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Abstract: Using the finite difference time domain (FD-TD) method, this paper studies radiation
structures that can have multiple tunable frequency bands between 0.4 GHz and 4 GHz, a fixed band
in [3.97, 5.36] GHz and an extremely wideband from 6.14 GHz to 68.27 GHz, where a frequency
band is defined by the voltage standing wave ratio (VSWR) less than or equal to two. The base
radiation structure has a modified-biconical antenna configuration, called base MBA, and is fed
by a square-coaxial line with characteristic impedance close to 50 ohms. A dielectric ring and an
outer dielectric cover are used between the two modified cones to enlarge the frequency band and
strengthen the structure. An equal number of metallic-rings can be stacked at both circular-ends
of cones in the base MBA to tune the positions of the frequency bands that are lower than 4 GHz
and to alter their vertical polarization (V-pol) patterns. However, compared with those of the base
MBA, these stacked metallic rings do not make significant changes to the VSWR in the [3.97, 5.36]
GHz and [6.14, 28.27] GHz bands and the radiation patterns in the [6.14, 28.27] GHz band. The
simulation results show that the base MBA and its metallic-ring-loaded versions all have V-pol
radiation characteristics at all frequency bands and have donut-shaped omnidirectional patterns only
when the wavelength is bigger than the length of the structure. When the wavelength is less than the
size of the radiation structure, the donut shape is modified with ripples on the V-pol radiation pattern.
Sometimes deep notches could be observed when MBAs operated at the higher end of the extremely
wideband. A 0.2 mm cube was used to construct the antenna structures with the consideration of
using the 3D metal/dielectric printer technology to build the antennas in the future.

Keywords: ultra-wideband antenna; finite difference time domain method; electronic support
measures; biconical antenna; numerical matched-load; computational electromagnetic; radar elec-
tronic warfare

1. Introduction

Ultra-wideband (UWB) antennas play an important role in modern wireless communi-
cation. Ref. [1] gives a good review of current UWB antennas for wireless communication in
terms of the designs, materials and numerical analysis. Since the purpose of those antenna
designs is for wireless communication applications, antennas basically have 2D-printed
structures, and the designs focus more on ultra-wide communication bands. Ref. [2] also
gives the general guidance of printed UWB antenna design for wireless communications. In
addition to UWB wireless communications, the modern electronic support measures (ESM)
systems used in electronic radar warfare also need UWB antennas in order to monitor
the electromagnetic (EM) environment on the battlefield. Moreover, the concept of UWB
in ESM is quite different from that of wireless communication since the frequency band
in interest for ESM is normally from higher UHF to Ka-band, and often it needs to be
extended to the V-band. It is important to design small (with respect to low-frequency)
and compact radiation structures that can be used in such a wide frequency range with
a radiation pattern close to omnidirectional as much as possible, especially for small air
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platforms or platforms that have very tight space to install antennas, such as the top of a
submarine periscope.

There are many antenna structures that can produce an omnidirectional or close
to omnidirectional radiation pattern, for instance, batwing antenna, biconical antenna,
choke-ring antenna, coaxial antenna, crossed field antenna, dielectric resonator antenna,
dipole and discone antenna, and so forth. Among them, the biconical antenna is one of the
favorable candidates for ESM applications, which was first introduced by Lodge [3], and
since then has been widely discussed and designed by many articles. Refs. [4–6] are some
of the examples. The biconical antenna designed in [6] has a frequency range from 1.5 GHz
to 41 GHz with voltage standing wave ratio (VSWR) less than or equal to two (VSWR ≤ 2).

As the modern computational EM advancements, many frequency- and time-domain
EM methods have been developed to create antenna designs with measurement-comparable
results and have been used to publish antenna studies/designs in open literature without
the necessity of developing prototypes. The following are some examples. Recently, the
method of the moment was used to design patch antennas in the package for 5G com-
munications [7], for which the Keysight software, Advanced Design System (ADS), was
used. A finite element method-based solver, high-frequency structure solver (HFSS), was
used to design a MIMO antenna in [8]. In addition to using frequency-domain methods,
the finite integration technique was used in the computer simulation technology (CST)
Microwave Studio to design a compact rectangular slot patch antenna as published in [9].
Together with CST, the coral reefs optimization with substrate layer (CRO-SL) method was
used to optimize the antenna parameters and improve its performance in the frequency
bands of interest [10]. Since the early 1990s, the finite-difference time-domain (FD-TD)
method [11–15] has been widely used for antenna designs. It has been proven that it can
produce measurement-comparable results as long as the antenna is modeled using detailed
antenna structure and proper material with the consideration of fabrication tolerances.
Examples can be found in [15–17]. The FD-TD method also has been applied for UWB
antenna studies [16–19].

In this paper, a home-grown FD-TD solver (originally developed in the early 90s)
was mainly used to study the square-coaxial line-fed UWB-modified biconical antennas
(MBA) with the intention of using 3D metallic printer technology [20,21] for antenna
fabrication in the future. The solver was used in many antennae and microwave component
designs applied in the early wireless communication systems [15,22–25]. It uses Yee’s
original grid [26] with the perfectly matched layers (PML) [27]. The surface equivalence
theory and time-domain near-to-far-field transformation are used to calculate the far-field
patterns [17]. The OpenMP is applied for parallel computing. In order to ensure the solver
can be used to design the extremely wideband MBA, the simulation results are compared
with another independently developed FD-TD solver, called the General-Purpose EM
Solver (GEMS), which was developed based on the parallel-conformal FD-TD technology
published in [28–30] and was a popular off-the-shelf EM solver a few years ago.

The novelties of our MBA designs include:

1. The base MBA structure has three bands with VSWR ≤ 2. They are [0.93, 1.23] GHz,
[3.97, 5.36] GHz and [6.14, 68.27] GHz.

2. By stacking metallic-rings on both circular-ends of the base MBA, three to five bands
with VSWR ≤ 2 can be created between 0.4 GHz and 4 GHz, and the locations of these
bands can be tuned by changing the number of metallic-rings. This paper only reports
the results of equal numbers (3, 6, 9 and 12) of rings that are stacked on both sides
of cones. The design can also use the unequal number of metallic-rings for different
ESM applications.

3. The unique features of our metallic-ring-loaded MBA designs, compared to those of
the base MBA, are: (1) the locations of the bands with VSWR ≤ 2 in [3.97, 5.36] GHz
and [6.14, 68.27] GHz are not altered significantly; and (2) the radiation characteristics
in the band of [6.14, 68.27] GHz do not have considerable changes when a different
number of metallic-rings are stacked on both sides of the cones. The only change
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is the number of bands with VSWR ≤ 2, lower than 4 GHz, and the locations of
those bands.

Thanks to the FD-TD solvers, some unknown properties of the biconical antenna are
revealed since it is not a trivial task to unveil these properties just by using antenna mea-
surements. Moreover, it is already a challenging job to set up a well-calibrated microwave
antenna measurement system from UHF to V-band.

The rest of the paper is organized as follows: In the next section, a 52 ohm square-
coaxial structure is discussed with its wideband numerical matched-load used in our
FD-TD code simulations. The base MBA structure is presented in Section 3 with its input
characteristics and radiation patterns in comparison with the results obtained from the
GEMS. The metallic-ring-loaded MBA structures and their FD-TD simulation results are
shown in Section 4. The conclusion of the paper can be found in the last section. Since there
are many radiation patterns for different MBAs at different frequencies to be presented in
Sections 3 and 4, Appendices A and B, which contain 3D and/or 2D radiation patterns, are
added at the end of the paper to assist the discussions.

2. Square-Coaxial Line and Its Feeding Structure

The square-coaxial line [31–33] is a commonly used transmission line to feed mi-
crowave devices or used to build different microwave devices [34–36]. Since the transverse
EM (TEM) mode is the main propagation mode in the transmission line, it is also called
TEM-line. The formula to calculate the characteristic impedance of the square-coaxial line
(Figure 1) can be found in [33,34]. The square-coaxial, called TEM-line hereafter, used
to feed our MBAs is W = 0.8 mm, b = 32 mm and εr = 2.2, which results in the 52 ohm
characteristic impedance. Other considerations of selecting such a TEM-line dimension are
the possibility of discretizing evenly, the ability to fit in the 0.1 mm uniform FD-TD grid,
and the usability of Teflon material in between inner and outer conductors of the TEM-line.
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Figure 2a shows the TEM-line model used to feed our MBAs. In the model, the bot-
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end is closed by the metal plate, any unreal wave in between plane 3 and the plate’s inner 
surface inside the TEM-line cannot enter the computational domain outside the TEM-line. 

Figure 1. (a) A 3D isometric view of the square-coaxial line filled with dielectric material between
inner and outer conductors; (b) dimensions of the square-coaxial line and εr is the relative dielectric
constant of the filled material.

Figure 2a shows the TEM-line model used to feed our MBAs. In the model, the bottom
end of the feed-line is closed by a metal plate. A few FD-TD grids above the inner surface
of the metal plate, i.e., at plane 3, the Mur’s first order absorbing boundary condition
(ABC) is applied. Since we know the TEM wave speed, the wave that comes down along
the TEM-line can be adequately absorbed by the ABC. In addition, as the bottom end
is closed by the metal plate, any unreal wave in between plane 3 and the plate’s inner
surface inside the TEM-line cannot enter the computational domain outside the TEM-
line. Therefore, it cannot “pollute” the FD-TD calculations, such as the radiation pattern
calculation. Hence, the end metal plate and the ABC form a numerical matched-load for
our FD-TD calculations. To test the performance of the-load, a voltage source is placed at
plane 1, and the incident and reflected waves are sampled at plane 2. During the test, the
length of the TEM-line makes the top open-end far away from plane 2. This ensures that the
entire reflected wave from the numerical matched-load passes plane 2 before the reflected
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wave from the open-end arrives. Figure 2b shows a Gaussian pulse that passes through
plane 2 after about 1000 time-steps, and after 2400 time-steps, the reflected wave from the
numerical matched-load is sampled at plane 2 (Figure 2c). After about 2670 time-steps, the
entire reflected wave from the numerical matched-load passes plane 2, and until then, the
reflection from the open end of the coax has not reached plane 2. The return loss of the-load
is shown in Figure 2d, which shows a good performance, i.e., return loss <−50 dB in the
frequency range of interest of this study, and can be used to terminate the feed line. In this
test, the 0.1 mm cube uniform grid was used with a time-step of 1.6678 × 10−13 s. These
numbers were also used for all FD-TD calculations in the study. The reason for picking
such a grid size is that it gives about 28.89 grids per wavelength at 70 GHz in the dielectric
marital with εr = 2.2. Note that, when the TEM-line model was used to feed MBAs during
the FD-TD simulations, plane 1 and plane 2 were changed to the sampling plane and source
plane, respectively.
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Figure 2. (a) A 3D isometric view of the TEM feed-line; (b) An example of normalized incident
Gaussian pulse launched from Plane-1 and collected at Plane-2; (c) The reflected wave from the
FD-TD numerical matched-load (normalized to the maximum value in (b)) and collected at Plane-2;
(d) The return loss of the FD-TD numerical matched-load (see the text for more details).

Figure 3 shows the details of the biconical structure fed by the TEM-line model. The
inner and outer conductors of the TEM-line are connected to the apex areas of the upper
and the lower cones, respectively. The cone-angle and other dimensions are also given in
the figure. Both upper and lower cones have the same cone-angle. It also shows that the
metal cones are constructed by small metallic (in yellow color) blocks that can be formed
by at least one 0.2 mm cube so that (1) the FD-TD calculations can have a uniform mesh
with dx = dy = dz = 0.1 mm, and (2) the structure can be fabricated with 3D laser metal
additive fabrication technology that has 0.2 mm or less fabrication step. Note that:

1. This figure just shows very small parts of the cones, and both cones are extended
further, as shown in Figure 4;

2. In order to show how the inner conductor is connected to the upper cone, the dielectric
material inside the TEM-line shows the same height as the edge of the outer connector
in Figure 3a,b;

3. In all our MBA designs, the dielectric material is extended outside the TEM-line outer
conductor by 0.8 mm, which can be seen in Figure 5a and Figure 13a;
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4. Finally, although from a distant view, the antenna looks like having a symmetric
structure, as shown in Figure 4, all MBA structures in our designs have three minor
asymmetries:

a. Because of the feed-line, the upper and lower cones are not exactly mirror-
imaged with respect to feed-point;

b. Since the square-shape of the outer conductor of the TEM-line, the structure
does not have rotational symmetry with respect to the phi-angle (defined in
Figure 4b) in each quadrant, and;

c. Since the 0.2 mm cube is used to discretize curved cone surfaces, it results in the
stair-cased outer surfaces of the cones, which do not have rotational symmetry
with respect to the phi-angle in each quadrant, as well. This can be clearly
observed in Figure 3a.
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looking angle.
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Figure 4. (a) A front wireframe view of the base-modified biconical antennas (MBA) with stair-cased inner dielectric ring
(in green color) and outer dielectric cover (also in green color); (b) an isometric view of the base MBA (looking from an

upper angle) with XYZ-coordinate system, a [phi theta] angle-pair shows the direction of the vector
⇀
R and the white-dashed

parallelogram shows a portion of the phi-cutting plane, on which 2D radiation pattern is calculated in Sections 3 and 4; (c)
an isometric view of the base MBA without outer dielectric cover (looking from a lower angle). All dielectric materials have
εr = 2.2.
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3. Base MBA Structure, Its Antenna Characteristics and Comparison of the Results
Obtained from Two FD-TD Solvers
3.1. Structure and Dimensions

Figure 4 shows the base MBA, which has a modified metal biconical structure, a
TEM-line inside the bottom cone, a dielectric inner ring (in green color) and a dielectric
outer cover (in green color). The dimensions of the structure are given in Figure 5. The
height of the inner dielectric ring is 9.4 mm, which both ends just touch the metal cones, as
one can see from Figure 4a,c.

The total length of the cover is 84.2 mm, which is 10.8 mm longer than the modified
biconical structure, i.e., each side is 5.4 mm over the edge of the cone. The circular-shapes
to get the discretized versions of the inner ring and the outer cover shown in Figure 5b
are the 4.6 mm radius circle with a wall of 0.6 mm thickness and the 27.6 mm radius circle
with a wall of 2.4 mm thickness, respectively. It should be mentioned that the discretized
versions of the inner dielectric ring and the outer cover also show asymmetries with respect
to the phi-angle. Figure 6 shows the base MBA modeled inside GEMS.

3.2. VSWR and Return Loss of the Base MBA

The VSWR and return loss of the base MBA obtained from both FD-TD solvers are
shown in Figure 7. An excellent agreement between the two results can be observed. From
the figure, one can also see that from 6.14 GHz to 68.27 GHz, the antenna has VSWR ≤ 2.
In addition, in the lower frequency, there are two frequency bands that have VSWR ≤ 2, as
shown in Figure 8. They are [0.93, 1.23] GHz and [3.97, 5.36] GHz. Note that the length of
the base MBA changes from 0.97 GHz to 1.31 GHz wavelength from 3.97 GHz to 5.36 GHz.
This means that the wavelength of any band lower than [3.97, 5.36] GHz band is bigger
than the length of the base MBA.

The input characteristics of the modified radiation structures from the base MBA, i.e.,
(1) without the inner dielectric ring and the outer dielectric cover and (2) just having the
inner dielectric ring without the outer dielectric cover, are shown in Figure 9a,b, respectively.
Comparing these with the results in Figure 7 shows the following:

1. Without any dielectric ring and cover, the TEM-line-fed modified biconical structure
also has a wideband with VSWR ≤ 2 from 6.8 GHz to 62.3 GHz. However, practically
this structure cannot hold by itself as an EM radiation device.
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2. Once the inner dielectric ring is added, the band with VSWR ≤ 2 is extended to
[6.22, 67.46] GHz, which is very close to the base MBA result of [6.14, 68.27] GHz.

3. The beginning and ending frequency points of the two bands with VSWR ≤ 2 that
are lower than 6 GHz in the three radiation structures, i.e., without any dielectric
materials, just having an inner dielectric ring and the base MBA, are [0.95, 1.29] GHz
and [3.59, 5.24] GHz, [0.95, 1.29] GHz and [3.55, 5.36] GHz, and [0.93, 1.23] GHz and
[3.97, 5.36] GHz, respectively. These indicate that the dielectric cover plays some role,
but not very significant, in the locations of two lower VSWR bands.
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3.3. Far-Field Radiation Patterns

The normalized far-field radiation patterns of the base MBA are shown in this section.
Patterns at the beginning, middle and end of the two lower bands with VSWR ≤ 2, i.e.,
[0.93; 1.08; 1.23] GHz and [3.97; 4.67; 5.36] GHz, are presented in Figure 10. Since there
are too many patterns between 6.14 GHz and 68.27 GHz to be shown here, more patterns
are shown in Appendix A at 7 GHz, 10 GHz, 17 GHz, 22 GHz, 27 GHz, 37 GHz, 47 GHz,
52 GHz, 57 GHz and 67.0 GHz frequency points. Note that:

• All the radiation patterns are normalized to the maximum value obtained from vertical
(EV) fields in the current plot;

• All 3D patterns are scaled into [0, 30] dB since the 3D scatter-plot cannot show a
negative value. After scaling, any field values less than 0 dB in 3D patterns are set to
0 dB;

• All 2D patterns are scaled into [−30, 0] dB. After normalization, any field values less
than −30 dB are set to −30 dB;

• All the 3D patterns are plotted using a 3D scatter-plot. There are a total of 40,962
directions defined by [phi theta] pairs (see Figure 4b), and these angle pairs are
obtained from the vertices of an icosphere. This gives close to uniformly distributed
directions compared to the UV-sphere [37] defined directions that have much denser
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directions closer to the north- and south-poles than at the equator. More details of
icosphere defined directions can be found in [38,39].

From the plots shown in Figure 10 and Appendix A, one can have the following
observations:

1. The 2D radiation patterns at different frequencies obtained by the two FD-TD solvers
have an excellent agreement;

2. Omnidirectional donut-shaped radiation patterns appear in the band of [0.93, 1.23] GHz,
as the wavelength is bigger than the length of the base MBA;

3. In the second band, [3.97, 5.36] GHz, the omnidirectional donut-shaped can be ob-
served at the beginning of the band and starts giving ripples, especially in the upper
half of the band. It is because the modified biconical structure is about one wavelength
at the beginning of the band and reaches about 1.31 wavelength at the end of the band:

4. The horizontal polarization (H-pol) in these bands are all 30 dB less than or equal to
the maximum value of the V-pol. Hence, there are no H-pol patterns shown on the
2D plots in Figure 10;

5. As shown in Appendix A, when the frequency increases in the ultra-wideband,
[6.14, 68.27] GHz,

a. The base MBA cannot provide a pure donut-shaped omnidirectional radiation
pattern anymore, i.e., the V-pol radiation patterns at different phi-cutting planes
are different from each other. This phenomenon becomes clearer when the
frequency becomes higher, see Figure A1i,j. This is because the TEM-line feed
structure and the discretized version of modified cones are not symmetric with
respect to phi-angles in each quadrant, and when wavelength gets smaller,
these asymmetric structural properties have more inference on the antenna
radiation property.

b. The H-pol is also increased. Again, it can be observed in Figure A1i,j.
c. The higher H-pol may appear at around phi = 30◦ and 60◦ in the first quadrant,

as the magenta and blue colored patterns are dominant in the 2D plots from
Figure A1i,j. Since the radiation structure has 90◦ rotational symmetry in phi-
angle, we can expect that strong H-pol can also occur around phi = (120◦ and
150◦), (210◦ and 240◦) and (300◦ and 330◦) angular ranges in the second, third
and fourth quadrants, respectively.

d. At the higher frequency end, there are no clear donut-shaped patterns, and
many ripples appear in both phi and theta directions. This is caused by the
combined effects from (1) the size of the structure becomes much bigger than the
wavelength, (2) the asymmetric structural properties discussed in Section 2, and
(3) the surface current that appears on the cones create some ring-like standing-
wave patterns, which can be seen from the surface current distributions on
the upper cones of the base MBA at different frequency points in the ultra-
wideband as shown in Figure 15.

e. Again, due to the combined effects discussed in the previous item, some deep-
notches can appear in theta between 60◦ and 120◦. Figure A1h shows an
example.
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4.1. Structures and Dimensions 

To create more bands and change the frequency band locations in the lower fre-

quency end, metallic-rings can be added at both circular-ends of the cones. Figure 12 

Figure 10. 3D patterns of the base MBA obtained by our FD-TD solver (left column) and 2D patterns
(right column) at different phi-cutting planes (shown by different colors) at the beginning, middle
and end frequency points of two lower bands with VSWR ≤ 2. In all 2D plots, our FD-TD and GEMS
results are plotted on the right and left sides, respectively. Subplots (a–f) are far field patterns at
0.93 GHz, 1.08 GHz, 1.23 GHz, 3.97 GHz, 4.67 GHz and 5.36 GHz, respectively.

The calculated maximum antenna gains for V-pol and H-pol are shown in Figure 11.
From the figure, one can find that the base MBA has dominant V-pol, and its maximum
gain is between 2 dBi to 6 dBi in [3.97, 5.36] GHz and [6.14, 28.27] GHz bands.
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4. Metallic-Ring-Loaded MBAs and Their Antenna Characteristics
4.1. Structures and Dimensions

To create more bands and change the frequency band locations in the lower frequency
end, metallic-rings can be added at both circular-ends of the cones. Figure 12 shows the
metallic-ring structure, which has the same size as that of the circular-ends of the two cones.
The height of the ring is 5 mm. It has four 2.4 mm × 5.4 mm pads that touch the ends of
two cones, as shown in Figure 13a.
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Figure 13. (a) Details of how the metallic rings are stacked to the base MBA; (b) a view of the base MBA with 12 rings (to be
called 24-ring-loaded MBA) on each side of the cone without inner dielectric ring and cover; (c) a wireframe view of the
24-ring-loaded MBA with both inner dielectric ring and cover. The total length of the 24-ring-loaded MBA is 203 mm, which
is about 0.3 wavelength of the low end of frequency.
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Note that, Figure 13 also shows that the dielectric material (green color) inside the
TEM-line is extended outside the outer conductor of the TEM-line. The length of the
extended portion is 0.8 mm, which is the same as in Figure 5a.

Figure 13c shows that the length of the outer dielectric cover is the same as the length
of the 24-ring-loaded MBA. This also applies to the other number of ring-loaded MBAs.
Although equal numbers of metallic-rings are added on both sides of cones in the study, an
unequal number of metallic-rings also can be added. Their results will not be reported in
this paper.

4.2. VSWR and Return Loss of Metallic-Ring-Loaded MBAs

Figure 14 compares the return losses and VSWRs of MBAs with a different number of
rings in [4, 70] GHz. It appears that the different ring-loaded MBAs have almost the same
input characteristics as those of the base MBA.

• In the [3.97, 5.36] GHz band, the details of starting, middle and ending frequencies are
given in the last column of Table 1. In this band, these radiation structures work more
in the transition between resonant mode and “traveling-wave” modes;

• In the [6.14, 68.27] GHz band, these radiation structures work mostly in the “traveling-
wave” mode, i.e., before the wave reaches the ends of cones, the majority of the
electromagnetic energy has been radiated by the modified-biconical part of the antenna.
This also can be observed from the surface current distributions on the upper cones of
MBAs shown in Figure 15.
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base MBA.

Figure 15 shows the upper cone surface current distributions at seven frequencies
in the [6.14, 68.27] GHz band. Comparing the results of the base MBA (left) and other
ring-loaded MBAs at each frequency shows that the surface current distributions are very
close to each other in the [6.14, 68.27] GHz band. For ring-loaded MBAs, the currents on
rings are much weaker than those on the modified cones. This explains:

• Why the input characteristics of the base and ring-loaded MBAs are almost the
same, and;

• Why the radiation patterns obtained from the base and ring-loaded MBAs are similar
(this will be shown in the next section) in the [6.14, 68.27] GHz band. The figure also
shows that as frequency increases in the [6.14, 68.27] GHz band,

• The main current that contributes to the far-field patterns gets closer to the feed
point, and;
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• More current-rings or the standing-wave patterns appear on the cones, which cause
ripples and even notches in the theta-direction of the radiation patterns.

Table 1. The starting, middle and ending frequencies of bands in frequency less than 6 GHz.

Number of Rings
at Each Side of Cone

Total
Rings

Band 1
(GHz)

Band 2
(GHz)

Band 3
(GHz)

Band 4
(GHz)

Band 5
(GHz)

Band 6
(GHz)

0 0 [0.93; 1.08; 1.23] N/A N/A N/A N/A [3.97; 4.67; 5.36]
3 6 [0.73; 0.87; 1.00] N/A [2.18 2.39 2.60] N/A [2.99; 3.02; 3.05] [3.98; 4.77; 5.55]
6 12 [0.59; 0.72; 0.84] [1.63; 1.88; 2.12] N/A [2.78; 2.82; 2.86] [3.00; 3.03; 3.05] [3.93; 4.69; 5.45]
9 18 [0.51; 0.61; 0.71] [1.37; 1.59; 1.81] [2.50; 2.57; 2.64] [2.86; 2.88; 2.90] [3.02; 3.05; 3.06] [4.05; 4.72; 5.39]
12 24 [0.44; 0.53; 0.61] [1.23; 1.41; 1.58] [2.18; 2.30; 2.42] [2.71; 2.75; 2.79] [2.99; 3.02; 3.03] [3.97; 4.77; 5.57]
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GHz in the ultra-wideband. Note that, in order to show clearer current distributions, the figure only shows the current 
distribution values less than or equal to 0.4077, as the higher values more concentrate near the tips of upper cones. 

The same comparison, as shown in Figure 14, for lower frequency bands are shown 
in Figure 16. It can be found that these radiation structures create a number of bands with 
VSWR ≤ 2 when the frequency is lower than 4 GHz, and these bands with VSWR ≤ 2 move 
towards the lower frequency when more metallic-rings are added. It is obvious that the 
characteristics of resonant modes have appeared here; as the length of the structure in-
creases, the operational frequency bands move towards the lower frequency. Table 1 gives 
the starting, middle and ending frequency points of those bands with VSWR ≤ 2 for dif-
ferent numbers of metallic-ring-loaded MBAs. The surface current distributions of the 
middle frequency point (see Table 1) in each band with VSWR ≤ 2 are shown in Figure 17. 

Figure 15. The normalized surface current distributions on the upper cones of the base, 6-ring, 12-ring, 18-ring, and
24-ring-loaded MBAs (from left to right) at (a) 7 GHz, (b) 17 GHz, (c) 27 GHz, (d) 37 GHz, (e) 47 GHz, (f) 57 GHz and (g)
67 GHz in the ultra-wideband. Note that, in order to show clearer current distributions, the figure only shows the current
distribution values less than or equal to 0.4077, as the higher values more concentrate near the tips of upper cones.

The same comparison, as shown in Figure 14, for lower frequency bands are shown in
Figure 16. It can be found that these radiation structures create a number of bands with
VSWR ≤ 2 when the frequency is lower than 4 GHz, and these bands with VSWR ≤ 2
move towards the lower frequency when more metallic-rings are added. It is obvious that
the characteristics of resonant modes have appeared here; as the length of the structure
increases, the operational frequency bands move towards the lower frequency. Table 1
gives the starting, middle and ending frequency points of those bands with VSWR ≤ 2 for
different numbers of metallic-ring-loaded MBAs. The surface current distributions of the
middle frequency point (see Table 1) in each band with VSWR ≤ 2 are shown in Figure 17.
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4.3. Far-Field Radiation Patterns

The far-field radiation patterns of the middle-frequency point in each of the lower
bands for 6-ring, 12-ring and 24-ring-loaded MBAs are shown in Figures 18–20, respectively.
Similar to the base MBA case, 2D radiation patterns of 6-ring, 12-ring, 18-ring and 24-ring-
loaded MBAs at 7 GHz, 10 GHz, 17 GHz, 22 GHz, 27 GHz, 37 GHz, 47 GHz, 52 GHz, 57
GHz and 67 GHz frequency points are shown in Appendix B.

From Figures 18–20, it can be found that:

1. When the length of MBA is less than one wavelength, the omnidirectional donut-
shaped radiation patterns can be produced with more pure vertical polarization;

2. When the length is around one wavelength, the donut shape becomes flatter;
3. When the length is bigger than one wavelength, the donut shape is modified with rip-

ples;
4. In these plots, the H-pol component is still at least 30 dB lower than the maximum

value of V-pol, as the H-pol is not shown in these plots.
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bands with VSWR ≤ 2 in Table 1.

Comparing the 2D patterns in Appendix B and the patterns in the right column in
Appendix A, we can see that the ring-loaded MBAs have close or similar to base MBA
V-pol patterns, especially when theta is in between 30◦ to 120◦ as frequency increases. This
tells that in the [6.14, 68.27] GHz band, the modified cone surfaces contain the most electric
surface current (see Figure 15) that contributes to the V-pol far-field patterns. Compared
to the base MBA, the H-pol of the ring-loaded MBAs increases due to the introduction of
extra 0.4 mm gaps by the rings, as shown in Figure 13. These gaps create some currents
along phi-direction on the surface of rings, which increase H-pol for ring-loaded MBAs.

Table 2 summarizes the FD-TD calculation information and the cost for the base and
ring-loaded MBAs. Two kinds of computers were used for the calculations. Although the
FD-TD method may take a long time to obtain the results, it produces the time-domain
input characteristics, which can be used to calculate the input characteristics of MBAs at any
frequency up to 70 GHz. In addition, the far-field patterns at any frequency point can be
obtained using the surface equivalence theory, time-domain near-to-far-field transformation
and Fourier Transform during an FD-TD simulation. For example, the frequency points
can include those frequencies given in Table 1 and frequencies from 7 GHz to 67 GHz with
1 GHz interval. It is the same for surface current distribution calculations. The time-domain
far-field data and surface current data can also be collected during the simulation. If many
radiation directions are required for the far-field patterns, and many surface areas need to
be viewed for the surface current on the antenna, then the time-domain data collections
will require much more computer resources. However, once these time-domain data are
collected, one can obtain the far-field patterns and surface current distributions of the
antenna at any frequency of interest.
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Table 2. Information of computational time, costs and used resources.

Number of
Rings

at Each Side
of Cone

Total
Rings

Simulation
Domain

(mm)

FD-TD
Grid Size

(Including
6-Layer PML)

Total RAM
(GB)

Seconds
Per Time-

Step

Total
Time-
Step

Computer
CPU Model

and
Total RAM

Number of
Cores/Logical

Processors

0 0 70 × 70 × 88.20 712 × 712 × 894 30.7 4.31 24,900 HP ZBook 17 G3,
Intel(R) Xeon(R) CPU

E3-1535M v5 @290
GHz, 64 GB

4/83 6 70 × 70 × 115.8 712 × 712 × 1170 33.6 6.12 44,300

6 12 70 × 70 × 148.2 712 × 712 × 1494 49.6 8.40 54,500

9 18 70 × 70 × 180.6 712 × 712 × 1818 64.4 7.07 64,400 SuperMicro, Intel(R)
Xeon(R) CPU E5-1630
v4 @3.70 GHz, 256 GB

4/8
12 24 70 × 70 × 210.0 712 × 712 × 2142 86.0 7.41 77,600

5. Conclusions

Using the FD-TD method, new MBA structures fed by a close to 50 ohm TEM-line
are studied numerically in this paper. Two independently developed FD-TD solvers are
used in the study, and they produce almost identical simulation results for the base MBA
structure. In our design, by adding a different number of metallic-rings on the base MBA,
the radiation structures can have up to five tunable bands with VSWR ≤ 2 between 0.4 GHz
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and 4 GHz, about 1.39 GHz band with VSWR ≤ 2 from 3.97 GHz to 5.36 GHz, as well as,
an extremely wideband from 6.14 GHz to 68.27 GHz. At those lower frequency bands, the
antennas work in their resonant mode and produce donut-shaped or close to donut-shaped
V-pol radiation patterns with better than 30 dB cross-polarization. In the [6.14, 68.27]
GHz band, the MBAs work mainly in their “traveling-wave” mode. When the frequency
increases in the band, many ripples appear on radiation patterns, and the cross-polarization
gets worse. The unique feature of our design is that the input characteristics and far-field V-
pol patterns do not have significant changes by adding a different number of metallic-rings
in the band of [6.14, 68.27] GHz. The simulation result shows that the maximum V-pol gain
is about or lower than 0 dBi in those low-frequency bands and is between 2 dBi and 6 dBi
in the [6.14, 68.27] GHz band. The 3D metal additive manufacturing/3D printing method
also has been considered to build these antennas in the near future.

Author Contributions: C.W. and J.E. have made contributions to the conceptualization, methodology,
formal analysis, investigation and reviewing and editing of the article, and C.W. wrote the original
draft of the article. Both authors have read and agreed to the published version of the manuscript.
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the paper.
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Appendix A. Far-Field Radiation Patterns of the Base MBA in Its Ultra-Wideband

In the following plots, the left column shows 3D V-pol patterns, and the right column
shows 2D patterns at phi = 0◦, 30◦, 45◦, 60◦ and 90◦ cutting planes in the first quadrant.
In 2D plots, the right-side patterns were obtained by our FD-TD solver, and those on
the left side were calculated by the GEMS. Both H-pol and V-pol patterns on those 2D
cutting planes are shown in each 2D plot. One can see that the H-pol gets bigger when the
frequency is increased. The H-pol appears higher than −30 dB in Figure A1i,j compared to
the maximum value of V-pol in each 2D plot.
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Figure A1. Subplots (a)–(j) are the far field radiation patterns of the base MBA at 7 GHz, 10 GHz, 

17 GHz, 22 GHz, 27 GHz, 37 GHz, 47 GHz, 52 GHz, 57 GHz and 67 GHz, respectively.  
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Figure A1. Subplots (a–j) are the far field radiation patterns of the base MBA at 7 GHz, 10 GHz,
17 GHz, 22 GHz, 27 GHz, 37 GHz, 47 GHz, 52 GHz, 57 GHz and 67 GHz, respectively.

Appendix B. 2D Radiation Patterns of 6-Ring-, 12-Ring-, 18-Ring- and
24-Metallic-Ring-Loaded MBAs from 6.14 GHz to 68.27 GHz

In the following figures, there are two plots in each figure for the frequency given
in the figure caption. The left and right 2D patterns in the left-plot of each figure are V-
and H-pol patterns of 6- and 12-ring-loaded MBA, respectively. The same 2D patterns for
18-and 24-ring-loaded MBAs are shown in the right-plot of each figure. All the patterns are
sampled in the first quadrat at the phi = 0◦, 30◦, 45◦, 60◦, and 90◦ cutting planes.
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