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Abstract: Semantic image segmentation has a wide range of applications. When it comes to medical
image segmentation, its accuracy is even more important than those of other areas because the
performance gives useful information directly applicable to disease diagnosis, surgical planning,
and history monitoring. The state-of-the-art models in medical image segmentation are variants
of encoder-decoder architecture, which is called U-Net. To effectively reflect the spatial features in
feature maps in encoder-decoder architecture, we propose a spatially adaptive weighting scheme
for medical image segmentation. Specifically, the spatial feature is estimated from the feature maps,
and the learned weighting parameters are obtained from the computed map, since segmentation
results are predicted from the feature map through a convolutional layer. Especially in the proposed
networks, the convolutional block for extracting the feature map is replaced with the widely used
convolutional frameworks: VGG, ResNet, and Bottleneck Resent structures. In addition, a bilinear
up-sampling method replaces the up-convolutional layer to increase the resolution of the feature
map. For the performance evaluation of the proposed architecture, we used three data sets covering
different medical imaging modalities. Experimental results show that the network with the proposed
self-spatial adaptive weighting block based on the ResNet framework gave the highest IoU and
DICE scores in the three tasks compared to other methods. In particular, the segmentation network
combining the proposed self-spatially adaptive block and ResNet framework recorded the highest
3.01% and 2.89% improvements in IoU and DICE scores, respectively, in the Nerve data set. Therefore,
we believe that the proposed scheme can be a useful tool for image segmentation tasks based on the
encoder-decoder architecture.

Keywords: deep learning; self-spatial weighting; adaptive weighting; medical image segmentation

1. Introduction

Over the past few years, deep convolutional neural networks have made a lot of
progress in computer vision-based tasks, including image classification [1,2], object de-
tection [3,4], semantic segmentation [5,6], human pose estimation [7,8], image caption-
ing [9,10], and so on.

Semantic image segmentation has a wide range of applications in the fields of com-
puter vision, robotics, medical, and computer graphics. Image segmentation in natural
images is used to parse the scene, and its performance has improved so that it can be
applicable to automatic driving and robot sensing, to name a few [6,11]. When it comes to
medical image segmentation, accuracy is even more important than other areas because
the result gives important information for disease diagnosis, surgical planning, and history
monitoring [12].

State-of-the-art scene segmentation frameworks for natural images are based on
the fully convolutional network (FCN) [13], and the state-of-the-art models for medical
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image segmentation are variants of the encoder-decoder architecture called U-Net [14,15].
Encoder-decoder networks for segmentation use a similar structure: Skip connections,
and coarse-grained feature maps. The skip connection-based scheme has been used in
many successful image segmentation [14,16] and classification [17] methods. An attention
framework was used to highlight salient features that stand out in many computer vision
tasks, including segmentation, to take into account the nature of the task in the feature
maps [18–20]. Considering the goal of segmentation, which assigns a category label to each
pixel in the image, the segmentation result is obtained from the last feature map via the
convolutional layer, so the feature maps in the encoder-decoder architecture should reflect
the spatial characteristics of the task.

In encoder-decoder architecture, we propose a spatial adaptive weighting method for
encoder-decoder architecture to reflect the spatial characteristics of feature maps. Since
the segmentation result is predicted from the feature map through the convolutional
layer [11,14,18], we estimate the spatial characteristics from the feature map and get the
weighting parameters learned from the computed map. The weighting parameters are
multiplied and added to the feature maps of the architecture.

We propose a self-spatial adaptive weighting scheme in a U-Net architecture (SS-U-Net)
and apply it to medical images. The convolution block for extracting feature maps from the
proposed network is replaced by the widely used convolution frameworks VGG, ResNet,
and Bottleneck Resent structures. The up-convolution layer to increase the feature map
resolution is replaced by the bilinear up-sampling method. To evaluate the proposed
scheme, we use three sets of medical imaging data to include different medical imaging
modalities: microscopy and ultrasound. Our experiments show that the proposed method
has the smallest model size compared to the standard U-Net, while improving performance
on three data sets. In particular, the model with the bottleneck structure, U-Net(B), has
the smallest size among the compared methods, and is only about 60% the size of a
standard U-Net.

2. Related Work

For natural image segmentation, the fully convolutional network (FCN) was first
introduced by Long et al. [13]. This approach estimates a coarse segmentation map for
each fully connected layer and improves the map by combining the fine segmentation
score maps. The pyramid scene parsing network (PSPnet) based on FCN was proposed by
Zhao et al. [5,6]. Since the FCN method’s receptive field is not sufficient for complex scene
images, the fusion information of these receptive fields and other sub-areas is calculated
by the pyramid pooling structure and used as global prior to segmentation. To consider
the context aggregation problem in a semantic segmentation scheme, an object-contextual
representation method that characterized the pixel by representing the corresponding
object class was proposed by Yuan et al. [21]. A method to maintain high-resolution
representations throughout the entire process was proposed by Wang et al. [22]. To maintain
high-resolution representation, it proposed the high-to-low resolution convolution streams
and fused the representations from multi-resolution streams. A hierarchical attention
mechanism for image segmentation was proposed to predict relative weights between
adjacent scales and combine multiscale predictions at the pixel level [23].

U-Net [14], an encoder-decoder architecture based on the FCN, has been used in state-
of-the-art models for medical image segmentation methods. It has symmetric architecture,
and the feature map of the encoder is transmitted to the decoder side through a skip-
connection. Then, that feature map is concatenated with the up-sampled feature map in the
decoder path of the next convolutional layer. In order to highlight salient features of the
network, attention architecture has been applied to the U-Net structure in the study [18].
For 3D structure medical images, H-dense U-Net based on the architecture of DenseNet [1]
was proposed for liver and liver tumor segmentation by Li et al. [15]. To reduce the
semantic difference between the feature maps of the encoder and decoder sub-networks, a
skip pathway method was proposed in the U-Net++ [11].
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3. Our Approach
3.1. Image Segmentation Problem

Image segmentation can be interpreted as an optimization problem to find a segmented
image U in a given image V [12]. Thus, the given image is categorized into a set of optimized
classes and the classes, G, are defined by

G = {gi ∈ R : i = 1, . . . , Nc}, (1)

where Nc is the number of predefined classes. R and gi denote real and i-th class values,
respectively.

In previous studies, before the deep-learning method emerged, minimization of
the cost function for image segmentation was used to solve the optimization problem
based on the Mumford–Shah function [12,24,25]. After major advances in computer vision
technology based on deep convolutional networks, the problem has been solved using
deep learning and large amounts of labeled data sets in many studies [13,14].

3.2. Self-Spatial Adaptive Weighting

In the image generation task based on Generative Adversarial Nets (GAN), a semantic
segmentation mask was used as a condition for adjusting the appearance of images gen-
erated by image generation [26–29]. The given semantic segmentation mask is also used
as a conditional guide for their normalization, and it improved the performance of image
generation in previous research [29].

To consider a spatial weighting method in the image segmentation task without
the given mask, we propose a spatial weighting scheme for image segmentation called
self-spatial (SS) adaptive weighting, as shown in Figure 1.

Figure 1. The proposed self-spatial adaptive weighting structure (SS block).

Let mCi×Hi×Wi
be the output feature map of the convolution block, and mi denotes

the feature map for the i-th convolution block in a segmentation network. Here, Ci is the
number of channels in the convolution block, and Hi and Wi represent the height and
width of those feature maps, respectively. In the i-th block, the spatial characteristics are
estimated from the feature map of each convolution block site as

f i = ν
(
mi). (2)

A function ν(·) is implemented by a single convolutional layer that converts mi to f i.
That is, by this function, the feature map, mi, is turned into a spatial feature, f i, which has
the number of division classes.

To consider the spatial characteristics for the segmentation, the spatial weighting
parameter is obtained from the map computed according to Equation (3).

γi
c,h,w = µ

(
f i), βi

c,h,w = σ
(

f i), (3)

where µ(·), σ(·) represent functions that convert fi into the learned adaptive weighting
parameters, γi

c,h,w and βi
c,h,w, respectively. The spatial weighting parameters, γ and β,
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are multiplied and added to the feature map of the i-th convolution blocks element by
element, as

m̂i
c,h,w = mi

c,h,w ⊗
(

κ + γi
c,h,w

)
+ βi

c,h,w. (4)

The variables γi
c,h,w and βi

c,h,w are the learned weighting parameters depending on the
spatial map at the site

(
c ∈ Ci, h ∈ Hi, w ∈Wi), and κ is a predefined constant value.

The learned weight parameters, γi
c,h,w and βi

c,h,w, are calculated from the same spatial
feature f i, and the learning-based parameter computation is implemented using a two-layer
convolutional network, as shown in Figure 2.

Figure 2. A pseudo-code of the proposed self-spatial adaptive weighing structure.

3.3. Self-Spatial Adaptive Weighting-Based U-Net Structure for Image Segmentation

In medical image segmentation, U-Net architecture consisting of convolution blocks,
skip connection paths, and up-convolution steps has been widely used.

The proposed weighting scheme is integrated into the standard U-Net architecture to
apply adaptive weights based on spatial characteristics to the feature map that is passed
to the next convolutional block via downsampling and upsampling methods. In order
to prevent an increase in the model size by applying the proposed technique, the up-
convolution layer of the standard U-Net was implemented by using a bilinear upsampling
method, which results in reducing the model size of the U-Net, as shown in Figure 3.

Figure 3. An overall architecture of the proposed self-spatial adaptive weighing-based U-Net
(SS-U-Net) for image segmentation.
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The proposed self-spatial adaptive weighting-based U-Net, SS-U-Net, is composed
of three main blocks: a convolution block, a self-spatial adaptive weighting block, and an
up/down sampling block. The feature map of the segmentation network is extracted from
the convolutional block and weighted by the learned adaptive scales and biases calculated
from the spatial features of the map in the SS block. In the encoding path of SS-U-Net,
the weighted features transmitted through the skip connections and their resolutions are
reduced in the down-sampling block implemented by max-pooling operations. On the
other hand, the resolution of weighted features is increased by a bilinear upsampling
method. The upsampled features and the ones passed through the skip connections are
concatenated and propagated to the next convolutional block in the decoding path of the
proposed network.

Deep convolutional neural networks for image classification have had a breakthrough
method [17,30]. The VGG structure provides better performance with low complexity using
a 3 × 3 convolutional kernel instead of a larger kernel, such as 5 × 5, or 7 × 7, and has a
structure similar to that of a standard U-Net, but maintains the same spatial resolution at
the input and output. The ResNet proposed skip-connection in depth so that the network
stacked more layers compared to other networks. In the Bottleneck structure, the 1 × 1
convolutional layers were used to reduce the number of channels in the convolution block.
Thus, it avoids increasing the complexity of the ResNet framework. These structures
can be represented as shown in Figure 4. These convolutional frameworks have a similar
purpose to the convolutional block of segmentation. In the proposed scheme, a widely used
framework is used for the proposed structure, and in particular, a bottleneck structure is
used to build a small model for segmentation. In this paper, a modified U-Net with bilinear
upsampling is defined as U-Net le f t( cdot right), and the framework used is indicated
in parentheses.

(a) (b) (c)

Figure 4. Convolution blocks applied to the proposed methods. From left to right: (a–c) are the VGG, ResNet, and Bottleneck
structures, respectively.

4. Experimental Results
4.1. Datasets

As can be seen in Table 1, we cover a variety of medical imaging modalities using
three medical imaging data sets for model evaluation. The first data set was obtained
under a microscope to segment the cell area. The data set from the Data Science Bowl 2018
segmentation challenge consists of nuclei images from different modalities (brightfield
and fluorescence) [11]. The other two data sets segmenting the fetal head consisted of
999 samples with no growth abnormalities [31], and the nerve regions were from an
ultrasound imaging equipment. Given the resolution of the smallest image in the evaluation
data sets, each image was scaled to 256× 256 for our implementation. For the training,
validation, and test sets, we split the data sets into training (80%), validation (10%), and
test (10%) sets.

To evaluate the performance of our segmentation model, we calculate the intersection
over Union (IoU), also known as the Jaccard index, which measures the area of intersection
between the predicted segmentation and the ground truth divided by the area of union
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between them. In addition, we employ the Dice Coefficient, F1 score, which evaluates
the value of 2× areas of intersection divided by the total number of pixels in the two
images [32].

Table 1. Experimental data sets for image segmentation.

Data Set # of Images Input Size Modality Provider

Cell Nuclei [33] 670 320 × 256 Microscopy Data Science Bowl competition
Fetal Head [31] 999 800 × 540 Ultrasound HC18 Grand Challenge

Nerve [34] 5635 580 × 420 Ultrasound Ultrasound Nerve competition Kaggle

4.2. Training Setup

We implemented the networks using Pytorch [35], an open-source machine learning
library for Python. The Adam optimizer [36] was used to train network weights and biases
using 400 epochs with an initial learning rate of 0.001 and batch size of 16. For the proposed
method, κ was set to 1, and the input resolution of the segmentation networks was set to
256× 256, taking into account the image resolution of the data set.

4.3. Performance Comparison

In order to evaluate the effect of the self-spatial adaptive weighting method and convo-
lutional blocks in U-Net network, the three kinds of convolution blocks were individually
applied to the proposed structure, and combined with the proposed SS block.

Table 2 compares the segmentation methods in terms of the model size and segmen-
tation results that were measured by the IoU and DICE scores, respectively, for the three
segmentation tasks. The model with the Bottleneck structure, U-Net(B), gives the smallest
model size, and is about 60% of the size of standard U-Nets. In a similar manner, the
model with the ResNet framework for convolutional blocks, U-Net(R), is about 95% of the
standard size. Applying the SS block to a standard U-Net increases the U-Net’s model size
by 1.27 MB. Among the convolutional frameworks selected for the proposed method, we
evaluate SS-U-Net(R), a ResNet convolutional block-based scheme with the best perfor-
mance in the three segmentation tasks. In addition, the proposed method, SS-U-Net(R),
produces the smallest model size, while the U-Net++ gives the largest model.

Table 2. Performance comparison for image segmentation using various convolution blocks with the
SS scheme. The “B”, “V”, “R”, and “SS” represent the Bottleneck structure, VGG blocks, Residual
block, and Self-Spatial normalization, respectively. Intersection over union (IoU) and the Dice
coefficient are used in terms of comparison metrics (%). Numbers in bold indicate the highest
performance in each metric.

Method
Model Size Cell Nuclei Fetal Head Nerve

Param (MB) IoU DICE IoU DICE IoU DICE

U-Net(B) 20.01 86.24 91.59 94.12 96.49 65.55 76.72
SS-U-Net(B) 21.29 86.38 91.65 95.26 97.24 68.56 79.61

U-Net(V) 29.96 86.05 91.34 95.26 97.24 68.32 79.20
SS-U-Net(V) 31.24 86.36 91.68 95.24 97.26 68.84 79.90

U-Net(R) 31.62 85.91 91.38 95.22 97.23 68.01 79.17
SS-U-Net(R) 32.89 86.58 91.84 95.48 97.41 69.16 80.14

As can be seen in Table 2, the network with the Bottleneck framework, U-Net(B), has
the lowest IoU and DICE scores in the fetal head and nerve segmentation tasks, and the
network with the VGG block, U-Net(V), has the lowest IoU and Dice scores in the cell
segmentation. As the proposed SS block is applied to the segmentation, segmentation
performance is improved in all three types of convolutional blocks. In particular, the
segmentation network using the proposed SS block and Bottleneck framework improved
the IoU and DICE scores by 3.01% and 2.89%, respectively. SS-U-Net(R), a network with
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the proposed SS block and ResNet framework, achieved the highest IoU and Dice scores in
three tasks compared to other combinations. The network using the ResNet framework
improved the segmentation performance by about 1.15% and 0.97% in the IoU and DICE
scores, respectively, in the nerve segmentation.

The three task images are segmented by the network combined with the proposed SS
block and a kind of convolutional framework, as shown in Figure 5. Figure 5a–i are the
results of the first, second, and third tasks, respectively. The yellow region in the Figure
indicates the ground truth, and the solid red line illustrates the contour of the results.
It can be easily seen that the proposed networks, SS-U-Net(B), SS-U-Net(V), and SS-U-
Net(R) have a closer shape to the ground truth compared to the other network without the
SS Block.

The proposed method for evaluating the segmentation performance is compared with
standard U-Net [14], attention U-Net [18], U-Net++ [11], and customized wide U-Net
architectures, as the authors did in [11]. Wide-U-Net, a model extended from the standard
U-Net, has a model size similar to the largest model among the compared networks.

Table 3 lists the experimental results and shows the effectiveness of the proposed
scheme. The compared methods scored very high in fetal head segmentation, but the
lowest performance in nerve segmentation. The proposed method in the three tasks scored
the highest in both IoU and DICE. The U-Net with SS block, Att U-Net, and U-Net++ each
had the second-highest performance in the three tasks. In addition, the performance of
SS-U-Net was improved in all tasks compared to standard U-Net. The proposed method
improved performance compared to the standard U-Net in three tasks, and in particular, it
has a smaller model size.

Table 3. Performance comparison for medical image segmentation with various U-Net mechanisms. The Intersection
over union (IoU) and Dice coefficients are employed as comparison metrics (%). Numbers in bold indicate the highest
performance in each metric.

Segmentation Method
Model Size Cell Nuclei Fetal Head Nerve

Param (MB) IoU DICE IoU DICE IoU DICE

U-Net [14] 32.95 86.09 91.39 95.31 97.29 68.35 79.34
U-Net + SS 34.22 86.14 91.63 95.37 97.33 68.90 79.73

Wide U-Net [11] 34.85 86.10 91.51 95.13 97.21 68.94 79.75
U-Net++ [11] 34.96 85.83 91.58 95.41 97.30 67.87 79.85

Att U-Net [18] 33.63 85.83 91.49 95.36 97.35 68.53 79.31
U-Net(R) + SS(our) 32.89 86.58 91.84 95.48 97.41 69.14 80.14

The three task images are segmented by standard U-Net, attention U-Net, U-Net++,
wide-U-Net, and the proposed approaches, as shown in Figure 6. Figure 6a–i are the results
of the first, second, and third tasks, respectively. The yellow area in the Figure illustrates
the ground truth, and the solid red line represents the contour of the results. It can be easily
seen that the result of the network with the proposed scheme has better segmentation
performance than those of the compared methods.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

U-Net(B) SS-U-Net(B) U-Net(V) SS-U-Net(V) U-Net(R) SS-U-Net(R)

Figure 5. Performance comparison for real medical image segmentation. From top to bottom: each row represents
one of the test data sets for three tasks—cell (a–c), fetal head (d–f), and nerve segmentation (g–i), respectively. From
left to right: the results are segmented by U-Net(B), SS-U-Net(B), U-Net(V), SS-U-Net(V), U-Net(R), and SS-U-Net(R)
approaches, respectively.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

U-Net U-Net + SS Wide U-Net U-Net++ Att U-Net SS-U-Net(R)

Figure 6. Performance comparison for real medical image segmentation. From top to bottom: the images are test images
for three tasks—cell (a–c), fetal head (d–f), and nerve segmentation (g–i), respectively. From left to right: the results are
segmented by U-Net, U-Net + SS, Wide U-Net, U-Net++, Att U-Net, and SS-U-Net(R) approaches, respectively.
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5. Conclusions

In this paper, a self-spatial, adaptive, weighting-based U-Net for image segmentation
was presented. The widely used convectional frameworks were employed for the proposed
structure, the three kinds of convolution blocks were individually applied to the proposed
structure, and their performances were compared. The experimental results showed that
the proposed method could be effectively applied to the existing methods, and their
performances were improved. In particular, it was verified that the proposed scheme,
SS-U-Net, was efficient, and could provide the best segmentation result by combining
the self-spatial adaptive weighting scheme and ResNet convolution block approach. In
particular, the proposed approach with a bottleneck structure had the smallest model
size among the compared methods, and they were improved in performance using the
proposed block. Furthermore, the proposed method outperformed the compared methods
with different segmentation targets and medical imaging modalities in terms of IoU and
Dice metrics.

It is worth noting that the proposed scheme provided a compact model for SS-U-Net
with the Bottlenet block structure while maintaining a similar performance to the standard
U-Net. Therefore, we believe that the proposed scheme can be a useful tool for image
segmentation.
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