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Abstract: The competitive relationship between the surface flashover of the coplanar electrodes
and the body current channel was investigated. Breakdown behavior of GaAs photo-conductive
semiconductor switch (PCSS) with a backside-light-receiving coplanar electrode structure was studied
in this paper. GaAs PCSS was triggered by the laser pulse with an extrinsic absorption wavelength
of 1064 nm. Special insulating construction was designed for GaAs PCSS, while the surface of the
electrodes was encapsulated with transparent insulating adhesive. Our first set of experiments was
at a bias voltage of 8 kV, and the surface flashover breakdown of GaAs PCSS was observed with
10 Hz triggering laser pulse. In the second experiment, at a bias voltage of 6 kV, the body current
channel breakdown appeared on the backside of the GaAs PCSS. Compared with these results,
the existence of a competitive relationship between the surface flashover breakdown and the body
current channel breakdown of the GaAs PCSS was confirmed. When the bias voltage is set within a
certain range (just reaching avalanche mode), GaAs PCSS with a backside-light-receiving coplanar
electrode structure will undergo the body current channel breakdown. This finding is also consistent
with the simulation results.

Keywords: GaAs PCSS; coplanar electrode structure; surface flashover breakdown; body current
channel breakdown

1. Introduction

Photoconductive semiconductor switches (PCSSs) have been gradually used in ultra-
fast electronics and high-power pulse technology because of their essential characteristics:
fast response, low jitter, optical trigger isolation, MHz working repetition rates, and com-
pact structure [1–8]. GaAs PCSS is a direct-gap semiconductor with a bandgap of 1.42 eV,
which corresponds to intrinsic absorbance at 876 nm. It has extrinsic absorption at higher
wavelengths. The lifetime of extrinsic carriers of GaAs PCSS spans from picoseconds to
nanoseconds, which makes GaAs PCSS suitable for the generation of a narrow pulse if such
short conducting times are required. Two working modes of the GaAs PCSS are linear and
nonlinear mode [9–12]. Under the linear mode, the generation of a photon is accompanied
by the generation of an electron-hole pair. All carriers that pass through the switch are
generated by incident electrons. Excluding the effects of an external electric circuit, the
conducting time of the PCSS depends on the pulse rise time. A high-energy laser pulse is
required to trigger the conducting stage of the PCSS under the linear mode, which limits its
application in the generation of ultra-wide spectrum pulses at a high repetition frequency.
Nonlinear mode is also called avalanche mode or high-gain mode. It appears when GaAs
PCSS with a high-bias electric field is triggered by a light pulse, and the incident photons
generate several electron-hole pairs. These carriers collide and ionize to generate enough
electron-hole pairs to render the PCSS conductive. The energy of the laser pulse required to
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trigger the conduction stage of the PCSS under the avalanche mode is three to five orders
of magnitude lower than in the case of the linear working mode. Therefore, under the
avalanche mode, compact laser diodes can be employed as a triggering light source to
replace high-energy laser.

On the basis of the relative position of the electrodes, photoconductive devices can
have a coplanar electrode structure and a vertical geometry electrode structure. In the
coplanar electrode structure, positive and negative electrodes of the PCSS are normally
placed on the same side of the semiconductor material. This electrode configuration
provides easy manufacturing, simple semiconductor processing, large laser incident surface
between the electrodes, and straightforward adjustment of the space between the electrodes
to meet different requirements [13–19]. However, the surface breakdown of the coplanar
electrode structure is more likely to occur under high voltage. The electric field required
for the surface breakdown is more than one order of magnitude lower than that for the
breakdown of a dielectric body. Therefore, the electrode surface of the PCSS with coplanar
electrode structure should be modified to increase the operating voltage of the device. In
previous studies, the flashover voltage of the back-triggered PCSS was found to be higher
than that of the front-triggered one. It is generally considered that the illuminated area and
the electrodes side are separated at the two sides of the PCSS when back-triggered.

In this paper, GaAs PCSS with backside-light-receiving coplanar electrode structure is
established. Through semiconductor simulation, a typical phenomenon of body current
channel breakdown was found in certain bias voltage condition, instead of common surface
flashover. When GaAs PCSS was back-triggered, a competitive relationship between
surface flashover breakdown and the body current channel breakdown can be observed.
Experiments were designed to prove this competitive relationship. The breakdown caused
by the surface flashover of the coplanar electrodes may be inhibited to a certain extent
if the avalanche current filament path generated in the PCSS device is at a reasonable
distance from the surface of the coplanar electrodes, and whether the surface where the
coplanar electrodes are embedded is insulated to modulate the spatial distribution of the
surface current. It can be supplied to produce further improvements in the performance of
GaAs PCSS.

2. Experimental Setup and Typical Waveform
2.1. Experimental Circuit and PCSS Structure

The experimental circuit of the GaAs PCSS featuring the backside-light-triggered
coplanar electrodes is shown in Figure 1a. RDC, 5 kΩ water resistance, was used as current-
limiting resistance, with the equivalent inductance of 10 µH. A ceramic capacitor Cm with
a capacitance value of 20 nF was used as a charging capacitor. Composed of three 100 Ω
non-inductive resistances in parallel connection, RL were used as load resistance to reduce
stray inductance Lm. The equivalent resistance value of the load resistance RL was 33.3 Ω.
The load output waveform, VR, was measured using a high-impedance voltage probe.
GaAs PCSS was triggered in the extrinsic absorption mode. The experiment was carried
out using a high-power pulsed laser with an extrinsic absorption wavelength of 1064 nm.
The width of the laser pulse was 1.6 ns and laser pulse energy was about 60 mJ. To protect
the PCSS device, we used a 1:100 attenuation lens to weaken the laser energy. The actual
incident laser pulse energy of ≈0.6 mJ was determined. To make the position of the laser
pulse incident point easily adjustable, we mounted the base of the experimental platform
on the optical guiding rail. The incident laser can be ensured to shine on the backside of
the electrode of the photoconductive device by adjusting the experimental platform to a
proper location along the guiding rail. As the whole experimental platform was operating
under the air conditions, we placed insulation paper at the contact points of the platform
device to ensure complete high-voltage insulation of the platform. A photoelectric probe
was placed in the vicinity of the GaAs PCSS to detect the waveform of the triggering light
pulse VL.
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terns; (b) surface flashover breakdown and (c) body current channel breakdown. 

The structure of GaAs PCSS used in this experiment is shown in Figure 2. It had a 
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over, its electrode gap between the electrodes was 5 mm. The electrode was made of 
Au/Ge/Ni alloy, and good ohmic contact was formed on the surface of the GaAs by sub-
sequently applied evaporation, deposition, and high-temperature annealing steps. To 
avoid thermal damage of the photoconductive device during the welding process, we 
used the Sn42Bi58 low-temperature welding paste to weld the photoconductive device by 
hot-air welding. Copper planar wires with a length of 1 mm were stretched out from each 
end of the electrode. Since the GaAs device used in the experiment was equipped with 
coplanar electrodes, the dielectric voltage-withstand performance of the device should be 
improved. A kind of silicone gel adhesive (Sylgard 184) was used to ensure electric insu-
lation on the surfaces of electrodes. As shown in Figure 2, Sylgard 184 was poured into a 
pre-designed packing box in which the photoconductive device was placed. The whole 
packing box was then subjected to a degassing process. Finally, the packing box was 
placed in the vacuum oven and cured by constant heating. The cured packaging box was 
taken out after cooling down in the ambient environment.  
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Figure 1. (a) Equivalent circuit schematic diagram of GaAs photoconductive semiconductor switch (PCSS) with the
backside-light-triggered coplanar electrodes and two possible breakdown patterns; (b) surface flashover breakdown and (c)
body current channel breakdown.

The structure of GaAs PCSS used in this experiment is shown in Figure 2. It had a dark
electrical resistivity of ≈5 × 107 Ω/cm and electron mobility of about 8500 cm2/V·s. With
the dimensions of 14 × 6 × 0.6 mm, it was equipped with coplanar electrodes. Moreover,
its electrode gap between the electrodes was 5 mm. The electrode was made of Au/Ge/Ni
alloy, and good ohmic contact was formed on the surface of the GaAs by subsequently
applied evaporation, deposition, and high-temperature annealing steps. To avoid thermal
damage of the photoconductive device during the welding process, we used the Sn42Bi58
low-temperature welding paste to weld the photoconductive device by hot-air welding.
Copper planar wires with a length of 1 mm were stretched out from each end of the
electrode. Since the GaAs device used in the experiment was equipped with coplanar
electrodes, the dielectric voltage-withstand performance of the device should be improved.
A kind of silicone gel adhesive (Sylgard 184) was used to ensure electric insulation on the
surfaces of electrodes. As shown in Figure 2, Sylgard 184 was poured into a pre-designed
packing box in which the photoconductive device was placed. The whole packing box was
then subjected to a degassing process. Finally, the packing box was placed in the vacuum
oven and cured by constant heating. The cured packaging box was taken out after cooling
down in the ambient environment.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 10 
 

 

was placed in the vicinity of the GaAs PCSS to detect the waveform of the triggering light 
pulse VL. 

RDC

Cm

RL

PCSS

UDC

Lm

RDC

Cm

RL

UDC

Lm

Working for long time

RDC

Cm

RL

UDC

Lm

(a)

(b)

(c)

1064 nm Laser trigger

Surface flashover 
breakdown

Body current 
channel 

breakdown

1064 nm Laser trigger

1064 nm Laser trigger

 
Figure 1. (a) Equivalent circuit schematic diagram of GaAs photoconductive semiconductor switch 
(PCSS) with the backside-light-triggered coplanar electrodes and two possible breakdown pat-
terns; (b) surface flashover breakdown and (c) body current channel breakdown. 

The structure of GaAs PCSS used in this experiment is shown in Figure 2. It had a 
dark electrical resistivity of ≈5 × 107 Ω/cm and electron mobility of about 8500 cm2/V·s. 
With the dimensions of 14 × 6 × 0.6 mm, it was equipped with coplanar electrodes. More-
over, its electrode gap between the electrodes was 5 mm. The electrode was made of 
Au/Ge/Ni alloy, and good ohmic contact was formed on the surface of the GaAs by sub-
sequently applied evaporation, deposition, and high-temperature annealing steps. To 
avoid thermal damage of the photoconductive device during the welding process, we 
used the Sn42Bi58 low-temperature welding paste to weld the photoconductive device by 
hot-air welding. Copper planar wires with a length of 1 mm were stretched out from each 
end of the electrode. Since the GaAs device used in the experiment was equipped with 
coplanar electrodes, the dielectric voltage-withstand performance of the device should be 
improved. A kind of silicone gel adhesive (Sylgard 184) was used to ensure electric insu-
lation on the surfaces of electrodes. As shown in Figure 2, Sylgard 184 was poured into a 
pre-designed packing box in which the photoconductive device was placed. The whole 
packing box was then subjected to a degassing process. Finally, the packing box was 
placed in the vacuum oven and cured by constant heating. The cured packaging box was 
taken out after cooling down in the ambient environment.  

 
Figure 2. GaAs PCSS with backside-light-triggered coplanar electrodes and its insulation struc-
ture. 

  

Figure 2. GaAs PCSS with backside-light-triggered coplanar electrodes and its insulation structure.

2.2. Waveforms of GaAs PCSS Working in Avalanche Mode

The waveform of output current for different bias voltages Figure 3a shows that at
a low bias voltage (2 kV), GaAs PCSS worked in linear mode. When the voltage was
gradually increased, PCSS gradually shifted from the linear mode to the avalanche mode.
At a bias voltage of 6 kV, the stable avalanche mode of the GaAs PCSS was achieved. In the
first set of experiments, the triggering of the GaAs PCSS at 10 Hz repetition frequency was
performed at a stable bias voltage of 8 kV. Then, in a second experiment, the same GaAs
PCSS was used at 6 kV for long-time working.
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Figure 4 shows working behavior of the PCSS gradually decreased for long period
of time until the device broke down. Its working state is divided by three stages. At first,
GaAs PCSS works in avalanche mode normally. Working for a long period of time, GaAs
PCSS begins to occur damage on its surface. This is referred to as the pre-breakdown state.
Output current also goes down a little. Finally, as the damage accumulates, it is totally
broken down and its output current no longer declines.
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The lifetime of the GaAs avalanche semiconductor switch by back-side triggering
(relative to electrode position) was investigated experimentally. The tests were given to
three groups. One switch biased at 6 kV and another one biased at 8 kV were tested in a
group. Once the pre-breakdown state was observed in the tests, the switch was defined as
damage. The number of pulses already operated was defined as the lifetime of the switch,
and the average lifetime for each test is presented in Table 1.
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Table 1. Lifetime of the switch under different breakdown mode.

Breakdown Mode
Group of Tests

1 2 3

Body current channel (6 kV) 1.5 × 106 1.2 × 106 1.4 × 106

Surface flashover (8 kV) 3 × 105 4 × 105 3 × 105

The longevity achieved with body current channel breakdown at bias voltage of
6 kV was 3–5 times longer than that with surface flashover at 8 kV. In addition, the GaAs
avalanche semiconductor switch only operated 4 × 105 pulses with surface flashover
breakdown at 10 Hz in our experiment. A longer lifetime up to 106 shots was achieved
with body current channel breakdown when the device operated at 10 Hz. It was obvious
that the body current channel breakdown mode was with lower bias voltage and higher
quality to withstand voltage than surface flashover breakdown. This can be used to explain
results of lifetime tests.

2.3. Microscopic Observation for Breakdown GaAs PCSS

As shown in Figure 5, the damaged PCSS was taken out from silicone gel adhesive and
further observed by scanning electron microscopy (SEM). The surface flashover breakdown
appeared on the surface of the side with embedded coplanar electrodes, while ablated
marks appeared on the anode. A white, curved mark in Figure 5a shows the exact location
of surface flashover under the bias voltage of 8 kV. The breakdown area between the
electrodes, highlighted in the red frame, was investigated. It can be seen that the surface
flashover channel went through the two electrodes without any changes on the backside of
the device. In Figure 5b, breakdown points are shown on the backside of GaAs PCSS for the
6 kV experiment. This indicates prominent breakdown point(s) with dielectric sputtering,
and traces of surface filament current discharge can be also observed. This means body
current channel breakdown was formed through two sides of the PCSS.
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The experimental results show the effect of the bias voltage on the breakdown mechanism
of the GaAs PCSS device. Higher bias voltage (8 kV) in the first experiment induced damage
due to the surface flashover breakdown. On the other side, a lower bias voltage (6 kV) in the
second experiment induced the damage due to the body current channel breakdown.
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3. Discussion and Analysis of Breakdown Behavior for Different Bias Voltage
3.1. Analysis of the Avalanche Process and Discharge Paths

When the bias voltage of the GaAs PCSS is higher than the avalanche threshold voltage,
space charges are generated inside the semiconductor material triggered by the light pulse.
The space charge density inside the semiconductor, ρ, can be obtained according to the
Poisson equation and the charge continuity equation in Equation (1).

∇ · E = ρ
εε0

j = n0evd(E)
dρ
dt = −∇ · j

(1)

For GaAs semiconductor material, n0 is equilibrium carrier concentration. νd is flowing
speed of carrier, which is related to electric field E in the direction of carrier flow. Three
formulas in Equation (1) can be further developed as follows:

dρ
dt = −∇ · [n0evd(E)] = −n0e dvd

dE ∇ · E
= − n0e

εε0

dvd
dE ρ = − ρ

τd

(2)

τd is defined as the dielectric relaxation time, which represents time constant for space
charge attenuation. Space charge density ρ can be obtained as exponential form.

ρ = ρ0 exp
(
− t

τd

)
(3)

When the electric field is at a relatively high level (3.2–4.2 kV/cm), the drift velocity of
electrons in GaAs decreases, and there is a negative differential mobility region. This has
been named as the Gunn effect. Under Gunn conditions, τd becomes negative, indicating
that the space charge does not disappear but increases with time. Once a small electric
dipole layer forms in the semiconductor, it will continuously grow during the movement
of charge carriers, forming a high-field charge domain. Obviously, when the transit time is
much longer than the dielectric relaxation time τd, the charge domains can fully grow and
maintain at a stable level, as shown in Equation (4).

L
vd

>> τd =
εε0

n0e

(
dvd
dE

)−1
(4)

L is drift path length of the carrier. Ideal Gunn effect can be obtained by the conversion
of Equation (4) with path integral form:

∫ L

0
ndL >>

εε0vd
e

(
dvd
dE

)−1
≈ 1× 1012cm−2 (5)

Thus, it can be concluded that when the conditions specified by Equation (5) are
met, the stable charge domains will be generated in GaAs PCSS. This means the trend of
stable charge channel is not always along shortest path and is also dependent on photon-
generated carrier concentration. It can be used to explain competitive relationship between
two breakdown modes. Although breakdown path of body current channel is longer than
surface flashover, there is higher carrier concentration on backside of GaAs PCSS with
backside-light triggered. Thus, it is possible for two different kinds of breakdown modes
to occur.

Generally, a dipole composed of an excess electron and an electron-depleted hole
will be generated at the light-triggering position. The dipole creates an electric field at
this position, and the internal electric field strength is stronger than the bias voltage. This
electric field will force the electron in the dipole to move at a speed lower than that of the
external electrons. As a result, since the trailing electrons behind the dipole arrive relatively



Electronics 2021, 10, 357 7 of 9

fast, the excess electrons accumulate in the region. Similarly, as the electrons in front of the
dipole also leave relatively fast, the electron-depleted holes in the depletion region also
accumulate. The electric field in this area gradually increases, while the external electric
field gradually decreases. When these two electric fields reach equilibrium, the dipole does
not grow further, forming a charge domain. This charge domain drifts from the cathode to
the anode under the influence of the electric field.

3.2. Simulation Analysis for Avalanche GaAs PCSS

To simulate the breakdown behavior of the GaAs PCSS with a backside-light-receiving
coplanar electrode structure, we used the Silvaco TCAD semiconductor simulation software.
In the two-dimensional simulation, the lower edge is the contact electrode of the GaAs PCSS,
and the remaining part is the substrate of the GaAs photoconductive material. It assumes
that GaAs semiconductor is n-type and its doping concentration is 107 cm-3. Voltage on
cathode was set as 6 kV. Carrier–carrier scattering mobility model (ccsmob), parallel electric
field-dependent mobility model (fldmob), Selberherr’s impact ionization model (impact
selb), and Shockley–Read–Hall recombination model (srh) were used to describe carrier
behavior in the semiconductor simulation. Simulation for transient characteristics was
taken from 0 ns to 10 ns, which was with a time step of 0.01 ns. The current density and
concentration of photogenerated carriers in the device were simulated separately. The
simulation results, shown in Figure 6, confirm that there was a bulk current channel inside
the GaAs PCSS device.
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These results show that in a certain range of bias voltage, GaAs PCSS with a backside-
light-receiving coplanar electrode structure will undergo body current channel breakdown,
being consistent with the simulation results. Meanwhile, the comparison of results shows
that there is a competitive relationship between the surface flashover breakdown and the
body current channel breakdown within the coplanar electrodes. In the first experiment,
although the surface of the device was completely insulated, the surface breakdown
flashover still occurred when the GaAs PCSS worked at a relatively high bias voltage. This
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phenomenon was partly related to the fact that the experimental platform was powered by
a continuous DC power supply. The existence of a large steady bias voltage between the
two electrodes of GaAs PCSS device likely yielded the surface breakdown flashover before
the body current channel breakdown occurred.

Other simulation conditions were fixed and set voltage on cathode as 8 kV. The
current density and concentration of photogenerated carriers in the device were simulated
separately, as shown in Figure 7. The simulation results show in Figure 7a that surface
section between electrodes of GaAs PCSS was completely covered by high electric field,
which led to surface flashover breakdown. As shown in Figure 7b, body current channel
was entirely formed in comparison with results in Figure 6c under higher bias voltage.
In summary, this confirms that there was a body current channel inside the GaAs PCSS
device and a flashover on the surface of GaAs PCSS at the same time. That means there
was a competitive relationship between two breakdown modes observed in the experiment,
which was consistent with experiment results.
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4. Conclusions

This experiment investigated GaAs PCSS with a backside-light-receiving coplanar
electrode structure. The obtained results indicated a competitive relationship between the
surface flashover and the body current channel of GaAs PCSS triggered by a laser pulse
with an extrinsic absorption wavelength of 1064 nm. According to the theoretical analysis
and simulation results, when the bias voltage was at a relatively high level, the body current
channel appeared in the GaAs PCSS. An insulating package box was designed for the GaAs
PCSS, while the surface of the electrodes was encapsulated with Sylgard 184. The triggering
of the GaAs PCSS at a repetition frequency and a bias voltage of 8 kV resulted in the surface
flashover breakdown of the electrodes on the electrode surface of the GaAs PCSS. On the
other side, the triggering of the GaAs photoconductive device at a repetition frequency at a
bias voltage of 6 kV induced the body current channel breakdown on the backside of the
GaAs PCSS. When the bias voltage is set within a certain range, GaAs PCSS will undergo
the body current channel breakdown with a backside-light-receiving coplanar electrode
structure. This finding is consistent with the simulation results. The experimental results
confirm a competitive relationship between two breakdown mechanisms of GaAs PCSS.
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