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Abstract: The internet of things (IoT) comprises various sensor nodes for monitoring physiological
signals, for instance, electrocardiogram (ECG), electroencephalogram (EEG), blood pressure, and
temperature, etc., with various emerging technologies such as Wi-Fi, Bluetooth and cellular networks.
The IoT for medical healthcare applications forms the internet of medical things (IoMT), which
comprises multiple resource-restricted wearable devices for health monitoring due to heteroge-
neous technological trends. The main challenge for IoMT is the energy drain and battery charge
consumption in the tiny sensor devices. The non-linear behavior of the battery uses less charge;
additionally, an idle time is introduced for optimizing the charge and battery lifetime, and hence the
efficient recovery mechanism. The contribution of this paper is three-fold. First, a novel adaptive
battery-aware algorithm (ABA) is proposed, which utilizes the charges up to its maximum limit
and recovers those charges that remain unused. The proposed ABA adopts this recovery effect
for enhancing energy efficiency, battery lifetime and throughput. Secondly, we propose a novel
framework for IoMT based pervasive healthcare. Thirdly, we test and implement the proposed
ABA and framework in a hardware platform for energy efficiency and longer battery lifetime in
the IoMT. Furthermore, the transition of states is modeled by the deterministic mealy finite state
machine. The Convex optimization tool in MATLAB is adopted and the proposed ABA is compared
with other conventional methods such as battery recovery lifetime enhancement (BRLE). Finally,
the proposed ABA enhances the energy efficiency, battery lifetime, and reliability for intelligent
pervasive healthcare.

Keywords: IoMT; data transmission; intelligent healthcare; proposed ABA; BRLE

1. Introduction

In the modern world, a better healthcare system is the main challenge for a growing
world population. The internet of medical things (IoMT) is the vision of providing a
better and more pervasive healthcare system. The IoMT is the integration of medical
devices through Wi-Fi and permits device-to-device (D2D) communication. In recent days,
the most challenging issue is the time needed for web services. Three-dimensional (3D)
video can be downloaded at sporadic intervals by keeping in mind the latest technological
trends. The collected voluminous data with less delay is obtained for the accurate data
measurement. It will increase the device resource allocation ability and offers quicker speed
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for the heterogenous networks. The IoMT comprises various heterogeneous networks, for
instance, Wi-Fi, Bluetooth, ZigBee, and other cellular platforms. The D2D communication is
the central part of the IoMT platform with high efficiency and reliability. The main traits of
an intelligent healthcare system are to offer less delay and high throughput and reliability,
which are very important for an effective and accurate diagnosis and consultation. The
critical time analysis is the key parameter to be considered for emergency healthcare
applications. The highly reliable and delay-tolerant communication and data transmission
can be achieved through IoT-driven wearable devices, as shown in Figure 1. The key
emerging technologies such as, sensors, IoT, and cyber physical system (CPS) are the key
enablers for forming the IoMT, which is the main component for intelligent, smart, and
pervasive healthcare, as shown in Figure 1.
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The main traits of the intelligent technological trends are to fairly allocate the re-
sources, for instance, high throughput, less delay, and high reliability. The key emerging
technologies, for instance, sensors, IoT, and cyber physical systems (CPS) are key enablers
to form the IoMT, which is the main component for today’s intelligent pervasive medical
world. The intelligent and fast networks provide high data rates and low latency which are
essential for remote emergency applications. Due to the high compatibility and integrating
nature of the heterogenous intelligent healthcare technologies it is necessary to have better
interoperability platforms. IoMT driven intelligent healthcare is one of the examples, which
has a built-in global positioning system (GPS) for adequately managing and monitoring
the data traffic through portable devices, because massive data contents are collected,
clustered, and examined through high-capacity sensor-based devices [1]. The human vital
sign signals collection and monitoring are essential and necessary for detecting the patient’s
disease and then to recommend the proper cure. It is easy to collect, transmit and examine
the patient’s data through the sensor-based wearable devices. Still, the main challenges
faced by these devices and conventional methods are not potential candidates to deal with
high energy and battery charge drain, and hence shorter battery lifetime problems. Thus, it
is highly important to develop the energy and battery charge optimization techniques for



Electronics 2021, 10, 367 3 of 17

enhancing the lifetime in IoMTs to facilitate the patients and medical staff at reasonable and
cost-effective rates [2,3]. There are various emerging features of the IoMT based intelligent
pervasive healthcare platforms such as, high reliability, less delay, more visibility, better
Quality of Service (QoS), and user’s perception, i.e., (Quality of Experience (QoE), high
flexibility and scalability. In addition, IoMT’s key components are sensors, actuators, base
stations (BS) and cluster nodes for big data collection and analytics through the internet.

After a rigorous review, some crucial challenges in the IoMT are found, which degrade
the performance of the entire healthcare platform. These issues can be resolved to improve
the performance for achieving high reliability and better facilities in intelligent healthcare.
Several researchers have contributed in the IoMT, and bridge the gap between doctors,
patients, and healthcare entities. In this way ease, accuracy and flexibility can be achieved,
and in addition IoMT provides services to doctors and patients to work more efficiently
with less effort and high intelligence.

The IoMT is one of the emerging technologies to revolutionize healthcare and that
provides a platform to physicians for analyzing the critical patient’s health status over a
stable wireless link, because if there is a stronger link there will be more content delivery,
and hence higher charge and energy drain. To understand the battery discharging process,
it is vital to examine it, and the discharging process starts when the load is connected and
continues till all the stored charges attached to the electrodes are utilized. The remaining
charges are diffused in the battery surroundings and become unused. If some idle time is
inserted, then these unused charges can be transformed into used ones, which supports
the battery recovery effect, for recovering the remaining charge. The primary motivation
behind this is to utilize the available resources of the battery up to its maximum limit
and extend its lifetime, which must have sufficient capacity to hold the load. The main
objectives of this paper are, first to enhance the battery lifetime of wearable devices in
IoMT which increase the capacity of the battery and minimizes charge consumption during
media transmission. Second, to utilize the recovery effect of the battery during discharging
and to enhance the battery lifetime. Third, to test and deploy the proposed ABA and
conventional battery recovery lifetime enhancement (BRLE) on the hardware.

The main aim of the paper is to empower the efficient and sustainable IoMT to
fairly allocate the resources with the help of charge recovery, voltage scaling, and energy
optimization up to the maximum level. In the IoMT the main part which consumes more
energy is the communication, and due to dynamic features of the wireless channel more
packet loss can be observed, and hence less reliability. Here, a novel IoMT framework and
the hardware testbed of the proposed ABA are proposed.

This paper contributes remarkably in three distinct ways as follows.

• First, to propose a self-adaptive battery-aware algorithm based on the battery recovery
effect principle in IoMT. The proposed ABA consumes less energy and enhances the
battery lifetime up to 50 s.

• Second, to propose a novel framework for IoMT based pervasive healthcare.
• Third, to test and deploy the proposed ABA and framework over hardware platform

for energy efficient and longer battery lifetime in IoMT.

The remaining paper is structured as follows: Section 2 presents the detailed related
works, the proposed data transmission framework is given in Section 3, and Section 4
discusses the adaptive battery-aware algorithm. The experimental results and discussion
are revealed in Section 5, and finally paper is concluded in Section 6.

2. Related Works

The data transmission in emerging and intelligent healthcare plays the vital role for
revealing clearer insight in the medical world. Additionally, rapidly evolving electrical
grid technology plays a remarkable role in incorporating high penetration of renewable
energy by establishing battery storage system. The modern adaptive state of charge (SoC)
models the charge and discharge mechanism by avoiding the use of conventional methods,
because these models are important to store more energy with high capacity. The smart
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grid controllers are based on the SoC forecast principle to manage and monitor the battery
energy storage systems (BESS)’s operation. The three main BESS models are considered,
two of them are reserved for parameters optimization and the third is reformulated for
data content delivery and operation. The accuracies of both models are compared by
properly selecting the required parameters [4,5]. The wearable sensors and IoT devices for
healthcare are resource-constrained with limited capability to manage the resources, with
less accuracy and reliability while monitoring and diagnosing the critical patients. As these
tiny devices are used longer, the battery charge and power are increasingly drained. The
electrochemical recovery effects of batteries consume more power from battery by applying
idle-time in between occupied cycles. In practice, there is no evidence of how much the
power is increased through the recovery effect, and it is not clear from most of the batteries
and recent studies showed that the recovery effect does not exist at all. The experimental
verification is presented for the clear battery recovery effect in wearable devices. The power
management schemes that are used for the utilization of the recovery effect can increase
the lifetime of the sensor devices [6,7].

The batteries are non-linear in nature, however, to extend their lifetime is not equiv-
alent to minimizing the consumption of energy [8,9]. The variation in battery features
occur due to increase of the unused charges during the dissipation process. There are
various battery charge optimizations and monitoring traits to extend the battery lifetime for
effectively designing the future power-saving traits with the help of the voltage load. The
analytical battery model for the battery recovery effect is a function of time. It is observed
that the effect of idle time reduces battery charge depletion more and less for the proposed
ABA and traditional BRLE accordingly. As energy saving and battery-driven methods
are linearly related for the efficient, and enhanced scheduling and battery lifetime respec-
tively in the IoMT, because lifetime extension of the entire network will impact the overall
performance of the intelligent healthcare system. The battery features in association with
the energy optimization methods give the accurate outcomes for examining the efficiency
of both the hardware and software platforms. The adopted battery recovery principle in
association with the proposed ABA enhances the IoMT lifetime with high energy efficiency
and reliability, as the dynamic traits of the proposed ABA will lead to the adaptive battery
behavior with time-invariant and linearly coordinated features. Furthermore, the battery
response time is directly associating with its main recovery and discharging characteristics
for enhancing the lifetime of IoMT system with more sustainability, reliability and high
energy efficiency and less charge dissipation [10,11].

The battery behavior is analyzed with the help of proposed electrochemical driven
recovery mechanism. The proposed model is stochastic and fundamental for achieving the
adaptive mechanism with more deterministic battery monitoring mechanism. Overall, this
can be possible through IoT-based wearable devices.

The key array-shaped electrochemical platform is considered with the support of some
simple scheduling algorithms, where the discharge from each cell is accurately accumulated
to optimize the recovery mechanism without initializing any extra delay. The battery
management techniques give the improved performance of the system, so the parameter
selection strategy will show less impact during battery cell behavior analysis [12].

The issue of energy-efficient packet scheduling in a wireless network is presented.
The wireless transmitter is considered for managing the battery charge and capacity [13].
The battery lifetime is extended by introducing idle time, because it gives the optimal
transmission schedule. This can be achieved by effective channel modeling and high
energy efficiency by controlling the transmission power with longer duration [14,15]. In
addition, the electrochemical behavior of the batteries will help the devices to recover more
charge with extended lifetime. Two fundamental delay constraints, such as, deadline and
aggregate driven for the battery-aware wearable devices.

Energy efficiency is an important challenge in intelligent wearable entities including
Body Sensor Network (BSN) with lots of sensors on/around/implanted the patient’s
body [16]. The system-level consumption of the energy model is presented in coordination
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to the transmission distance and data contents over dynamic wireless channel [17]. The
researchers in Nuggehalli et al. [18] present that a body area network (BAN) is used for
systems of medical health care. The basic system for different applications which are
established in BAN is a wireless sensor network (WSN) [19]. The emerging wireless
technologies are empowering due to their new, practical, and innovative design with
various sensors for proper monitoring of the healthcare applications and other medical
systems [20–23]. The main challenge is to decrease the consumption of energy during
the working of the node which is that the actual data transmission will be doing. The
parameters duty cycle energy consumption for baseline, offline and recovery algorithm is
calculated with the optimization algorithm as a genetic algorithm [24–27].

The main issue in mobile computing devices is high battery charge drain and shorter
battery lifetime [28], as maximizing the lifetime of the battery is a critical issue because
of the nonlinear behavior of the battery and its dependency on the discharging profile.
Several issues were observed and examined while introducing voltage scaling, battery
recovery, residual charge factors for obtaining the longer and sustainable IoMT [29]. The
analytical battery model is adopted for recovering the battery charge and energy efficiency
with optimized cost-function. The non-linear behavior of the battery consumes less charge,
or saves more unused charge for enhancing the battery lifetime. To examine the battery
features, charge and energy are optimized efficiently for the sustainable and recovered
charge, hence extending the lifetime of IoMT [30].

We compared our proposed ABA with the traditional method named, battery recovery-
based lifetime enhancement (BRLE) [31], which follows the battery voltage curve for moni-
toring and controlling the transcieving module of the nodes. Additionally, the transceiving
module of the sensor node drains more energy in comparison to the other modules. The
rechargeable batteries are used to power the wireless sensor node in near and remote hos-
pitals and medical centers for proper diagnosing and examination of the patients, which is
the challenging issue.

The battery charge recovery principle in association with the Markov model predicts
the next battery charge level of cluster and child sensor nodes as cluster head (CH) and
cluster member (CM), further details are represented in Figure 2. The lifetime of the battery
can be extended by properly following the time schedule of the transceiver module with
potential entities, i.e., voltage curve of a battery, recovery factor, and distance between
nodes. In addition, the conventional BRLE algorithm increases the throughput and avoids
a connectivity loss or packet loss ratio in the network [31], because there is a limited battery
capacity of mobile phones adopted in its functionality.
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Moreover, the lifetime of the batteries reveals the longevity of a device, and the
modeling of the battery can help to estimate and extend the lifetime. There are various
battery models designed for the computing discharge rate of specific battery types and
systems without involving workloads [31].

3. Proposed Data Transmission Framework in IoMT Devices

The continuous and sporadic nature of the medical data collected by the IoT-driven
portable devices need more battery charge and hence, the energy is drained. The high
image capacity and resource-constrained nature of the portable devices consume more
battery charge while transferring data at remote location without any delay. For instance,
if one physician wants to transfer the reports and medical images of one patient to another
expert physician for consultation/getting advice at a remote location, it is vital to have
efficient data delivery devices, as shown in Figure 2. In this way a logbook can be developed
for the mentorship of the patients and future guidance of the other junior staff at hospitals
and medical centers. In this way healthcare tips will be shared and exchanged to solve
various issues of society.

The proposed medical data transmission are beneficial for patients at remote location,
where resources are not accessible to the distant location villagers. Often, it is not easy
and convenient for emergency patients to contact/reach the medical officers and hospitals
for urgent treatment, consultation and necessary pre-cautions. The dramatic change and
evolution of the digital world became the cornerstone of every field from academia to
medical industries and hospitals. In the mean-time, sensor-driven wearable devices have
facilitated the patients’ lives globally by rectifying the traditional healthcare methods. The
digitalization of the medical world not only gives comfort to the human lives by reducing
the travel and treatment cost but also provides accurate disease detection and examination
even in rural areas. Based on the highly recorded consultation lectures/advices, databases
and medical reports, patients do not have to travel long distances, and they can easily get
everything from highly qualified, skilled, and well-trained medical staff in their homes.
The proposed intelligent data transmission platform is given detailed description as shown
Figures 1 and 3, from both the software and hardware aspect accordingly. Both takes
human vital sign signals such as ECG and medical images and gives output by efficiently
allocating the resources at edge devices. There is a strong and reliable connectivity between
the software and hardware testbeds for achieving an extended battery lifetime with a high
reliability for the modern healthcare platform.

Many challenging medical issues are faced by patients in rural areas without any
appropriate curable remedy. The state-of-the art portable devices for disease detection
and patient’s tracing are developed, but the key problem still faced by medical staff is
the high charge drain and hence shorter battery lifetime of these wearable devices that
lack proper monitoring of the battery status [29,30]. Multimedia transmission is the main
entity to communicate between the hospitals and patients, clearly and effectively, anywhere
with high visibility. In the case where the patient’s condition is not critical, they will be
consulted by an expert and well-trained medical staff through teleconferences for getting
the necessary information and precautions. All the patients are diagnosed and treated by
examining their vital sign signals, and these scans are forwarded to the required medical
centers. The patient’s symptoms scanning is a very important process for accurately
visualizing the healthcare conditions, i.e., respiratory system, diabetic level, blood pressure
and temperature. The sensing technologies have made the lives of parents comfortable
because they can easily monitor their baby’s health conditions by keeping records from
respiration through to diaper change, which is possible through android applications in
smart phones. This will consume more battery charge while transmitting the images and
text contents.
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Figure 3. Hardware platform for human vital sign signal collection through the proposed battery-aware algorithm (ABA).
Real-time ECG data samples are collected, filtered, analyzed, processed, and plotted. For further details see the detailed
hardware implementation in our previous work in [2].

Hardware Setup

The hardware testbed is developed as shown in the Figure 3, by considering 30 subjects
with no symptoms of heart-disease. The entire platform comprises ADS1292R circuit board
(PCB) having CC2540F256 wireless micro control unit (MCU) and Bluetooth Low Energy
(BLE) with 1Mbps physical data rate. Most of the experimental tests performed in the time
schedule between morning and evening at 25 ◦C. The same developed hardware setup is
used in our previous work [2]. The ECG collection and examination with detailed analysis
of single-chip ECG signals is determined with the proper adaptation of filters. The key
filter types for instance, notch, high pass, and low pass entirely rectify the collected ECG
signals, and then compare the performance of the proposed ABA and traditional BRLE
over both hardware and software setups. The hardware testbed is built by considering the
patient’s movement on a bicycle, i.e., the variation in the hear-rate. It is found that heart
rate of the patients increases while driving the bicycle and gradually reduces as the speed
slows. The performance of both the proposed ABA and the conventional BRLE is measured
and examined in terms of the transmission power, received signal strength indicator (RSSI),
battery lifetime, energy dissipation, charge optimization and so on. Additionally, Bluetooth
low energy (BLE) dongle device wearable devices are used for collecting the ECG data
while using the bicycle, so for validating the ECG data contents and removing the different
noises from raw original contents, the ECG simulator with a power line noise, i.e., 50–60 Hz
rectification is adopted. The developed ECG prototype adopts a high speed computer
for gathering and transmitting relevant data through the BLE dongle device. Then the
computer will exploit the rectified ECG signal for clear and accurate analysis, for further
details readers can follow [2]. We consider the real-time datasets of the subjects collected
through the BLE devices. Furthermore, adaptive high pass, low pass and notch filters are
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key role players in removing the unwanted noise. The proposed ABA optimizes the energy
and battery charge level and extends the lifetime with the main recovery effect significantly
unlike the traditional BRLE method. Because the proposed ABA creates the idle time for
recovering the consumed charge, thus improving energy efficiency and battery lifetime.

4. Proposed Adaptive Battery-Aware Algorithm

The proposed adaptive battery aware algorithm (ABA) is based on the battery charge
recovery principle for extending the IoMT lifetime, and hence the better and improved
network performance. In this way the battery behavior and specific features are closely
examined and evaluated to understand the working mechanisms of the entire healthcare
system, as shown in Figure 3.

After initializing the battery parameters in Figure 4, it can be observed that when
the voltage level goes below the upper threshold limit or threshold value (Vu equals to
3.2 V), then the battery recovery charge and recovery time (i.e., idle-time) are calculated. In
that idle time, the remaining unused charges will be recovered efficiently thus the voltage
becomes higher than the Vu, then the total charge dissipation will be computed. If the
voltage level again gets below the lower threshold (Vl as 2.2 V), then several unused charges
will be recovered then sleep mode will be adopted.
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Figure 4. Proposed adaptive battery-aware algorithm, that optimizes the battery charge and its lifetime by considering the
input parameters, i.e., voltage (threshold, upper and lower levels), batter discharge time and rate.
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4.1. Analytical Battery Model

The analytical battery model from Rakjmatov [11] is considered, which is based
on diffusion principle and electrochemical reactions are computed as represented by
Equation (1)

α =

L∫
0

i(t)dt +
L∫

0

i(t)

(
2
+∞

∑
m=1

e−β2m2(L−t)

)
dt (1)

Whereas α denotes the capacity of the battery, β is the non-linearity of the battery, i(t)
gives the current profile and L denotes the lifetime of the battery. For easy understanding
and analysis, Equation (1) can be transformed into discrete form. Considering the load
current arrangement into series of current values I1, I2 . . . . . . , IN whereas, IK denotes the
current for the kth task at time tk with duration of time ∆k = tk+1 − 1. Furthermore, in
order to better understand the characteristics of electrochemical batteries from Equation (1)
the cost function σ(t) over time t is presented for defining the charge consumption process
as shown in Equation (2)

σ(t) =
M

∑
k=1

Ik∆k +
M

∑
k=1

2Ik

∞

∑
m=1

e−β2m2
(

e−β2m2∆k−1
)

β2m2 e−β2m2tk (2)

The charge consumption comprises two parts. The l(t) linear part defines the total
charge consumption which can be fully used by battery. The u(t) non-linear part is non-
negative and defines the unavailable charges, i.e., some number of unused charges.

The discharging curve of the battery is modeled with the voltage function, which
includes the state of charge (SOC) and exponentially decay process taken from Equation (2).
The Equation (1) gives the mathematical expression of discharge curve when SOC equals
st (in Equation (3)), and S (in Equation (4)) is the remaining battery capacity.

F(V) = st ∗ e−β2(tk−t f ) − e−β2(tk−ti)

β2 (3)

F(V) = S ∗ e−β2(tk−t f ) − e−β2(tk−ti)

β2 (4)

Whereas, F(V) is voltage function of the battery, s denotes the decaying slop of SoC, t is
the required battery discharging time, β battery diffusion parameter, tk time required for k
tasks, ti is the time for turning-on the load, t f time for turning-off the load. As the discharge
process starts, the voltage of the battery decreases while getting below the threshold value,
and in this situation, current drawn from battery will be decreased to adjust the load power.
The discharging mechanism reduces the voltage level, which dissipates the entire energy
amount quickly. The Equation (5) reveals the energy dissipation which includes the battery
voltage and current.

E = Vb ∗ Ib ∗ td (5)

Whereas, Vb denotes the battery end voltage, Ib is the current drained from battery
and, td is the discharge time to utilize the complete charges.

Etot =
N

∑
i=1

(
E(b) + Etxi (b, dij)

)
(6)

Whereas, Eseni (b), and Etxi (b, dij) are battery energy, and transmitting energy dissipation.
The discharge energy for the entire battery lifetime is the function of time and diffusion

parameters, as represented by mathematical expression in Equation (7)

F(T, nδ, (n + 1)δ, β) = δ +
π2

3β2

[
e−β2(T−(n+1)δ) − e−β2(T−nδ)

]
(7)
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Whereas, δ is the slot length, and β shows the diffusion parameter which is β = 2π
√

D
W

and it depends on the distance between the electrodes (D) and width of the battery (W). The
charge dissipation will be computed when the load relates to the battery, and it determines
the actual charge utilized amount, as given in Equation (8):

F(T, nδ, (n + 1)δ, β) = δ +
W2

12D

[
e−[

4π2D
W2 ](T−(n+1)δ) − e−[

4π2D
W2 ](T−nδ)

]
(8)

The battery recovery charge which relates the In (current of n battery states), w (depth
of discharge), W (width) and (D) distance between electrodes as revealed in Equation (9):

δk
n =

In ∗ w2

12D

[
e−[

4π2Dkδ
W2 ] − e−[

4π2D(k+1)δ
W2 ]

]
(9)

Whereby, w is the depth of discharge (DOD) which means how much percentage
of charges are remaining. The state of the charge and depth of discharge are inversely
proportional. It can also be said that if SoC increases then DOD decreases and can be
represented as (DOD = 100− SOC). The recovery length tr is modeled in Equation (10),
where C denotes the capacity of the battery.

tr =
W2

4π2Dδ
log

In ∗ w2
[

1− e−[
4π2Dkδ

W2 ]
]

12DC
(10)

DutyCycle =
TtranON + TAct + TtranOFF

TtranON + TAct + TtranOFF + Tslp
(11)

TtranON , time between sleep to idle mode, TAct, time from Idle to sleep mode, TtranOFF,
active time of nodes, Tslp, sleep time of nodes. Then on the basis of these time schedules
duty cycle is calculated in Equation (11). The Shannon capacity for transmission of packets
is given by Equation (12):

C =
1
2

log2

(
1 +

P
N

)
bits/transmission (12)

Whereas P is average signal power constraint, and N is noise power.
The number of transmissions required to transmit one bit is given by Equation (13):

S =
1
C

(13)

From Equations (12) and (13), we will get Equation (14):

P = sN
(

2
2
s − 1

)
(14)

Assume that with single data byte transmission one joule of energy will be dissipated
as shown in Equation (15):

e(s) = sP = sN(2
2
s − 1) (15)

Thus, energy depletion for transmitting one packet is shown in Equation (16):

e(s) = LsN(2
2
s − 1) (16)

Whereas L is the packet length in bits.

4.2. Mealy Machines Based State Mechanism

The mealy machines-based state mechanism is developed for changing states whose
output values are determined both by its current state and the current inputs as shown in
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Figure 5. In the model the state of the sensor node is represented as S0 (Active element),
while S1 (battery element) and S2 (sleep) are based on battery recovery process.
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Figure 5. Mealy machine-based state transition mechanism, in this process state of the sensor node,
i.e., S0 (active element), S1 (battery element), S2 (sleep mode), and voltage levels (threshold and
upper) are the main entities for battery recovery principal.

Figure 5 explains how the battery states are changing with the help of the adaptive
mealy machines’ mechanism. Initially the state will be in the active mode when the battery
is fully charged and actively associated to the surface of electrodes. As the discharging
process rapidly starts when the nearby electrodes are utilized at a lower voltage level,
then battery state will be changed from the unused charge to the recovery charge with
the insertion of some idle time. Thus, these battery elements reached the electrodes of the
battery and utilizes the whole charge completely and then after that it goes to sleep. This
recovery effect increases the lifetime of the battery by properly following the state changing
mechanism, as illustrated in Figure 5.

5. Results and Discussion

This section presents the detailed experimental setup. The Convex optimization tool
in MATLAB is adopted to implement both the proposed ABA and conventional methods,
i.e., BRLE. Performance of the former and later is compared and analyzed in terms of
networks metrics for instance, battery lifetime, energy dissipation, battery charge recovery,
and lifetime of entire IoMT system, as revealed in Figures 6–10. Table 1 shows the detailed
parameter list.

Table 1. Experimental entities and values.

Parameter Value

Battery used Li-ion battery
Diffusion parameter (β) 0.31
Time when load is on ti 0
Time when load is off t f 3 h
Battery end voltage Vb 4.2 V

Current drawn from battery Ib 0.52 A
Distance between electrode (D) 18 mm

Width of the battery (W) 65.2 mm
Capacity of the battery 2500 mAH

Data 32 bytes
Packet Length 150 bytes
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Figure 6. (a) Charge recovery, (b) discharge mechanism, tradeoff between time (hours) and voltage at different values is
derived for both proposed ABA and conventional battery recovery lifetime enhancement (BRLE) to compute the charge
recovery and discharge level.
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It is observed that the former has slightly less discharge than the later. (b) Reveals the energy dissipation pattern, where the
former has less energy dissipation than the later.
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Figure 10. (a) The tradeoff between the recovery time (s) and battery charge optimization is revealed for the proposed ABA
and BRLE. It is shown that the former optimizes the charge at a better level than the later. (b) The relationship between the
packet error rate and battery lifetime in the IoMT is drawn. The lifetime shortens with the increase of the packet error rate,
which is less for the former and higher for the later.

Simulation Parameters

The Figure 6a,b shows the relationship between the time and voltage for the battery
recovery, and discharge process, respectively. It is shown that high voltage is utilized
in the battery recovery charge and discharge process sequentially. The entire statistics
are extracted in Figure 6a and Table 2, with the linear coordination between the recovery
charge and lifetime extension for IoMT.

Table 2. Comparison of recovery voltages.

S. No Battery Lifetime in (Seconds) Starting Voltage for Recovery (Volts) Voltage after Recovery (Volts)

1. Continuous 4.169327 -
2. 5 4.169327 4.169350
3. 10 4.169327 4.169418
4. 15 4.169327 4.169532
5. 20 4.169327 4. 169532
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It can be observed that slightly more voltage is utilized by the proposed ABA than the
conventional BRLE, as shown in Figure 6b. As we can see, there are voltage increases of
up to 0.040297 for the proposed ABA algorithm. The battery charge recovery mechanism
for the proposed ABA and traditional BRLE methods are presented in Figure 7a. It is
shown that the former recovers more charge in a short period of time, unlike the later.
The Figure 7b shows the discharge curve of the proposed ABA and BRLE algorithms.
Table 3 provides the data for the charge and energy dissipation. It is found that the charge
dissipation of the proposed ABA is less than the traditional BRLE algorithm. The former
recovers more battery charge, unlike the later. It is shown that with the increase of time span
the recovery charges decreases, and after utilization of the entire charge it approximately
becomes zero. Hence, we can say that maximum charges are utilized.

Table 3. Comparison of charge dissipation and energy dissipation.

Algorithms Charge Dissipation (mA.mint) Energy Dissipation (J)

Proposed ABA 16,657.140903577998 89.7
BRLE 18,742.6591179819989 95.68

Figure 8a shows the energy discharge in which the x-axis and y-axis show the time and
energy discharge accordingly. The energy discharge of the batteries decreases with time. The
battery powered devices could have a life of 3 to 4 years. After that the battery will not work
properly and does not supply the charges to load. Figure 8b shows that the proposed ABA
algorithm consumes low energy, whereas the BRLE dissipates more energy. Hence, it can
be said that former is a potential candidate for the IoMT, with a total recovery time of up to
50 s, whereas the later recovers less charge with a shorter recovery time of 16 s.

Figure 9a,b shows the recovery time and battery lifetime, where the analysis shows
that the proposed ABA has a high recovery time, while the traditional BRLE shows a
shorter recovery time. Thus, there is less lifetime improvement of the later than the former.
Therefore, it can be said that the proposed ABA extends the battery lifetime to a larger
extent than the conventional BRLE, so the former is a promising potential candidate for the
intelligent healthcare applications.

The Figure 10a presents the battery charge optimization in association with recovery
time. It is observed that as the recovery time increases the remaining charge will be
recovered significantly and more energy would be provided to the IoMT system. The
calculated duty-cycle (87.9%) gives battery capacity of 2500 mAh. The Figure 10b, shows
the packet error rate for both proposed ABA and conventional BRLE algorithms. The
packet error rate for the former is less, whereas for the later is higher, which means more
data packets will be lost in the BRLE, unlike the proposed ABA. The packet error rate
linearly increases with the number of cycles, at 1000 number of cycles the packet error
rate will be increased to a large extent, and by reducing the number of cycles up to 10,
the packet error rate will be traduced as depicted in Figure 10b. Hence, it can be said that
the packet error rate is linearly proportional to the battery lifetime extension of the IoMT
system. The comparison of previous techniques is given in Table 4.

The sporadic and unscheduled data interruption during transmission and communi-
cation creates unplanned outages, and it is mostly observed in the main transmission part
of the IoMT. Due to the higher energy depletion in the nodes with proximity to the sink
region, these nodes will die sooner from outer sub-region, because they send their own
data and also forward outer sub-regions data to the sink. This will create the energy hole
near to the sink region due to the shorter time, thus, the proposed ABA algorithm increases
the throughput and reduces the unplanned outages and hotspot.
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Table 4. Comparison of previous techniques for the Internet of medical Things (IoMT).

References Existing and Proposed
Algorithms Strengths Weaknesses

[15]

A Bi-Level Optimization
Approach to Charging Load
Regulation of Electric Vehicle

Fast Charging Stations Based on
a Battery Energy Storage System

Battery energy storage system
(BESS) for charging load control,

which is a more user-friendly and
robust approach to perturbations

Does not focus on battery
charge recovery, lifetime
extension and reliability

in healthcare

[25]

Hierarchical Energy
Optimization Strategy and its

Integrated Reliable Battery Fault
Management for Hybrid

Hydraulic-Electric Vehicle

Suboptimal control strategy based
on fuzzy logic and neural

network for minimizing total
energy consumption while

ensuring a better battery life

Emergency healthcare, and
reliability with hardware

platform are not discussed.

[31]

Battery Recovery Based
Lifetime Enhancement (BRLE)

Algorithm for Wireless
Sensor Network

Transceiver module based on the
battery terminal voltage, recovery
factor and distance between the

nodes, the lifetime of the network
is enhancing

Does not consider discharge
time and recovery time of the

battery in a
real-time environment.

[16]
An energy efficient wireless

body area network using
genetic algorithm.

Genetic algorithm used to
optimize the energy consumption

in WBAN

Battery charge recovery, and
hardware setup are

not considered.

[27]
An energy-efficient fog-to-cloud

Internet of Medical
Things architecture

Bluetooth technology-based
energy efficient sleep and

wake-up modes

Does not focus on battery
charge recovery, reliability and

hardware setup

[1,21]

A Multi-sensor Data Fusion
Enabled Ensemble Approach for

Medical Data from Body
Sensor Networks

QoS optimization in terms of
mobility, reliability, and packet

loss ratio for BSNs

Does not consider the battery
recovery and discharging time,

and hardware test-bed

Our Proposed ABA

A Novel Adaptive
Battery-Aware Algorithm for

Data Transmission in IoT-based
Healthcare Applications

The proposed ABA implements
and adopts the recovery effect for

enhancing energy efficiency,
battery lifetime, reliability,

throughput and reduces the
unplanned outages and hotspot

Slightly more complexity in
hardware setup and more

processing time

6. Conclusions and Future Work

The battery’s properties of lifetime extension, energy optimization and high reliability
are the key challenges in the IoMT based intelligent healthcare in today’s era. Thus, this
research contributes three main contributions, first, a novel adaptive battery-aware algo-
rithm (ABA) is proposed, which utilizes the charges up to its maximum limit and recovers
those which are unused. The proposed ABA adopts this recovery effect for enhancing
energy efficiency, battery lifetime, throughput, and reliability. Second, to propose a novel
framework for the IoMT based intelligent pervasive healthcare applications. Third, to test
and deploy the proposed ABA and framework over a hardware platform and compare it
with the state-of-the art conventional BRLE method for comparing energy efficiency and
battery lifetime extension in the IoMT. The proposed ABA algorithm increases the lifetime
of the battery and provides high performance as compared to the conventional BRLE
algorithm, and the former consumes low energy and supports the continuous connectivity
of devices, unlike the later. The analytical model of the Li-ion battery is considered, and
an extensive experimental setup is performed which shows that the proposed ABA algo-
rithm outperforms the BRLE by reducing the energy drain. The proposed ABA recovers
50% more charge and hence has a longer battery lifetime than the traditional BRLE (0.0598).
The extracted experimental results reveal that more charge is recovered, and hence there
is a longer battery lifetime with high reliability, with a smaller packet error rate, with
enhanced energy efficiency by the proposed ABA as compared to the traditional BRLE
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method. Due to the usage of the battery, pushed to its maximum limit in the proposed
ABA, it requires protection to handle the high voltages and it has long sleep durations
for achieving the high charging time. Hence, it can be said that our proposal is a very
promising and potential candidate for the pervasive and intelligent healthcare application
in the IoMT system.

In the near future we will adopt the proposed ABA for real-time multimedia applica-
tions in the hospitals at remote locations over 5G-driven wearable devices.
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