node in its
transactions). Both pending mana and mana decay at a rate proportional to the stake
they hold.

3. Autopeering: Nodes in IOTA keep a copy of the ledger state, i.e., the tangle. Nodes
share information on transactions with the neighbour nodes. This is called peering.
This process is currently done manually by the node operator, and hence, could be
subject to an ill-intentioned actor controlling all peering neighbours of a node. This is
called the eclipse attack. IOTA designers propose the use of public-key-based cryp-
tography to automate this node information exchange process (called autopeering).
In order to do that, a regular transfer of nodes’ public keys will be required.

4. Rate control: Many blockchain implementations, Bitcoin and Ethereum included, use
proof of work. Proof of work is a consensus mechanism that act as a built-in network
congestion limitation mechanism and deters attacks to a network by requiring the
execution of a computationally demanding process for a network participant to get
the service it requests confirmed. In the case of blockchains, the service is mainly trans-
action confirmation. A proof of work consensus mechanism favours the blockchain
that has taken the most energy to be built (chainwork), in other words, “the longest
chain wins.” This is measured by the number of hashes required to produce the
current chain [42]. For a blockchain to be trustful, honest participants in the network
need to control the majority of the network’s hashing power. The challenge of proof
of work in IOTA is the limited computing capacity of most of their participants since
IOTA positions itself as the distributed ledger for IoT devices. IOTA designers of
Coordicide are studying adaptive (to the computing power of the device) proof of
work (POW) algorithms.

5. Decoupling of conflict resolution and transaction validation: These are the two hardest
actions to solve. Regarding the consensus mechanism, the Coordicide proposes the
use of a mana-based fast probabilistic consensus (FPC) [39–41] or “cellular automata”
(CA, also known as majority dynamics). On tip selection, the initial biased random
walk used to select transactions to validate transforms into an “almost” uniformly
random tip selection among non-lazy, i.e., active nodes.

2.3.4. The Path to Coordicide

This architectural re-design is complex and requires changes in the node software, the
wallets, the infrastructure and most libraries. The IOTA design team planned a transitional
step to drive IOTA 1.0 (with a coordinator) to the new IOTA 2.0 (with no coordinator):
IOTA 1.5 (also known as Chrysalis). One of the changes included in Chrysalis is the formal
introduction of reusable addresses, facilitating the integration into new exchanges, wallets
and payments [43].

2.3.5. Reuse or Not of Addresses

The initial architectural decision of IOTA designers to build the tangle quantum com-
puting proof required the use of post-quantum computing encryption to sign
transactions [44]. This meant that the use of the same paying address was not secure
anymore, so the remainder needs to be sent to a new address of the payee. IOTA designers
advise users not to spend from the same address more than once [45]. Chrysalis includes the
logical detachment of the address from the public key used to sign the transaction. It also
enables the change of the public key linked to an address for every purchase. Consequently,
IOTA will be in a position to offer reusable addresses to their users [46]. Having reusable
addresses facilitates the implementation of a more robust identity management concept.
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2.3.6. IOTA Use Cases

There are currently initiatives to use IOTA in seven sectors: mobility and automotive,
global trade and supply chains, industrial IoT, ehealth, smart cities, customs and border
management and digital identity [47]. Companies such as Bosch and Jaguar Land Rover
have piloted projects using IOTA. Transaction confirmation delays in the IOTA production
network are still challenging [48]. Most transactions take around 10 min, and 5% of
transactions experience longer confirmation times ([48] p. 1). This is one of the reasons
why the IOTA project has come up with a very ambitious improvement roadmap [38].

2.4. Security Incidents in IOTA

In January 2018 IOTA users lost close to USD 4 million via an attack that blended
social engineering with a design possibility related to identity management. The identity
of any user in a blockchain is generated via a private–public key pair. This key pair resides
in a cryptocurrency wallet. To facilitate the creation and recovery of the private key, since
the arrival of Bitcoin and Ethereum, it is common to use a seed to create the master private
key of the cryptowallet. Seeds in Bitcoin are 12 word phrases. Seeds in Ethereum consist
of 24 words. Seeds in IOTA contain 81 trytes (i.e., a capital letter or a base-three number).
Hackers published or owned websites that facilitated the task to create IOTA seeds. They
just needed to wait until they gathered a sufficient number of operational seeds and later
they syphoned out their balances. Strictly speaking, this compromise did not exploit a
design flaw in IOTA but an insecure user practice to create seeds via ad hoc sites on the
Internet [49].

In February 2020 IOTA stopped the tangle in production after identifying a theft of
seeds in their Trinity wallet up to a sum higher than USD 2 million. The Trinity wallet is
the official mobile and desktop wallet for MIOTA tokens. Hackers compromised the code
delivery network of a third party that had access to the code of the Trinity wallet since
November 2019 [50]. In this case, the flaw was a human error, i.e., allowing to a third party
access to the core code of the wallet without performing the required continuous security
due diligence [14].

2.5. IoTeX

IoTeX was built from scratch in 2017 and launched its coin IOTX in February 2018.
Raullen Chai, Qevan Guo and Jing Sun founded this project. Xinxin Fan is the head
of cryptography [51]. It is a decentralised network for IoT based on a privacy-centric
blockchain [52]. It uses different blockchains, permissioned or permissionless, within
blockchains; it provides privacy on blockchain; and it uses fast consensus with instant final-
ity. The IoTeX team summarised the ways blockchain benefits IoT with Table 5 ([52] p. 9):

Table 5. How blockchain benefits IoT.

Blockchain Property IoT Requirement

Decentralization Scalability, privacy
Byzantine fault tolerance Availability, security

Transparency & Immutability Trust
Programmability Extensibility

IoTeX considers that no unique blockchain implementation can answer all their IoT
requirements ([52] p. 12). Following the principle of separation of duties, specific types
of blockchains will interact with specific types of IoT devices. A certain degree of com-
plexity in IoT can only be handled by a blockchain with the corresponding degree of
complexity [53].
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2.5.1. IoTeX Rootchain and Subchains Fast Consensus with Instant Finality

IoTeX runs a public permissionless rootchain and multiple subchains. Subchains
support smart contracts and they can be permissioned or permissionless blockchains. The
IoTeX rootchain uses the UTXO model to facilitate transaction ordering. It also provides
privacy and orchestrates subchains. IoTex rootchain consensus achieves instant block
immutability ([52,54] p. 16). Public blockchains such as Bitcoin provide only probabilistic
assurance via proof of work that a transaction has been confirmed. IoTeX rootchain
uses Roll-DPoS (a randomised delegated proof of stake): Token holders vote for their
delegates; these delegates are rank-ordered by the number of votes they receive. The top
voted delegates are the “consensus delegates” for the current epoch (a specific length of
time). From there, a sub-committee is randomly selected by a randomization algorithm to
maintain consensus and produce new blocks for every new epoch [55]. The achievement
of block finality is key for IoTeX cross-blockchain communications. These communications
rely on simplified payment verification (SPV) [20], a technique to allow a lightweight node
to verify a transaction via a Merkle tree using block headers without downloading the
entire blockchain. To enable the transferral of tokens to and from subchains, IoTeX uses a
two-way pegging (TWP) ([52] p. 16).

2.5.2. Privacy in IoTeX Rootchain

IoTeX preserves privacy in three focus areas: sender privacy, receiver privacy and
transaction privacy.

(a) The relayable payment code (on top of the stealth address technique) uses hashed
timelock contracts (HTLCs) to offer receiver privacy [56].

(b) The use of a secure multi-party computation protocol (SMCP) among bootstrapping
blockchain nodes facilitates the use of a ring signature to preserve sender privacy [51].

(c) The use of Pedersen cryptographic commitments provides transaction value
privacy [51].

2.5.3. IoTeX Use Cases

The IoTeX team has released a proposal for an end-to-end secure blockchain-based
home IP camera system [57] that could be implemented on top of IoTex. This project
includes data integrity, live streaming video sharing and blockchain-based device owner-
ship management.

In the mobile payments arena, Xinxin Fan et al. have published a proposal for
cryptocurrency mobile payments, including a solution to meet know your customer (KYC)
anti-money laundering (AML) requirements [58].

These two examples already show how the IoT blockchain is an element within a
broader technical construct that includes cloud servers (both edge and core) and peer to
peer networks.

2.5.4. IOTA vs. IoTeX

This concludes a comprehensive review of two promising IoT platforms. They are
the two biggest IoT projects in terms of market capitalisation and they are both open
source initiatives backed by relevant industry players. All in all, the multichain proposal
of IoTeX, while being more complex both in terms of design and implementation than
IOTA, provides more versatility and adaptability, and potentially more speed thanks to
its consensus design and smart contracts, especially in environments with IoT devices
with very limited computing capacity. IOTA, however, without fees and mining nodes
and with its DAG design, is a less sophisticated solution that benefits from the first-mover
advantage. Table 6 compares IOTA against IoTeX in terms of design choices and summary
figures. Finally, no known security incidents have impacted IoTex so far.
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Table 6. IOTA vs IoTeX.

Criteria IOTA IoTeX

Year of creation 2015 2017
Market cap (USD) 1.3 B 81 M

Technology public permissionless DAG public permissionless root
blockchain

Subchains No Yes (permissioned possible)
Balance model UTXO Balance

Transaction fees No Low
Consensus protocol Proof of work Proof of stake

Privacy Not in the DAG Possible in the rootchain
Known security incidents 2 0

2.6. Security Incidents in Public Blockchains

Table 7 presents the known root cause of several security incidents affecting pub-
lic blockchain (BLK) implementations (Bitcoin, BTC; Ethereum, ETH) leading to loss of
funds [59]. The main conclusion is that attackers took advantage of security flaws in layers
different from the architecture of the blockchain implementation. In most cases a better
identity management solution could have prevented the real loss of funds before they were
converted into real-world fiat money.

Table 7. Security incidents affecting public blockchains.

Date BLK Incident Root Cause

2011 BTC Mt.Gox exchange hack1 Admin laptop compromised

2014 BTC Mt.Gox exchange hack2 Leak in hot wallet and no
security monitoring

2016 ETH In a DAO. One Distributed
Autonomous Organisation Code errors in smart contract

2016 BTC Bitfinex exchange Flaw in multi-signature
accounts and Bitgo wallet

2017 ETH CoinDash Initial Coin
Offering

Website hacked (ICO address
changed)

2017 ETH Parity wallet breach 1 and 2 Vulnerable contract code

2017 ETH Enigma project scam Website, slack channel and
mailing list compromised

2017 ETH and BTC Tether tokens stolen Vulnerable wallet

2018 NEM Coincheck exchange hacked Vulnerable hot non-multi
signature wallet

In all these incidents, hackers deviated funds in the form of tokens to addresses they
controlled. From those addresses, their next step was to convert it into fiat money to use
those funds as they pleased. The addresses, in Bitcoin, Ethereum and IOTA, to which these
funds were transferred are known, as they appear in the respective public blockchain (or
DAG ledger in the case of IOTA). The key will be to identify the owners of those addresses
without building any centralised element in the blockchain architecture. This calls for the
use of permissioned blockchains and resilient identity management applied at least to
addresses holding considerable value.
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2.7. Identity and Access Management in IoT
2.7.1. A Set of Technologies to Solve a Complex Security Problem: Cloud and
Edge Computing

The need for a resilient IAM framework to avoid intentional risks, i.e., security inci-
dents in blockchains, as stated in Section 2.6, is of paramount importance in IoT as well.
In the IoT blockchain world, these requirements are even more challenging to satisfy due
to the high number of IoT devices to manage [2,3] and the limited computing resources
available in those devices (mostly digital sensors).

The solution to this problem does not lie in specific and unique technology but in a
smart combination of current available technologies, such as blockchain, edge computing,
cloud computing and cryptography.

Cloud servers provide on-demand storage and computing power over the Internet. In
those scenarios where bandwidth is scarce and quick response times are essential, cloud
computing is complemented by edge computing. Edge computing places computation
and storage closer to the end user, mostly via mobile networks and optical fibre lines.
IoT devices are heavy users of this dual cloud/edge computing Internet architecture.
For example, secure storage management in IoT networks typically requires both cloud
and edge computing [60]. The concept of mobile edge computing (MEC) refers to the
provision of cloud computing capabilities at the edge of a cellular network. These MEC
nodes can be used to offload computing tasks from IoT devices. Reference [61] proposes a
noncooperative game-theoretic strategy selection to distribute work among MEC nodes.

Blockchain and edge computing architectures find applications in smart energy envi-
ronments as well [62]. It is normal to find a three-layered architecture—i.e., IoT devices
(mainly sensors) in layer 1, edge nodes as layer 2 and cloud services as layer 3. This
type of architecture allows for the use of decentralised identifiers (DIDs) and verifiable
credentials (VCs): useful artefacts to create verifiable self-sovereign digital identities for
people, organisations and IoTs [63]. DIoTA, the data integrity framework proposed by
Xinxin Fan et al. [64] is a representative example.

To round up this complex ecosystem, the role of smart contracts is also indispensable.
They tap into the processing power provided by edge computing to implement, e.g.,
authentication methods in blockchain-based IoT networks via whitelisting and security
scoring [65,66].

Computational intelligence (CI) models can also contribute to solving complex secu-
rity problems such as identity management. The use of deep fully conventional neural
networks (DFCNN), as proposed by [67], to assess the risk of embedded motion sensor-
based private information inference in IoT devices could contribute to detecting fraudulent
transaction initiators.

We can use additional technologies and models to improve security in IoT networks.
For example, in mobile sensor IoT platforms, the use of private car trajectory data to
study the aggregation effects [68] and the use of a range-free cooperative localization
algorithm [69] or positioning schemes [70] could help with detecting anomalous traffic
patterns in fraudulent IoT network participants.

2.7.2. DIoTA: A Decentralised Ledger-Based Framework for Data Authenticity Protection
in IoT Systems

Xinxin Fan et al. [64] in 2020 proposed a way to maintain data integrity, including
identity related data for IoT systems, which requires very little computing resources and
just one public–private key pair per IoT device. The system is comprised of a collection of
decentralised ledgers: as many edge ledgers as required and a global ledger. These ledgers
run on a system of cloud and edge computing servers.

The DIoTA framework rotates around a collection of key points for this article [64]:

(a) The ledgers in DIoTA are permissioned and decentralised. Reading data could be
granted to the public, but any node running ledgers supporting IoT data-producing
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devices need to hold a public key certificate from a trusted public key infrastruc-
ture (PKI).

(b) Device authentication is a prerequisite for data authenticity protection.
(c) The edge ledger maintains the data authenticity protection schema rather than the

IoT devices.
(d) The IoT device only needs to store a private key, crypto parameters such as a certificate

and a list of edge ledger nodes.
(e) IoT data authenticity protection is based on a number of cryptographic keys. Those

keys are stored in blocks within a blockchain, a distributed edge or global ledger,
which runs on top of the corresponding edge or cloud servers.

(f) Reading blockchain data to look for keys and certificates is not resource-intensive.
Low energy consumption in IoT devices is a functional requirement. Proposals
on caching and scheduling policies to reduce transmission delays and power con-
sumption, such as [71] and a dynamic routing algorithm based on energy-efficient
relay selection [72], confirm the need to keep computing operations in the IoT de-
vice lightweight.

Xinxin Fan et al. ([64] p. 45) compared DIoTA to other data integrity solutions that
could also be used to manage identities in IoT blockchains. Scalability appears as the main
competitive advantage for DIoTA.

2.8. Complex Network Analysis: From Graphs to Networks

Reductionism and modelling non-linear phenomena using linear models has been a
key strategy in physics to understand many systems of interest ([73] p. 4). However, many
non-linear systems in the real world cannot be characterised by linear models. They require
newer and more integrated approaches such as the one offered by complex networks.
Coming traditionally from mathematics, complex networks received the name of graphs.
Graph theory was born with the paper written by Leonhard Euler on the Seven Bridges of
Königsberg (published in 1736). Graph theory in the 18th century dealt with static graphs,
i.e., those with a permanent structure.

The addition of dynamism to graphs to create dynamic networks was first addressed
by Paul Erdős and Alfred Rényi in 1959 ([73] p. 4) with their random networks. In a
random network of N nodes (or vertices), new connections (or edges) are created with
uniform probability between any pair of nodes. Random networks are characterised by a
normal degree distribution ([74] Section 2). This type of network is not commonly found
in natural structures. The degree of a node represents the number of connections it has.
When sociologists started to use graph theory to represent social relations, the concepts of
small-world and scale-free networks started to be frequently used. They both present a
relatively small average shortest path length.

Small-world networks are characterised by small average shortest path lengths be-
tween pairs of nodes and relatively high clustering coefficients ([73] p. 4). A small average
shortest path between nodes means that they are relatively close to each other in terms of
edges that are required to traverse to link those nodes. The clustering coefficient indicates
the number of edges that exist between a set of nodes connected to a specific node divided
by the maximum number of edges that can exist between any of them. They are high
density networks, creating communities. A connected community is a cluster. It is based
on the idea of a clique. Small-world networks are frequent in social networks. Watts and
Strogatz (1998) studied this type of network ([74] Section 2).

A next milestone in complex network theory was the characterisation of scale-free
networks. These networks are very present as well in natural and human-made networks.
Barabási and Albert studied scale-free networks in 1999. These networks contain a few
large degree nodes and many small degree nodes ([74] Section 2). They are less highly
clustered than small-world networks. The influence of the large nodes is greater than in
small-world networks. Scale-free networks prove to be surprisingly resistant to failures
but shockingly sensitive to attacks [75]. A typical example of a scale-free network is a



Electronics 2021, 10, 378 13 of 26

hub-and-spoke configuration in air transport. In that case, a targeted attack to the most
connected node, the hub, could be catastrophic.

2.9. Intentional Risk Management
2.9.1. Static Risk and Dynamic Risk

The proposal to model information systems as nodes (the systems) and edges (their
communication lines between them) to manage intentional risk ([11] p. 75) is a security
innovation. Using complex network theory, the more connected a node is (or the more
accessibility a computer system has), the greater the risk for it to be compromised. The
calculation of risk scores of source and destination hosts based on the risk scores of network
flows [76] is also an example of using graph theory in security risk management. The three
key dimensions proposed to model the complex information system network are value,
anonymity and accessibility ([11] pp. 6–7). Reference [11] considers intentionality as the
backbone for cyber-risk management and close to game theory, specifically to the stability
analysis of John Nash’s equilibrium.

An intentional risk materialises when a threat exploits a vulnerability and produces
an undesired effect ([15] p. 2) that brings a benefit to the threat actor. System failures
and environmental disasters are not events falling within the scope of intentional risk.
Chapela et al. (2016) [11] distinguish between static and dynamic risks in intentional risk.
They state that static risk measures the “probability for a user who has authorised access
to a specific application to choose to abuse his access for personal gain” ([11] p. 7). They
also add a different type of risk, dynamic risk, that measures the probability that an
attacker (it does not need to be a registered user) tries to get the most valuable node (of a
complex network) via the least number of hops through both authorised or unauthorised
but possible accesses ([11] p. 7). In dynamic risk, anonymity does not play any role as
a variable to manage risk: when a threat actor exploits a vulnerability in a system, they
always do it with the maximum possible level of anonymity [11].

Chapela et al. ([11] p. 99) propose the following formula for static risk:

Static Riske = Valuee · (Acce) · (
Anone

k
) (1)

where

Acce = Accessibilityelement, (2)

Valuee = Valueelement, (3)

Anone = Anonymityelement, (4)

k = standard constant related to the (legal) consequences the attacker could f ace. (5)

In a network G, the static risk is defined as:

Static RiskG = max({Static Riske|e ∈ G}). (6)

Equally, for dynamic risk ([11] p. 102):

Dynamic Riske = Valuee · Accessibilitye. (7)

The dynamic risk of a network G is defined as the maximum of the dynamic risk of its
elements, i.e.,

Dynamic RiskG = max({(Dynamic Risk)e|e ∈ G}). (8)
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A user that attempts to double-spend their cryptocurrency is an example of static risk.
In public blockchains such as Bitcoin and Ethereum, static risk is supposedly contained by
design. The “proof of work” consensus proposed by Satoshi Nakamoto ([20] p. 3) prevents
by design double-spends from propagating. A typical user approaches the network via a
ready-to-use wallet. The code within those wallets does not allow double-spends. A user
attempting to create a double-spend would need to code their own wallet.

An ill-intentioned actor that exploits a vulnerability in a crypto wallet and siphons
out funds from it is an example of dynamic risk. This actor makes use of an anonymous
non-authorised unknown path in the system to extract value from it.

2.9.2. Attackers’ Expected Profit

Intentional risk management differs from traditional risk management in its main
focus of attention: the attacker’s function of profit [11]. It depends on these three elements:

- Expected income, i.e., the value for them.
- The expenses they run (depending on the accessibility).
- Risk to the attacker (related to the degree of anonymity they can have and applicable

deterrent legal, economic and social consequences). Calculated risk values should be
intrinsic to the attributes of the network and require no expert estimates.

3. Methodology

First, we have highlighted the main IoT security challenges and corresponding re-
quirements [4–6,16,18]. Second, we have introduced current works on IoT implemen-
tations that use distributed ledgers such as those related to IOTA [31,35,38,43–46] and
IoTex [51,52,54,55]. Third, we have presented complex networks as a means to describe
complex non-linear systems [7–10,12,13,73] and even to manage intentional risk [11,76].
Now we describe both IOTA and IoTeX transactions as complex networks as a required
step to make their IAM more resilient.

3.1. Transaction Data Collection

Most public blockchain implementations make block explorers available via the In-
ternet. A block explorer is a web tool that queries blocks, addresses, transactions and
hashes in a blockchain. There are explorers for Bitcoin [77] and Ethereum [78] but also for
IOTA [79] and IoTeX [80]. These explorer sites publish an open application programming
interface (API) to facilitate data collection. Instead of running simulations to collect data,
we use these four block explorers to obtain real transaction data. We code a set of Python
scripts to extract data from the IOTA and IoTeX public explorers [79,80]. See Figure 3.
First, we download the list of addresses holding the highest amounts of MIOTA and IoTeX
tokens respectively: the top 100 richest addresses in the case of IOTA and 500 addresses for
IoTeX. Second, we use the mentioned APIs to collect transactions linked to those addresses
for the longest computationally feasible time window and within the API public usage
limits. Calls to these public APIs are usually data and computational-intensive. Explorers
consequently limit public queries in the form of data volume caps per API call and per
time unit to avoid misuse. As each API has different calls, we write a Python script for each
token using the requests Python library. Table 8 details the transaction data we download
per token and per time window.

Table 8. Transaction data downloaded for IOTA and IoTeX complex network analysis.

Token Time Window Addresses Transactions #Rich
Addresses

IOTA 23-December-2020 1068 22,960 100
IOTA 25-December-2020 1068 23,225 100
IoTeX endepoch = 13,910 (in December-2020) 3190 10,222 500
IoTeX endepoch = 14,000 (in December-2020) 3709 13,935 500
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(a) IOTA explorer. The richest IOTA addresses

(b) IoTeX explorer. The richest IoTeX addresses

Figure 3. IOTA and IoTeX ledger explorers.

We perform a similar data collection exercise with the Bitcoin and Ethereum
explorers [77,78] to compare their transaction networks with those coming from IOTA
and IoTeX. We use public APIs both for BTC [77] and ETH [81]. In this case, we collect
all transaction data within specific time slots in December 2020. Table 9 describes the
downloaded data.

Table 9. Transaction data downloaded for BTC and ETH complex network analysis.

Token Time Window Blocks (Number) Addresses Transactions

BTC 21–23-December-2020 662,276–662,554 (278) 1,241,548 1,385,212
ETH 26-December-2020 11,531,960–11,531,970 (11) 1677 1363
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3.2. Transaction Data Preparation: Sender, Destination Pairs

Once we collect the transaction data, we extract the sender and destination fields from
the JSON-formatted transaction files. The challenge in this phase is that every analysed
ledger has a different structure. We therefore need to parse different JSON schemas for
MIOTA, IOTX, Bitcoin and Ethereum. We use the pandas Python library to create a text
file with a pair of addresses, sender and destination, per line. This file is the input for our
complex network analysis.

3.3. Complex Network Analysis

Each address in the input file constitutes a node, and each pair of sender and desti-
nation creates an edge of an undirected complex network of transactions per token, i.e.,
IOTA, IoTeX, BTC and ETH. We use the networkx Python library to calculate the average
degree, the average clustering coefficient, the density, the connectivity, the number of
components present in the network and finally the degree distribution. We conclude by
plotting the degree distribution using a logarithmic axis with the matplotlib Python library.
Figures 4–6 show the corresponding degree distributions. The outcome of this complex
network analysis provides us with the network profiles for IOTA and IoTeX. The network
profile of a system shows how its elements connect. This profile will be pivotal to conclude
on their IAM resilience against intentional risk.

We carry out this computational analysis in a dual-processor Intel Xeon CPU @
2.30 GHz with 13 GB RAM memory. Figure 7 summarises the methodology followed to
describe IOTA and IoTeX as complex networks.

(a) Tx degree distribution in t0

(b) Tx degree distribution in t0 + 48 h

Figure 4. Degree distribution of 1068 IOTA addresses.
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(a) Tx degree distribution with top 500 addr. Epoch 13,910 (b) Tx degree distribution with top 500 addr. Epoch 14,000

Figure 5. Degree distribution of IoTeX addresses in December 2020.

(a) BTC Tx degree distribution (b) ETH Tx degree distribution

Figure 6. Tx degree distribution in BTC and ETH.

Figure 7. Steps taken to perform the IOTA and IoTeX transaction network analysis.

4. Analysis and Results
4.1. IOTA Complex Network Analysis

We follow the methodology explained in Figure 7 with the IOTA transaction data
presented in Table 8 to generate a complex network. We depict the degree distribution in
two-time slots in December 2020 and can see a similar pattern: a weak similarity with a
power-law distribution. Although the IOTA dataset used is not sufficient to draw further
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conclusions, a majority of nodes have low degrees and a small number of nodes (addresses)
show high degrees. See Figure 4. Coincidentally, we detect an interesting anomaly looking
in both graphs: there are around 100 addresses with a degree also close to 100. The fact that
we use the list of the 100 richest addresses to extract transaction data could be a potential
explanation for this anomaly.

The very low density and average clustering coefficient in these non-connected graphs
described in Figure 8 provide no sign of small-world properties (see Section 2.8). These
results are in line with the fact that every IOTA address with a positive balance initiating a
transaction requires a new address to keep the remainder. As mentioned in Section 2.3.5,
addresses sending a transaction are only used once for security reasons. Consequently, most
of the highly connected (high degree) reused addresses are only transaction destinations.
Those addresses can remain active for a long time. If we could verify the real-life identities
behind those destination addresses holding large amounts of MIOTAs, we could increase
the resilience against intentional risk in this IoT platform.

The empirical in-degree distributions of IOTA mainnet snapshots calculated by
([48] p. 5, Figure 4b) show a power-law distribution in contrast with the Poisson degree dis-
tribution extracted from simulated tangles ([48] p. 5). Compared to our dataset, Guo et al. [48]
use a 13 month-long IOTA tangle dataset ranging from November 2016 to April 2019. Unfor-
tunately, the IOTA Foundation has not published mainnet tangle datasets since April 2019.

(a) IOTA transaction network. Sample 1

(b) IOTA transaction network. Sample 2

Figure 8. Complex network analysis for IOTA transactions.
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4.2. IoTeX Complex Network Analysis

Equally, we follow the methodology explained in Figure 7 with the IoTeX transaction
data presented in Table 8 to generate a complex network. We select two time-slots: epoch
13,910 and epoch 14,000 happening in December 2020. An epoch in IoTeX in 2020 tended
to last less than 30 min. For both epochs we start with the top 500 richest addresses. Once
we collect those addresses we gather up to 1000 transactions per address (as per the limit
of the public IoTeX explorer API [80]).

Figure 5 shows the degree distribution of IoTeX addresses present in the analysed
transactions. It resembles a power-law function. There is a very high number of addresses
with a very low number of connections, and conversely, a very low number of addresses
with a very high number of transactions. This is an indication of a scale-free network. The
network is composed of non-connected graphs with lesser numbers of components than in
the case of IOTA and a lower average degree. This indicates that rich addresses in IoTeX
are more connected with other nodes than rich IOTA addresses. Similarly to IOTA, if we
could verify the real-life identities behind those high-degree addresses, potentially holding
high amounts of IOTXs, we could increase the resilience against intentional risk in this IoT
platform. As in IOTA, with such a low average clustering coefficient, we find no sign of
small-world network properties based on the data displayed in Figure 9.

(a) IoTeX transaction network. Sample 1 (b) IoTeX transaction network. Sample 2

Figure 9. Complex network analysis for IoTeX transactions.

4.3. Largest Connected Components in IOTA and IoTeX

We identify the largest connected component (LCC) in both transaction networks and
we draw all nodes connected to it without displaying the edges between those nodes and
the LCC to ease interpretation. The appearances of the graphs showing nodes connected to
the LCC in IOTA and IoTeX are similar. Figures 10 and 11 show that the disassortativity is
patent; i.e., nodes do not tend to link with nodes of a similar level. On the contrary, low
degree nodes tend to connect with very high degree nodes.

Figures 10 and 11 represent all nodes connected to the largest one in the network with
a distance equal to or less than 3. Nodes (addresses) connected to high degree nodes do not
tend to connect with each other. If we consider that most of those nodes in the IoT world
are sensors or any other IoT devices, it is a plausible scenario that they connect with their
assigned data collecting server. Sensors do not tend to transact with each other.
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(a) IOTA nodes connected to LCC in t0 (b) IOTA nodes connected to LCC in t0 + 48 h

Figure 10. Nodes connected to IOTA LCC. Edges to LCC not displayed.

(a) Nodes connected to IoTeX LCC up to epoch 13,910 (b) Nodes connected to IoTeX LCC up to epoch 14,000

Figure 11. Nodes connected to IoTeX LCC. Edges to LCC not displayed.

4.4. Comparison with Bitcoin and Ethereum Complex Network Analysis

As mentioned in Section 3.1, we also collect transaction data from Bitcoin and Ethereum
to build the degree distributions of their transaction networks and compare them with
those obtained with IOTA and IoTeX networks. We use public APIs both for BTC [77]
and ETH [81] and we follow a methodology similar to Figure 7 with the BTC and ETH
transaction data presented in Table 9 to generate a complex network.

We identify power-law degree distributions as well. See Figure 6. This indicates that
the transaction networks of these two public blockchain implementations display scale-free
characteristics. We also obtain clustering coefficients very close to 0 indicating that neither
BTC nor ETH display small-world properties. Reference [82] reaches a similar conclusion.

Reference [82] suggests that successful cryptocurrencies, such as Bitcoin and Ethereum,
once they pass their creation phase and reach a stable stage with millions of transaction
addresses, show a power-law degree distribution. References [83,84] reaches a similar
conclusion: the Bitcoin network out-degree distribution might be fitted by a power-law.
Our empirical results are aligned. Reference [85], however, does not reach the same power-
law fit as they analyse BTC data during the early days of the BTC network, i.e., from
January 2009 up to July 2011.

We also observe a very low density in these two networks. This is due to the very
short periods of time observed; i.e., not many addresses are reused within adjacent blocks.
Our extracted data for BTC (2 days) covers a longer time than the extracted data for ETH
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(some minutes). This is the reason why the power-law degree distributions are clearer to
identify in the BTC graph than in the ETH graph.

4.5. Analysis of Heavy-Tailed Distributions

The identification of power-law fits on a log–log axis and only graphically is biased
and inaccurate [86]. We use the powerlaw Python library developed by Alstott et al. [87] with
our IOTA degree distribution dataset to assess our results. The plot from the IOTA network
shows a good fit by the power-law to the complementary cumulative distribution function
(CCDF). See Figure 12a. The probability density function (PDF) is, however, limited and far
from a power-law fit. This is in line with our previous IOTA results presented in Section 4.1;
i.e., the power-law fit is questionable. In our IoTeX degree distribution dataset, the network
displays a good fit by the power-law to the PDF, with a limited range of possible degrees
starting at x = 949 though. See Figure 12b. The power-law fit with the CCDF still shows a
very heavy tail deviating from the power-law fit, probably due to it being young. This is in
line with our previous IoTeX results presented in Section 4.2; i.e., the power-law fit is more
present in IoTeX than in IOTA.

(a) IOTA power-law fit (b) IoTeX power-law fit

Figure 12. Power-law fit using Python powerlaw library by Alstott et al. IOTA and IoTeX datasets.

We also use this powerlaw library by Alstott et al. [87] with our BTC and ETH degree dis-
tribution datasets to confirm our results and the references mentioned in Section 4.4, i.e., [82]
for both BTC and ETH and ([83,84] pp. 23–26) for BTC. The power-law fits in Figure 13a,b
are evident, although with a bigger gap in ETH due to the shorter period of analysis.

(a) BTC power-law fit (b) ETH power-law fit

Figure 13. Power-law fit using Python powerlaw library by Alstott et al. BTC and ETH datasets.
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5. Conclusions
5.1. Blockchain Answers a Subset of IoT Security Requirements

The blockchain technology can implement a number of IoT cybersecurity requirements
based on its distributed and immutable nature. However, a single blockchain implemen-
tation with no additional means to manage complexity, such as smart contracts, edge
and cloud computing, cannot fulfil all security requirements that IoT platforms need to
implement. See Section 2.7.

5.2. Identity and Access Management is a Key Security Requirement to Build Resilience against
Intentional Risk

Intentional risk focuses on attacks performed by actors with a defined intention to
obtain a benefit (value). Intentional risks can be static and dynamic. Using the static
and dynamic risk formulas proposed by Chapela et al. and presented in Section 2.9, we
conclude that in IoT implementations with nodes holding large amounts of value, we can
only reduce both static and dynamic risk if we control access to those nodes (mostly IoT
devices and IT components). In distributed environments such as IoT, an IAM framework
that uses decentralised identifiers (DIDs) and verifiable credentials (VCs), as presented in
Section 2.7, can control the accessibility to those devices. DIoTA uses artefacts of this type.

5.3. IoTeX and Possibly IOTA Networks Are Scale-Free. They Require Resilience against
Intentional Risk

IOTA and IoTeX are two examples of IoT platforms built on distributed ledgers. They
are both in production and they both are actively improving their scalability and security.
The IoTeX network displays a power-law degree distribution as scale-free networks do.
Our IOTA dataset could not confirm it for the IOTA network as Guo et al. did [48], possibly
due to the limited time slot analysed. In both networks there is a small set of highly
connected-nodes. As mentioned in Section 2.8, in scale-free networks the influence of
the large nodes is greater than in small-world networks. Scale-free networks prove to be
surprisingly resistant to failures but shockingly sensitive to targeted attacks. A way to
make these IoT networks less sensitive to attacks, or in other words, a way to improve their
resilience against intentional risk is to implement a distributed IAM concept.

5.4. DIoTA Provides IoTex with Resilient Identity and Access Management

DIoTA, the decentralised ledger-based framework for data authenticity protection in
IoT systems proposed by Xinxin Fan et al. in 2020 (see Section 2.7.2) is well-positioned
to bring IoTeX into the front line of IoT blockchain-based implementations that manage
intentional risk effectively. Both IOTA and IoTeX projects are immersed in promising
design improvements. We consider IoTeX a more complex platform, but at the same
time, better positioned to implement resilient IAM frameworks such as DIoTA. A key
requirement for IoTex to achieve this aspiration is to hold all worth-protecting value in
permissioned blockchains.

5.5. Resilience against Intentional Risk Requires an IAM Concept That Transcends a
Single Blockchain

Based on our results for IOTA and IoTeX, we conclude that resilience against inten-
tional risk requires an IAM concept that transcends the possibilities of a single blockchain
implementation. Only with the interplay of edge and global ledgers running on edge
and cloud servers we can obtain data integrity in a multi-vendor and multi-purpose
IoT network.

6. Future Work

We see three main lines of future work stemming from this paper:
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(a) Transforming the time series created by IOTA and IoTeX transactions into complex
networks to go deeper into their analysis using the visibility graph proposed by
Lacasa et al. [88].

(b) Studying whether DIoTA can be further extended using any of the artificial intelli-
gence (AI) solutions to secure IoT services in edge computing surveyed by Xu et
al. [89].

(c) Assessing the possibility of applying generative adversarial nets (GANs) to improve
the speed and accuracy in consensus protocols based on proof-of-stake (PoS), such
as the one used by IoTeX [90,91].
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