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Abstract: Precise knowledge of the real environment is a prerequisite for the integration of the real
and virtual worlds in mixed-reality applications. However, real-time updating of a real environment
model is a costly and difficult process; therefore, hybrid approaches have been developed: An
updated world model can be inferred from an offline acquisition of the 3D world, which is then
updated online using live image sequences under the condition of developing fast and robust change
detection algorithms. Current algorithms are biased toward object insertion and often fail in object
removal detection; in an environment where there is uniformity in the background—in color and
intensity—the disappearances of foreground objects between the 3D scan of a scene and the capture
of several new pictures of said scene are difficult to detect. The novelty of our approach is that
we circumvent this issue by focusing on areas of least change in parts of the scene that should
be occluded by the foreground. Through experimentation on realistic datasets, we show that this
approach results in better detection and localization of removed objects. This technique can be paired
with an insertion detection algorithm to provide a complete change detection framework.

Keywords: change detection; mixed reality; 3D model; image sequence; projection; occluding object;
foreground object

1. Introduction

With the popularization of mixed-reality (MR) applications in an expanding number
of fields, there is an increasing need for accurate and cost-effective 3D model building
techniques [1,2]. Precise knowledge of the geometry of the environment and its content
enables a more realistic or seamless integration of virtual elements into the scene [3–5].
This accuracy depends on an up-to-date representation of the world, and the relatively low
computing power of consumer-grade devices, as well as the real-time services provided by
MR applications, requires undemanding techniques and short processing times [6].

The naive approach to keeping the model updated is to perform a regular and com-
prehensive 3D scan of the environment. However, even with an efficient processing of
the acquired data, data collection remains time consuming, expensive [7–11], and requires
appropriate equipment [12–14]. To solve this issue, many techniques have been developed
to accurately locate the 3D locations of changes in an environment based on the comparison
of an offline and thus outdated 3D mesh of the scene and a sequence of current images.

Using images to describe only the up-to-date state of a scene allows the detection to be
independent of the illumination, poses, and devices used during the captures, since these
factors generally do not affect the geometry of the scene and, therefore, the reference mesh.
However, this asymmetry in the types of data used to represent the past and current states
of the environment makes the identification of the nature of the changes more difficult.
The attachment of such semantic information to changes often relies on the ability to match
elements or locations of the scene at different times [15].
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For the purposes of updating the geometry of a 3D mesh, we can categorize changes
in a scene as either “insertion of matter” or “removal of matter”, since the displacement or
deformation of objects can also be regarded as a combination of the two. In this paper, we
propose a method for change detection that specifically focuses on the detection and the
localization of “matter”, or objects, that have been removed from a scene using a reference
mesh and images taken at a later time. The novelty of the solution is the focus on the parts
of the scene that should be occluded by some foreground.

The main contributions of this paper are:

• An image-warping algorithm that generates textured shadows for the study of oc-
cluded areas in an image.

• An improved object removal detection method that uses the aforementioned algorithm.
• A complete fast change detection framework that combines our improved removal

detection method with an existing change detection algorithm at no significant com-
putational cost.

Section 2 is dedicated to the exploration of existing approaches in change detection
depending on the data types that they use. Our proposal is documented in Section 3,
and the results are discussed in Section 4. Finally, our conclusions are summarized in
Section 5.

2. Related Work

Change detection algorithms can be applied to a variety of input data. The following
section presents an overview of the change detection methods that compare the past and
present states of a scene, first using only 3D point clouds or meshes, then only 2D pictures,
and, finally, a combination of the two.

2.1. Change Detection with 3D Data

Many LiDAR-based change detection techniques [16] have been proposed for the
purposes of self-driving vehicles or robots. More generally, many methods use point clouds
or voxels to compare 3D representations of the environment in different states. Registration
of such 3D data can be achieved using gravitational registration [17] or normal distribution
transforms [18]. Temporal changes are then detected using a displacement threshold
on the point coordinates [17] or by comparing the occupation of the cells of a 3D grid
after applying a voxelization [18]. Others use Growing Least Square reconstruction [19]
on 3D point clouds that are co-registered but do not necessarily share the same exact
points. A segmentation of the scene into “objects” is performed and then compared at
different times.

Methods have also been developed to specifically identify “dynamic” objects in a
scene, which is closely related to the change detection problem. In [20], different point
clouds are turned into voxel grids, and the identification of “see-through” voxels provides
the localization of dynamic points. In this context, “see-through voxels” contain points at a
given time, but do not prevent the device from capturing points located behind them at
a different time, signifying the removal of their content. The authors also introduce the
notion of “point shadow”, which represents the ability of a 3D point to occlude parts of a
scene from a given point of view. The method described in [21] detects dynamic objects
in a point cloud as well, but also takes advantage of a red–green–blue (RGB) camera and
real-time depth information to track patches of similar color in RGB or similar depth in a
depth map.

2.2. Change Detection with 2D Data

Avoiding the need for specialized 3D capture equipment, many change detection
techniques rely on the comparison of two pictures. Many 2D methods are based on the
use of Siamese neural networks. In [22], such networks are employed to compare two
co-registered RGB or multi-spectral aerial images. More recent work has focused on
developing robustness to pseudo-changes [23]. Other works have built on the foundation
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of Siamese networks to generalize the process, such as in [24], where picture registration is
not mandatory, and in [25], where object segmentation is performed, making the approach
more robust to changes in weather or scene illumination.

Efforts have been made to further describe the nature of the changes. In [26], the notion
of “directional change” is introduced, which describes whether the change is detected due
to the removal, the insertion, or the exchange of pixels belonging to foreground objects.
Moreover, several semantic-based methods have been developed, which focus on the
nature of the elements of a scene—for instance, satellite imagery [27–29]. This approach is
also put to use for unsupervised training [30], where such pictures are artificially altered
with patches of different nature.

More general approaches are used for captioning pairs of images. In [31], the nature
of the semantically identified objects informs the nature of the change, whereas in [15],
both are independently identified.

2.3. Change Detection with Heterogeneous Data

While image-based methods are less computationally expensive than 3D-based ones,
this is nullified when real-time conversion of the 2D results into 3D information is required.
This has led to the development of hybrid methods that use heterogeneous data as input.

The methods described in [32,33] aim at monitoring the evolution of an urban envi-
ronment. This is achieved through the comparison of an outdated 3D mesh and up-to-date
images. The information is provided with a 3D grid of changes detected based on a prob-
abilistic approach. The former approach [32] primarily focuses on the structure of the
environment as opposed to its texture. In practice, after the relatively fast change detection,
specialized equipment is deployed to the locations of detected changes in order to more
precisely update the mesh.

These methods rely on an offline processing of the images and are still too expensive
to use on simple devices. In [34], a faster approach is proposed for the purpose of the
autonomous exploration of an environment by a robot. Although the technique performs
in interactive time, it is strongly biased toward the detection of an object’s insertion into
a scene rather than its removal. Approaches based on the comparison of several pictures
projected onto an untextured mesh fail to detect the removal of foreground objects placed
against a uniform background. In fact, the color inconsistencies introduced by such an
object during the projections are solely based on the background textures revealed by
its removal.

In this paper, we propose a method for detecting the removal of objects in the scene us-
ing the same information as the approaches mentioned above [32–34]. This is accomplished
by studying the impact of ignoring all foreground objects in the scene during the projection
of images onto the mesh. Indeed, a foreground object that is still present in the images will
produce inconsistencies if ignored during the projection, while a removed object will not.
The removed objects can be found by highlighting the regions of most consistency between
the projected images and a reference one with an interactive processing time.

3. Materials and Methods

As in [32,34], a scene is represented by an outdated 3D mesh (see Figure 1a) and
changes are detected using pairs of up-to-date images (see Figure 1b). All images are taken
within a narrow time frame to avoid structural or lighting changes between them.

Firstly, changes are evaluated in 2D from the point of view of each image: Starting
from a reference image, every other image is reprojected from the reference point of view.
Note that this reprojection must take into account the original 3D scene to handle occlusions.
Color differences are computed between the reference image and each reprojected image
and are stored in delta maps. The plurality of delta maps per point of view is used to
reduce noise and retrieve more accurate changes. Secondly, 3D changes are deduced by
matching 2D changes together across multiple points of view. The locations and sizes of
the changes are estimated based on the delta maps.
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(a) (b)
Figure 1. Insertions (green) and removals (red) over time. (a) Outdated 3D mesh, (b) up-to-date scene photograph.

To achieve removal detection, our approach differs from the state of the art in the
choice of regions of interest for 2D change detection. The reprojection method used to
process the images generates regions of occlusions, as seen in Figure 2, which are ignored
in other approaches, but are the primary focus in ours. When there are inconsistencies
between the mesh and the image sequence, errors occur during the reprojection process
(see Figure 3 and 4) whose location are used to detect changes.

Cj Ci

Qi

X ′
i

Pj

Xi=Xj=X ′
j

Ij(xi→j) Ii(x)
Ii(x

′)

Ij→i(x)
Ij→i(x

′)

Figure 2. Reprojection from viewpoint j to i; the foreground object (green) produces an occlusion (in
black) of the background (yellow/pink).
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Figure 3. An inserted object at X0 (i.e., absent from mesh) introduces inconsistencies: Ii(x) 6= Ij→i(x),
Ii(x′) 6= Ij→i(x′).

In summary, the proposed method is comprised of five steps:

1. For each image of the sequence, create reprojected copies to fit the points of view of
the other images.

2. For each point of view, render the delta maps between the corresponding sequence’s
image and each accordingly reprojected image.

3. For each point of view, combine the delta maps into a single delta map to reduce false positives.
4. For each combined delta map, filter and group the pixels of detected changes into 2D

areas of changes.
5. Match the 2D areas from one point of view to the other to infer the 3D locations and

sizes of detected changes.

3.1. Image Reprojection and Occlusion Handling

In this paper, “reprojection” is not strictly used in its conventional meaning; it here
amounts to back-projecting pixels onto the mesh and rendering them using another projec-
tion. This process is formalized in the next paragraphs, insisting on the impact of occlusions.

Let Pj and Pi be the projection matrices of cameras Cj and Ci. Then, a pixel x rendered
by Ci using Pi can also be back-projected to the closest 3D point Xi of the mesh. The back-
projection function of Ci is called Qi:

Xi = Qi(x) . (1)

Using Qi and Pj, any pixel x from point of view i can be associated with a pixel xi→j
from point of view j:

xi→j = PjXi , with Xi = Qi(x) . (2)

This process is illustrated in Figure 2: Every pixel x from point of view i is back-
projected to its corresponding Xi and then projected to xi→j in the point of view j. If per-
formed on all the x coordinates in i, it can be used to assign a pixel value Ii(x) to their
corresponding xi→j in j and render a “reprojected” image Ii→j. Alternatively, the exact
same transformation can be used to assign to each x in i a unique pixel value Ij(xi→j) and
render Ij→i (see Figure 5c) with Algorithm 1.

Using this alternative, each and every point of the “reprojected” image is given a
unique value, obviating the need for a depth buffer and the necessity to interpolate any
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pixels that would have remained blank after the transformation. Indeed, multiple x can
reproject to the same xi→j, but all x reproject to some xi→j if a corresponding 3D point can
be found in the mesh.

Algorithm 1: Base pseudo-code of our image “reprojection” process

CreateReprojectedImage (i, j)
inputs :points of view i and j; 3D mesh; image Ij
output :“Reprojected” image Ij→i
Ij→i ← ∅ ;
foreach x from point of view i do

back-project x to its corresponding Xi ;
project Xi to xi→j in the point of view j ;
Ij→i(x)← Ij(xi→j) ;

return Ij→i ;

When every pixel of the reprojected image is computed, some pixels are associated
with 3D points that were occluded in the original view and, therefore, have no RGB value
(see in Figure 2). We can check for such cases during the application of the transformation.
For Xi as defined in Equation (2):

Xi occluded⇔
∥∥Xi − Cj

∥∥
2 >

∥∥Xj − Cj
∥∥

2 , with Xj = Qj(xi→j) . (3)

In Equation (3), Xi and Xj can be different from one another, as the latter is obtained
by back-projecting xi→j using Cj, and is by definition the closest point to the camera. Since
they are on the same axis, Xj not occluding Xi means they are equal. In contrast, in Figure 2,
X′i 6= X′j, meaning that X′i is occluded.

In existing methods, occluded 3D points will be discarded when computing 2D
changes (see Figure 5c). Conversely, our method systematically assigns an RGB value to
these points: the one associated with the occluding point. Rendering those points with
these RGB values has the effect of creating a textured shadow Sj→i, as in Figures 4 and 5d,
of the occluding points. Using Equations (2) and (3), we can render Sj→i with Algorithm 2.

Algorithm 2: Pseudo-code of our “textured shadow” rendering process

CreateTexturedShadows (i, j)
inputs :points of view i and j; 3D mesh; image Ij
output :“Texture shadows” image Sj→i
Sj→i ← ∅ ;
foreach x from point of view i do

back-project x to its corresponding Xi ;
project Xi to xi→j in the point of view j ;
if Xi is occluded then

Sj→i(x)← Ij(xi→j) ;

return Sj→i ;
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Cj Ci

X ′
i

Xi=Xj=X ′
j

Ij(xi→j) Ii(x)
Ii(x

′)

Ij→i(x)
Sj→i(x

′)

Figure 4. A removed object at Xi (i.e., absent from the red–green–blue (RGB) image) is textured by
the occluded background (pink) and introduces mild inconsistencies: Ii(x) 6= Ij→i(x). Its textured
shadow is consistent with the reference: Ii(x′) = Sj→i(x′).

(a) (b)

(c) (d)

Figure 5. Reprojecting image Ij on image Ii (removed objects in red, corresponding occlusions in yellow). (a) Image Ii (the
sky is not in the mesh). (b) Image Ij. (c) Image Ij→i (Ij seen from camera Ci). (d) Textured shadows Sj→i.
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3.2. Photo-Consistency in Occluded Pixels

When reprojecting, removed objects that are still present in the mesh have the effect
of back-projecting the colors of the points they mask onto their surface (see in Figure 5c,
where the statue’s podium is projected onto the middle red shape) and leaving those
points untextured. Rendering the regions of occlusion using Algorithm 2 avoids this
back-projection effect (see in Figure 5d where the podium is correctly placed).

More generally, the textured shadows of removed objects will be photo-consistent [35]
with the reference image, i.e., they fill holes in the warped image with accurate data
(compare the yellow shadows in Figure 5d to the reference in Figure 5a). However, for
unchanged objects, such back-projections will not be textured by occluded points, but by
the object itself, and will therefore not be consistent with the reference image (see the lion
statue’s shadow on the left side of Figure 5d). Our approach consists of looking for the
regions of least change between the reference image and the textured shadow images from
different points of view.

The delta maps δj→i (see in Figure 6a) are computed using the norm 2 distance
between the RGB values of each rendered pixel in the textured shadow and in the reference
images [36]. In order to account for the inaccuracies of the warping process, either in the
camera pose or in the 3D mesh, the reference pixel’s color is compared to the color of all
pixels in its neighborhood N in the warped image [37]. The minimum value is chosen:

∀x ∈ δj→i, δj→i(x) = min
y∈Nx

∥∥Sj→i(y)− Ii(x)
∥∥

2, with Nx =
{

y ∈ Sj→i
∣∣ ‖y− x‖1 < d/2

}
, (4)

where d is the neighborhood size and y ∈ Sj→i if Sj→i(y) is rendered.

(a) (b)
Figure 6. Once photo-consistency is evaluated in the occluded parts of the image, the potential changes are located in
the foreground. (a) Delta map δj→i. (b) Projected map ∆j→i.

3.3. Photo-Consistency with Multiple Points of View

As we will further detail in the following paragraphs, a single delta map per point of
view will generally not contain enough information to accurately retrieve the 2D location
and shape of a change. Firstly, the regions of least change computed in Section 3.2 are
located within the shadows of the foreground objects rather than in their actual position
in the frame. Secondly, only the parts of a removed object that cast such shadows will
be detectable, which is why using several points of view can enable the method to more
closely retrieve the shape of the whole object by uncovering new parts of it with each
additional view.
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3.3.1. Foreground Projection

Before combining the multiple delta maps for different points of view, we first project
the detected removals onto the foreground (see Figure 6b). For any pixel x of the delta map
δj→i, we can obtain the corresponding pixel xi→j in the original point of view j:

∀x ∈ δj→i , xi→j = PjXi , with Xi = Qi(x) . (5)

Moreover, if Xi is occluded, back-projecting xi→j will return one of its occluding points
Xj. More specifically, it will be the closest one to camera Cj:

∀x ∈ δj→i , Xj = Qj(xi→j) , (6)

which corresponds to the pixel x′(= xi→j→i) in point of view i:

∀x ∈ δj→i , x′ = PiXj . (7)

We adapt Equation (3) to fit the point of view i and avoid rendering occluded objects
(such as the bench on the left side of Figure 5b visible in Ij and Sj→i, but not in Ii):

Xj visible⇔
∥∥Xj − Ci

∥∥
2 ≤

∥∥X′i − Ci
∥∥

2 , with X′i = Qi(x′) . (8)

X′i is the closest point to Ci that could occlude Xj. Equation (8) checks whether they
are the same or not. We note that, as opposed to the reprojection process (Algorithm 2),
this transformation is not reversible due to the repeated use of the back-projection, which
always returns the closest point to the camera. In practice, this means that not every pixel
of the foreground is assigned a value (see the white holes inside the shapes of Figure 6b),
while some pixels are given multiple values. The correct value is chosen using a depth
buffer Dj associated with Cj, and the foreground-projected delta map ∆j→i is then rendered
using Algorithm 3.

Algorithm 3: Pseudo-code of our foreground projection process

ForegroundProjection (i, j)
inputs :points of view i and j; 3D mesh; delta map δj→i
output :Projected map ∆j→i
∆j→i ← ∅ ;
clear(Dj) ;
foreach x from point of view i do

back-project x to Xi ;
project Xi to xi→j in point of view j ;
back-project xi→j to Xj ;
project Xj to x′ in point of view i ;
if Xj is visible in point of view i then

if
∥∥Xj − Cj

∥∥
2 < Dj(x′) then

Dj(x′)←
∥∥Xj − Cj

∥∥
2 ;

∆j→i(x′)← δj→i(x) ;

return ∆j→i ;

3.3.2. Combination of Projected Delta Maps

In ∆j→i, not every pixel is assigned a value (Algorithms 2 and 3) (see the white pixels
in Figure 6b. Therefore, we can define for each ∆j→i a binary mask Mj→i:

Mj→i =
{

x
∣∣ ∆j→i(x) is assigned a value

}
. (9)
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In order to uncover new parts of a potentially removed object, the combination of
two projected delta maps with the same point of view involves the union of their binary
masks. As for their values, the maximum per pixel of the two is chosen in order to reduce
false positives. The maximum value is used to be more selective in the detection process.
Foreground objects that are not removed could still share some RGB values with the
background they occlude for a particular point of view (i.e., be photo-consistent), but it is
unlikely they would for every point of view.

This approach is similar to the intersection process described in [34]. There, in a single
delta map, when an object is inserted into a scene, changes are detected at the correct
position of the object in the reference image and at an erroneous position resulting from
the projection from another point of view (see Figure 3). Since the actual 2D location of the
change is the former, the erroneous positions are removed by intersecting two different
delta maps, requiring three points of view in total. However, in this previous paper,
the intersection process shrinks the area of the combined mask with every new point of
view instead of expanding it. This further reduces the chances of false positives, but is
not practical for the study of occluded regions, which potentially do not overlap for every
point of view, even after foreground projection.

Using every available point of view, we define the combined delta map ∆i:

∀x ∈
⋃
j 6=i

Mj→i , ∆i(x) = max
j 6=i

{
∆j→i(x)

∣∣ x ∈ Mj→i
}

. (10)

If x is not in any of the Mj→i, then ∆i(x) remains unassigned.

3.4. Three-Dimensional Localization of Changes

Similarly to the process described in [34], the 3D localization relies on the segmentation
of the combined delta map ∆i into 2D regions of detected change and the matching of
those regions from one point of view i to another. From these matched regions’ locations in
the images, we can infer the 3D location of the change and its spread, as detailed in the
following paragraphs.

3.4.1. Segmentation by Region

The segmentation is achieved similarly to [34]; namely, the generation of the regions’
contours using [38] on a binarized ∆i. Our contribution to this process is a more generalized
binarization step that relies on a triangle threshold method described in [39], rather than
an arbitrary constant threshold value. The darkest pixels in ∆i are selected as candidates
for the removal detection since they describe the regions of least change in the textured
shadows. Isolated pixels are then removed through erosion and the contours are generated.
A final threshold on the area of the regions is used to remove the smallest changes [34] (see
Figure 7b).

(a) (b)
Figure 7. Segmentation in regions from point of view i. (a) ∆i. (b) Detected change regions.
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3.4.2. Region Matching

A 3D region of change that is visible for two or more points of view should have
its projected 2D regions represented in several segmented delta maps. Although the 3D
location of the changes could be retrieved through the use of back-projection, in practice,
the segmented maps are an approximation of the 2D projected changes, and a pixel-wise
depth estimation would be inaccurate. This is why we use moments [40] to compute the
centroids of each region and then the same triangulation process described in [34].

Our method differs in the criteria used for matching the regions: Instead of computing
and comparing the hue saturation value (HSV) histograms of the regions in the correspond-
ing images, we rely on the back-projection of the centroids on the mesh. This change is
necessary because of the focus on the detection of removed objects, which, by definition,
are present in the mesh, but not in the images. This is a factor in the bias of detection
toward inserted objects in [34]. If the back-projected centroid of a region in i is projected
inside a region in j (or “reprojected” from i to j), and vice-versa, then the two regions are
matched, as in Figure 8: The orange and blue centroids belong to matched regions, as do
the red and green ones.

The triangulation step produces 3D ellipses based on the sizes and locations of the
matched regions [34]. This final output is presented in Figure 9.

(a) (b)
Figure 8. Region matching for two points of view. Circles: centroids, Crosses: warped centroids. (a) Point of view i (detail).
(b) Point of view j (detail).

Figure 9. Three-dimensional change detection; red ellipsoids mark the estimated location and size
of changes.
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4. Experimental Evaluation and Results

The algorithm was implemented in C++11 using the source code from [34] as a basis.
Meshes and camera poses were handled using GLOW (OpenGL Object Wrapper) [41],
mathematical operations were computed with Eigen [42], and images were processed with
OpenCV [43]. The code will be available at https://github.com/InterDigitalInc/ (accessed
on 22 January 2021).

Our method was evaluated on several scenes that presented some changes: At least
one object is removed, and in some cases, some are inserted. The sequences are made
up of five pictures that display the location of the removals, which are introduced by
adding 3D objects to an existing accurate mesh of the scene. Conversely, insertions are
simulated by removing objects from that mesh. Meshes were taken from two sources: the
dataset introduced in [34] and the ScanNet [44] dataset (all images and receiver operating
characteristic (ROC) curves from the datasets are available in the appendix), which also
provide estimated camera poses for the images.

The scenes in the dataset from [34] already showcase one or more insertions. Each
mesh is already associated with five pictures that display the inserted objects. However,
this dataset has some limitations: There are approximations in the meshes that can be
detected as changes, and the camera distortion coefficients are not available for every
camera used, which leads to inaccurate projection.

In contrast, the ScanNet dataset images are noisier, but have been corrected distortion-
wise. The scenes do not contain any insertions, and all meshes are associated with a video
with thousands of frames, from which we picked five with the least motion blur possible
to ensure that the camera poses were accurate.

Since we compare our method with the one in [34], the images were also chosen to
showcase the location of the removed object we added to the mesh. For the sake of this
comparison, we also scaled the pictures to a width of 500 px and used an area threshold of
50. Delta maps were computed using neighborhoods N of size d = 3.

4.1. Quantitative Evaluation

In order to evaluate the change detection quality, we used the same criteria as in [34]
and [32]: For each image point of view, we have a corresponding 2D ground truth that
we compare to the results of our 3D detection. The 3D ellipses are rendered in 2D using
each camera pose and numerical results are averaged across multiple points of view. The
following numbers were computed for the evaluation:

• IoU: area of the intersection of the ground truth and the 2D ellipse, divided by the
area of their union;

• coverage: area of the aforementioned intersection, divided by the area of the ground
truth, i.e., true positive rate (TPR),

• false positive rate: area of the intersection of the complementary ground truth and the
2D ellipse, divided by the area of the complementary ground truth.

For the scenes that contain inserted objects, we also took into account that the method
described in [34] detects changes of all natures indiscriminately. Therefore, we subtracted
the shapes of the inserted objects from the image comparisons between the ground truth of
removals and the 2D ellipses. Consequently, any insertion that was correctly reported by
the algorithm is not be considered as a false positive for object removal detection.

4.1.1. IoU and Coverage with Automatic Thresholding

The chosen criteria favor detection that is accurate in 2D, but not necessary correctly
localized in 3D, i.e., if there are several 3D regions of change accurately detected in 2D,
but incorrectly matched together. Since this does not happen with our removal detection,
using a 3D-based criteria could improve the performance of our method compared to the
one in [34].

In most cases, our method is the most accurate for both criteria. As shown in Table 1,
the IoU is often greater than 40%, but there are particularly difficult scenes where it will

https://github.com/InterDigitalInc/
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drop below 30%, while the algorithm from [34] does not detect anything. Generally, these
scenes will have a 3D mesh that is incomplete or too dissimilar from the images in areas
that should have remained unchanged.

As explained in Section 3.3.2, our approach to the combination of delta maps is based
on mask union rather than intersection. This makes the detection more robust for objects
nearing the edge of the frame.

Further details and results for each scene of both datasets are provided in the Supple-
mentary Material.

Table 1. Removal detection: quantitative results (in %).

Scene Ours Palazzolo et al.

Palazzolo et al. Dataset IoU TPR IoU TPR

container-shelf 31 80 0 0
container-shelf2 39 100 20 27
playground-car 16 64 5 34

statue-robot 48 93 14 17
statue-robot-bad-exp 51 94 3 3

statue-robot-bad-temp 53 95 1 1
statue-robot-temp 59 95 7 9

toilet-stone 17 97 0 0

Dataset average 39 90 6 49

ScanNet dataset IoU TPR IoU TPR

0000_00+plant 11 20 7 15
0000_01+box 45 57 0 0

0000_01-insert+box 42 53 1 1
0000_02+statue 42 47 22 64

0001_00+dollhouse 6 18 0 0
0001_01+table 27 36 21 31
0002_00+chair 40 80 8 20

0002_01+extinguisher 15 66 0 0
0003_00+cat 0 0 23 47

0003_01+desklamp 61 69 27 30
0004_00+ghost 44 83 8 9

0005_00+bucket 62 89 52 89
0005_01+pitcher 27 100 0 0
0006_00+lamp 57 98 38 82

Dataset average 34 58 15 28

Global average 36 70 12 22

4.1.2. ROC Curves for Different Thresholds

The ROC (receiver operating characteristic) curves in Figure 10 are used to compare
the true positive rate and false positive rate of a binary operator for different discrimination
thresholds [32], which, in our case, are the value thresholds in the delta maps. The auto-
matic threshold is highlighted on the curves to evaluate its performance, and the other
threshold values are all the integers between 0 and 255. A threshold of 255 means that only
the most consistent pixels of a delta map are considered (near the origin of the graphs).

We note that the false positive rate never reaches 1 in the presented curves. This is due
to the fact that ellipses are only generated for objects that cast shadows during reprojection,
which generally only represents a small part of any given image. The value obtained
for a threshold of 0, when any pixel in the delta map’s mask is categorized as “changed”
regardless of value, is the de facto maximum.
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Figure 10. Receiver operating characteristic (ROC) curves. Blue points represent different threshold values, the red cross is
the automatic threshold. (a) “statue-robot”. (b) “playground-car”.

In these curves, the best results are located in the top left. The automatic threshold
value is generally chosen among those ideal values, but there are instances, such as in
“playground-car” (Figure 10b), where it is at a local minimum. These discontinuities are
a consequence of the thresholding by the changes’ areas and the following segmentation
into 2D regions.

4.2. Computation Time

The method was run on a CPU in order to compare its speed with other similarly
computationally inexpensive methods for portable devices. The execution time is in the
same order as the one reported in [34] as interactive time. The processes of generating the
delta maps and triangulating the changes in 3D never take longer than a few seconds.

Of the two processes mentioned above, the former is more computationally expensive.
The re-projection operations as well as difference calculations on the images are performed
in a single pass on each pixel of each image. Empirically, we measured that the computation
time was indeed proportional to the image size (in pixels).

The computation time of the triangulation process cannot be evaluated as reliably,
since it depends on the number of 2D areas detected in the first step. However, for a
constant area threshold, it will become less negligible when compared to the time of the
first process, as the number of individual detected changes increases with the resolution.
When the area threshold is increased in accordance with the resolution, this effect is
less pronounced. The overall computation time is also tied to the number of images in
the sequence.

On a virtual machine with 16 GB of RAM and four 2.60 Ghz processors, both [34]’s
method and ours process sequences of five 500 pixel-wide images in less than 3 s. For
the reprojection and delta map rendering processes, we experimented with the use of
shaders directly applied to the mesh instead of functions run on the depth maps derived
from it. In this configuration, the execution time becomes tied to the precision of the mesh
rather than the image resolution because no depth map has to be generated. When such
shaders were run on an NVIDIA GeForce RTX 2060 GPU, the computation time of the
aforementioned processes was reduced by up to 95%.
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When compared to the implementation by [34], the computation time remains low
because the reprojection process, which is the most time-consuming operation, can be
performed for both occluded and visible pixels in a single pass. In practice, both the
algorithm from [34] and ours can be used at the same time in order to detect both insertions
and removals with more accuracy.

4.3. Discussion

Only studying regions occluded by a foreground object has a few side-effects. For in-
stance, false positives can only be detected on objects that produce such occlusions. These
false positives will only occur on the objects that are the most photo-consistent with their
background (see “0001_00+dollhouse”). Moreover, any removal accurately detected in 2D
will be accurately localized in 3D. This differs from insertion detection, where accurate 2D
regions of change can be wrongly matched with other regions from a different change in
another point of view.

In a scene, reflective surfaces might still pose a challenge instead of being detected
as false positives, as in [34]; they can make removed objects situated in their foreground
difficult to detect, i.e., generate false negatives.

Change size estimation can be an issue, as the detection size is proportional to the
occlusion size of the removed object (see “0000_02+statue”). If a removed object does not
produce any occlusion, it will not be detected by this method. Such an object could be
detected using the method from [34] if it is far enough from its background to greatly
distort its textures.

Not every image of the ScanNet dataset’s sequences is perfectly aligned with its
corresponding 3D mesh (see “0005_00+bucket’). While this has not severely impacted the
results of the detection in our experiments, in theory, a misalignment of an image will
generate 2D false positives and negatives for its point of view. On one hand, false positives
are still dealt with by using the other images of the sequence. On the other hand, false
negatives can negatively impact the detection by reducing the areas of detection and lead
to 3D false negatives or inaccurate size estimation. However, they occur less often, since
they require that a removed object aligns with an object still present in the image.

The appendix contains further discussion of the results on a per-scene basis, as well as
previews for all the scenes present in the datasets.

5. Conclusions

In this paper, we introduced a new approach for detecting the removal of objects
between an outdated 3D mesh and a set of up-to-date pictures of a scene. The technique
is based on the projection of the foreground of those images onto the 3D mesh, which is
then observed from each other’s points of view and compared in 2D to a reference image
from those points of view. The definition and study of the foreground make our approach
distinctive and allow for this particular focus on object removals as opposed to changes
in the scene of another nature, simplifying the process of translating the results back into
the 3D world. The technique is able to perform well even in environments with uniform
textures or changes of different natures while remaining as fast as the state-of-the-art
methods that are meant to run on devices with low computational power.

The results could be improved by using the information contained in the mesh to
estimate the 3D shape of the changes, rather than relying on standard shapes like ellipses.
This could also be accomplished using a voxelization of the scene, like in other works [18].
Once the shape estimation is more accurate, it could be used to directly alter the mesh to
reflect the detected changes. With the short computing time, this process could be repeated
at a high rate to retrieve cleaner results or uncover different layers of change.

With removals now specifically identified, it is possible to ignore their impact on
the change detection algorithm proposed in [34]. This improves the detection of inserted
objects in scenes, and allows for the categorization of all changes according to their natures.
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This categorization can be expanded on by including the notion of “displacement” of an
object when it is both removed and inserted into a scene.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-929
2/10/4/377/s1, Document S1: Detection of removed objects in 3D meshes using up-to-date images—
Appendix; Video S2: Step 1—Image capture; Video S3: Step 2—Change detection; Video S4: Step
3—Example of application.
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