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Abstract: A 2.4 GHz flexible monopole antenna fed by a coplanar waveguide (CPW) was presented
on polyimide (PI) as the dielectric substrate, which was fabricated by in situ self-metallization.
The technology does not depend on expensive equipment or complex experimental environments,
including hydrolysis, ion exchange, and reduction reaction. The measurement results show that
the resonance frequency of the proposed antenna is 2.28 GHz, the bandwidth is 2.06–2.74 GHz, and
the relative bandwidth is 28.33% under the flat state. The bending and folding test was also carried
out. Whether it was flat, bent, or folded, the measured results met the requirements of the antenna.
A fatigue test was carried out to illustrate that the prepared film has high mechanical flexibility,
which expands the application field of antenna.

Keywords: flexible monopole antenna; coplanar waveguide; polyimide; in situ self-metallization

1. Introduction

The flexible antennas fed by coplanar waveguides (CPW) have attracted more and
more attention for their advantages of convenient integration with other microwave com-
ponents and easy conforming to the carrier [1–4]. For example, a flexible antenna fed
by a CPW, which has the advantages of low profile, simple structure, small size, cheap
production, and without vias or lumped element components was designed in ref 1. In ref
2, flexible flower-shaped CPW-fed antennas for high data wireless applications were pro-
posed. In ref 3, a flexible millimeter-wave (mm-wave) antenna array for fifth generation
(5G) wireless networks operating at Ka-band (26.5–40 GHz) was presented. In ref 4, a flexi-
ble fractal electromagnetic bandgap (EBG) was fabricated and its performance impact on a
wearable CPW antenna in the frequency range 20–40 GHz was evaluated. The research on
the performance of flexible CPW antennas under flat and bending conditions has achieved
great results; however, the antennas usually need to not only be bent but also be folded
in practical applications. Therefore, how to adopt a folding antenna without reducing its
performance is one focus of the flexible CPW antenna design.

On the other hand, increasing attention has been paid to flexible substrates of CPW
antenna because of the increasing demand for antennas that can be mounted easily on
devices having non-flat surfaces [5–7]. In ref 5, an M-shaped printed monopole antenna
based on a polyimide (PI) substrate was reported. In ref 6, a compact ultrawideband
(UWB) antenna printed on a PI substrate was reported. In ref 7, a flexible, ultra-low profile,
and compact dual band antenna was reported, which was inkjet-printed on a PI substrate
and fed by coplanar waveguide. PI has a trend to be chosen as the substrate because
it has more advantages in terms of cost performance, and it exhibits a good balance of
physical, chemical, and electrical properties [5–15]. Major manufacturing technologies
for CPW antennas on PI films include lithography [16] and printing [5–7,17,18], which
rely on expensive equipment or strict experimental environment requirements [5–7,19–22],
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and the metal layers fabricated by these proposed methods easily crack and shed [23,24].
The method of in situ self-metallization can resolve these problems mentioned above [24,25].
Highly reflective and conductive metallized polyimide films [24,25], inserting electrode [26],
copper electrode [27], and patterned copper circuit [28] have been successfully prepared by
in situ self-metallization techniques, and the above work lays a good foundation for the
fabrication of the flexible antenna.

In this work, a flexible monopole antenna fed by coplanar waveguide was fabricated
on a PI substrate by in situ self-metallization. The CPW feed was selected because it has
the advantages of low profile and simple structure, and both the ground planes and the
radiators are etched on the same side of the PI substrates, which simplified the fabrication
process of the antenna. The measurement results showed that the resonance frequency of
the proposed antenna was 2.28 GHz, the bandwidth was 2.06–2.74 GHz, and the relative
bandwidth was 28.33% under the flat state. The radiation characteristics of the flexible
monopole antenna under different bending and folding states were tested. Whether it was
flat, bent, or folded, the measured results met the requirements of the antenna. Fatigue
tests were carried out to illustrate that the prepared film has a high mechanical flexibility.
The proposed flexible monopole antenna can be suitable for WLAN/WiMax systems.

2. Materials and Methods
2.1. Design

The proposed flexible monopole antenna is designed to work in the industrial, sci-
entific, and medical (ISM) 2.4 GHz band [29–31]. Figure 1 shows the geometrical shape
and size of the flexible monopole antenna. The yellow part is the PI substrate, and the
flexible antenna is fabricated on it. The gray part is silver layer, which was obtained by
in situ self-metallization. PI was chosen as the substrate for the antenna because it shows
good physical, chemical, and electrical properties with a dielectric constant of 3.5 and a loss
tangent of 0.008. Matching at the chosen bands, the flexible monopole antenna consisted of
a radiating element and coplanar waveguide having rectangular ground planes. In order
to further miniaturize the antenna, an inverted L to the right was selected as the radiat-
ing element. The CPW feed was selected because of its simple feeding mode, and both
the ground planes and the radiators were etched on the same side of the PI substrate.
The ground planes and feed line were designed and optimized to adjust the impedance
matching and operating bands of the antenna. The length and width of the L-shaped
monopole, in addition to the ground plane size, controlled the resonant frequency of the
flexible antenna, which was designed to cover the ISM band.
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2.2. Parametric Analysis

To clearly demonstrate the characteristics of the proposed flexible antenna, ANSYS
HFSS simulation software was used to carry out parametric analysis, including the length
(L3) and width (L4) of the inverted L.

Figure 2a shows the simulated reflection coefficient with length L3 varied from 17.8 to
19.8 mm with 1 mm steps in the range, which other parameters remained the same. As can
be seen from the figure, with the increase in the length of L3, the resonant frequency and
bandwidth of the antenna gradually moved to the right, which could not meet the design
requirements of the flexible antenna.
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Figure 2. Simulated reflection coefficient varies with the parameters: (a) L3; (b) L4.

Figure 2b shows the variation of reflection coefficient with respect to the length L4
(e.g., 2.5 mm, 3.5 mm, and 4.5 mm). Other parameters remained fixed. As can be seen
from the figure, with the increase in the length of L4, the resonant frequency of the antenna
remained unchanged and the bandwidth increased slightly. When L4 was set at 3.5 mm,
the reflection coefficient of the antenna had the maximum value, so 3.5 mm of L4 was the
optimal solution.

After a series of simulation optimization, the final antenna size was determined to be:
40.6 mm × 50 mm × 0.075 mm, and specifically as follows: W = 40.6 mm, W1 = 18.3 mm,
W2 = 3.6 mm, W3 = 12.1 mm, L = 50 mm, L1 = 24.5 mm, L2 = 24 mm, L3 = 18.8 mm,
L4 = 3.5 mm, h = 0.075 mm.

2.3. Fabrication

In situ self-metallization technology requires only simple chemical agents, such as
KOH, AgNO3, NH3·H2O and H2O2. The method does not rely on expensive equipment or
complex experimental environments, including hydrolysis, ion exchange, and reduction
reactions. Figure 3 shows the manufacture process of the antenna that was made in
five steps.
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Step 1: PI film: The film was cleaned with deionized water to assess whether the film
met the standard of antenna preparation;

Step 2: Composite films with K+: One side of the cleaned film was immersed in 4 M
KOH solution for 3 h to modify the surface of the film to poly (amic acid) (PAA);

Step 3: Composite films with Ag+: The film was immersed in 0.04 M Ag(NH3)2OH
solution for 2 h to form the silver ion-doped layers;

Step 4: Ink-printed films: The dry film was affixed to the paper and a printer was used
to print the area outside the antenna structure on the reaction surface;

Step 5: Silvered PI films: The printed film was immersed in 0.1 M H2O2 (30%) solution
for 10 s to reduce the silver ions.

After these five steps, the films were cleaned to obtain the antenna. The experiment can
be conducted at room temperature, and specific steps can be found in the literature [24,25].

3. Crystal Structures and Morphologies

The prepared silvered PI film was studied by X-ray diffraction (XRD, Ultima IV).
In Figure 4a, the XRD spectra are in good agreement with the data of the standard JCPDS
(04-0783), indicating that the surface of the silver-plated PI film is composed of face-centered
cubic silver crystal particles.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 3. The manufacture process of the antenna. 

After these five steps, the films were cleaned to obtain the antenna. The experiment 
can be conducted at room temperature, and specific steps can be found in the literature 
[24,25]. 

3. Crystal Structures and Morphologies 
The prepared silvered PI film was studied by X-ray diffraction (XRD, Ultima IV). In 

Figure 4a, the XRD spectra are in good agreement with the data of the standard JCPDS 
(04-0783), indicating that the surface of the silver-plated PI film is composed of 
face-centered cubic silver crystal particles. 

  
(a) (b) 

Figure 4. (a) XRD image. (b) Top and cross-sectional SEM images. 

The surface and cross section of the prepared composite film were identified by 
scanning electron microscope (SEM, JSM-6510). In Figure 4b, the silver layer is uniform-
ly dense. The insertion diagram in the upper right corner shows that the thickness of the 
metallized layer formed was about 7.899 μm, the resistivity of which meets the require-
ments of antenna radiation according to the literature [25]. 

4. Flexibility Study 
4.1. Simulation 

Figure 5a–c show the diagrams of surface current under the flat, bending, and fold-
ing states. As can be seen from these diagrams, when the antenna was bent (R = 40 mm) 
and folded (θ = 150°), the direction of surface current changed relative to the flat state. 

Figure 4. (a) XRD image. (b) Top and cross-sectional SEM images.

The surface and cross section of the prepared composite film were identified by
scanning electron microscope (SEM, JSM-6510). In Figure 4b, the silver layer is uniformly
dense. The insertion diagram in the upper right corner shows that the thickness of the
metallized layer formed was about 7.899 µm, the resistivity of which meets the requirements
of antenna radiation according to the literature [25].

4. Flexibility Study
4.1. Simulation

Figure 5a–c show the diagrams of surface current under the flat, bending, and folding
states. As can be seen from these diagrams, when the antenna was bent (R = 40 mm) and
folded (θ = 150◦), the direction of surface current changed relative to the flat state.

Figure 6a–c show the simulated performances of the antenna under the flat, bending,
and folding states. In Figure 6a, whether it is flat, bent or folded, the simulated reflection
coefficients are similar [32]. Specific performances are listed in Table 1.
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Table 1. Simulated performance comparison of the antenna under the flat, bending, and folding states.

Resonant Frequency (GHz) S11 (dB) Bandwidth (GHz)

Flat 2.32 −17.35 2.10–2.70 (25.00%)
R = 40 mm 2.34 −18.75 2.15–2.61 (19.33%)
θ = 150◦ 2.34 −16.26 2.11–2.69 (24.16%)

Figure 6b shows the simulated radiation patterns in x–z planes, which still have omni-
directional radiation patterns after bending and folding. Figure 6c shows the simulated
radiation patterns in x–y planes, which have obvious changes. The bending and folding
lead to changes in the current flow direction of the patch surface, which change the axial
direction of the direction graph of x–y planes [33].
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4.2. Flat Test

The fabricated flexible monopole antenna on the PI film is shown in Figure 7a. A small
SubMiniature-A (SMA) connector was used to connect the flexible monopole antenna
for testing.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

Figure 6b shows the simulated radiation patterns in x–z planes, which still have 
omnidirectional radiation patterns after bending and folding. Figure 6c shows the simu-
lated radiation patterns in x–y planes, which have obvious changes. The bending and 
folding lead to changes in the current flow direction of the patch surface, which change 
the axial direction of the direction graph of x–y planes [33]. 

4.2. Flat Test 
The fabricated flexible monopole antenna on the PI film is shown in Figure 7a. A 

small SubMiniature-A (SMA) connector was used to connect the flexible monopole an-
tenna for testing. 

  

(a) (b) 

  

(c) (d) 

Figure 7. (a) Photographs of the fabricated prototype. Simulated and measured characteristics 
under the flat state. (b) Reflection coefficients. Radiation patterns: (c) x–z plane; (d) x–y plane. 

To verify the radiation characteristics of the flexible monopole antenna, the reflec-
tion coefficients were tested. As shown in Figure 7b, when the flexible monopole antenna 
was under the flat state, the measured reflection coefficients were similar to the simu-
lated results. Changes of the performances between simulation and measurement are 
listed in Table 2. 

Table 2. Simulated and measured performance comparison of the antenna under the flat state. 

 Resonant Frequency (GHz) S11 (dB) Bandwidth (GHz) 
Simulation 2.32 −17.35 2.10–2.70 (25.00%) 

Measurement (Flat) 2.28 −17.64 2.06–2.74 (28.33%) 

The far-field radiation patterns were measured inside the anechoic chamber. The 
antenna under test (AUT) was placed on a swivel table and aligned to a horn antenna. 
Under the flat state, the simulated and measured radiation patterns are shown in Figure 
7c,d. In Figure 7c, the radiation patterns in x–z planes have omnidirectional radiation 

Figure 7. (a) Photographs of the fabricated prototype. Simulated and measured characteristics under
the flat state. (b) Reflection coefficients. Radiation patterns: (c) x–z plane; (d) x–y plane.

To verify the radiation characteristics of the flexible monopole antenna, the reflection
coefficients were tested. As shown in Figure 7b, when the flexible monopole antenna
was under the flat state, the measured reflection coefficients were similar to the simulated
results. Changes of the performances between simulation and measurement are listed in
Table 2.

Table 2. Simulated and measured performance comparison of the antenna under the flat state.

Resonant Frequency (GHz) S11 (dB) Bandwidth (GHz)

Simulation 2.32 −17.35 2.10–2.70 (25.00%)
Measurement (Flat) 2.28 −17.64 2.06–2.74 (28.33%)

The far-field radiation patterns were measured inside the anechoic chamber. The an-
tenna under test (AUT) was placed on a swivel table and aligned to a horn antenna. Under
the flat state, the simulated and measured radiation patterns are shown in Figure 7c,d.
In Figure 7c, the radiation patterns in x–z planes have omnidirectional radiation patterns at
this frequency (2.28 GHz). Figure 7d shows the radiation patterns in x–y planes. The devia-
tion between the measured results and the simulated results are small.

4.3. Bending Test

To study the mechanical flexibility of flexible monopole antenna, the reflection co-
efficients and radiation patterns were tested under different bending states. As shown
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in Figure 8a, the antenna is attached to a curved surface. The small image in the lower
right is a schematic of the bending antenna, and R is the bending radius (R = 40 mm and
R = 60 mm). As shown in Figure 8b, compared with the flat state, its operating frequency
band, resonant frequency, and relative bandwidth are almost invariant.
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Figure 9 shows the far-field radiation patterns of the antenna under different bending
states. In Figure 9a, the radiation patterns in x–z planes are shown, which have a great om-
nidirectional performance. Figure 9b shows the radiation patterns in x–y planes. Changes
of the x–y planes are obvious under the bending state, which is caused by the current flow
direction change on the surface.
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4.4. Folding Test

Furthermore, the folding effect on the practical reflection coefficients and far-field
radiation patterns was also studied. As shown in Figure 10a, the flexible monopole antenna
was folded in half to create a crease. The image in the lower right is a schematic of the
folding antenna, and θ is the folding angle (θ = 150◦). In Figure 10b, compared with the
flat state, when there was a crease, its operating frequency band, resonant frequency, and
relative bandwidth were almost invariant. Table 3 shows the variations of the measured
performance of the antenna under flat and folding states. Figure 10c,d show the far-field
radiation patterns under the folding state. In Figure 10c, the radiation patterns in x–z planes
are shown, which have omnidirectional radiation patterns. Figure 10d shows the radiation
patterns in x–y planes. The reason for the changes is the same as the bending state.
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Table 3. Measured performance comparison of the antenna under the flat and folding states.

Angle Resonant Frequency (GHz) S11 (dB) Bandwidth (GHz)

Flat (0◦) 2.28 −17.64 2.06–2.74 (28.33%)
Fold (150◦) 2.32 −16.60 2.05–2.75 (29.16%)

Figure 11 shows the measured gain and efficiency when the flexible monopole antenna
was under the flat, bent, and folded states. In Figure 11a, the measured realized gains of
the antenna are shown. It can be seen that the realized gains of the antenna have the same
trend, which met the performance requirements. When the antenna was flat, the maximum
gain achieved was 2.98 dBi. In Figure 11b, when the antenna was flat, bent (R = 40 mm)
and folded (θ = 150◦), the efficiencies of the flexible monopole antenna were above 80% in
the entire working bandwidth, which had the same trend, and the maximum efficiency
achieved was over 90%.
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4.5. Fatigue Test

Finally, fatigue test was also studied. The flexible antenna was folded in half 50 times
and fixed on the foam for a period of time. Figure 12 shows the measured performance com-
parison, which indicates that the performance of the antenna did not changed much from
that before. It can be seen that the flexible antenna fabricated by in situ self-metallization
had stable chemical and mechanical properties.
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Figure 12. Comparison of measured performance of fatigue tests.

In Figure 13, top and cross-sectional SEM images are shown when the film was
folded in half 50 times. In the left image, the crease is visible. The image on the upper
right is the top SEM image, and it can be seen that the silver layer is uniformly dense.
The image on the lower right is the cross-sectional SEM image, and it shows that the
thickness of the metallized layer formed was about 7.68 µm, which met the requirements
of antenna radiation.
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As listed in the Table 4, the resistivity values of the films were also measured under
the flat and different times of folding, which changed little, and prove that the properties
of the thin films fabricated by in situ self-metallization technique are stable under certain
deformation.

Table 4. Resistivity values of the films under the flat and different times of folding.

Times Resistivity Values (10−5 Ω·cm)

0 (Flat) 4.85
1 4.85

10 4.85
30 4.86
50 4.87
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Screen printing [1,2,6] and inkjet printing [5,7,33,34] are the main techniques for
applying antennas on PI films, and comparisons of fabrication methods of flexible antennas
on polyimide substrates are listed in the Table 5. It can be seen from the table that whether
the antenna fabricated by in situ self-metallization was flat, bent, or folded, the changes of
the resonant frequency and bandwidth were relatively small, and the change of printed
antennas were bigger than the proposed antenna, which had no folding test. Meanwhile,
the measured gain of the proposed antenna was excellent. This shows the superiority of the
in situ self-metallization technology and broadens the application scene of flexible antennas.

Table 5. Comparison of different fabrication methods of flexible antennas on polyimide substrates.

Ref. Methods
Total Size

L × W × H mm3 Gain (dBi) Rad. 1
Resonant Frequency (GHz) Bandwidth (GHz)

Flat Bend Fold Flat Bend Fold

[1] Screen-printed 55 × 40 × 0.125 5.9 Omn. 2 4.36 4.345 (20) 3 NA 4 1.77–6.95 1.83–6.94 (20) NA
[2] Screen-printed 20 × 28 × 0.025 2.81 Omn. 4.85 4.84 (25) NA 3.44–6.26 3.33–6.36 (25) NA
[5] Inkjet-printed 40 × 30 × 0.0508 4.8 Omn. 2.5 2.35 (27) NA 2.25–2.75 2.23–2.65 (27) NA
[6] Screen-printed 47× 33 × 0.0508 5.3 Omn. 3.75 3.80 (10) NA 2.2–14.3 2.15–14.35 (10) NA
[7] Inkjet-printed 31 × 34 × 0.0508 1.68 Omn. 2.46 2.4 (7) NA 2.136–2.784 2.12–2.88 (7) NA

[33] Inkjet-printed 70 × 70 × 0.11 2.1 Omn. 1.2 1.23 (78) NA 0.87–1.52 0.86–1.5 (78) NA
[34] Inkjet-printed 30 × 26 × 0.125 4.5 Uni. 5 4.83 4.84 (50) NA 4.79–5.04 4.76–5.08 (50) NA

proposed In the work 40.6 × 50 × 0.075 2.98 Omn. 2.28 2.29 (40) 2.32 2.06–2.74 2.08–2.78 (40) 2.05–2.75

1 Rad. = radiation pattern; 2 Omn. = omnidirectional; 3 antenna bending radius; 4 NA = not available; 5 Uni. = unidirectional.

A comparison of flexible antennas fabricated on different substrates is listed in
the Table 6, including polydimethylsiloxane (PDMS), Rogers 5880, polytetrafluoroethene
(PTFE), felt fabric, and liquid crystal polymer (LCP). It can be found from the table that
the measured gain of the flexible antenna proposed in the work is excellent, and the flat,
bending, and folding test results were relatively well maintained. In addition, a fatigue test
was also performed in this study, which has not been reported in previous work.

Table 6. Comparison of flexible antennas fabricated on different substrates.

Ref. Substrate
Total Size

L × W × H mm3 Gain (dBi) Rad. 1
Resonant Frequency (GHz) Bandwidth (GHz)

Flat Bend Fold Flat Bend Fold

[35] SU-8/PDMS 20 × 46.4 × 0.55 2.17 Uni.2 6.30 6.25 (50) 3 NA 4 6.2–6.4 6.15–6.38 (50) NA
[36] Rogers 5880 52 × 43 × 0.127 3.57 Uni. 1.574 1.567 (40) NA 1.56–1.59 1.54–1.58 (40) NA
[37] Felt fabric 26 × 47 × 1 1.6 Omn. 5 2.39 2.42 (25) NA 2.16–2.63 2.14–2.65 (15) NA
[38] PTFE 25 × 50 × 0.127 NA Omn. 3.50 3.90 (80) NA 3.4–3.6 3.6–3.9 (50) NA
[39] LCP 20 × 32 × 0.1 0.31 Omn. 2.63 2.3 (50) NA 2.38–2.79 2.2–2.53 (50) NA

proposed PI 40.6 × 50 × 0.075 2.98 Omn. 2.28 2.29 (40) 2.32 2.06–2.74 2.08–2.78 (40) 2.05–2.75

1 Rad. = radiation pattern; 2 Uni. = unidirectional; 3 antenna bending radius; 4 NA = not available; 5 Omn. = omnidirectional.

5. Conclusions

The flexible monopole antenna was fabricated on 0.075 mm PI films by in situ self-
metallization. The technology does not require expensive equipment, and the metal on the
surface does not peel easily. The antenna is fed by CPW with a simple structure and stable
performances. When the flexible monopole antenna was under the flat state, the measured
results showed that the resonance frequency was 2.28 GHz, the −10 dB bandwidth was
2.06–2.74 GHz, and the relative bandwidth was 28.33%. The performances of the antenna
meet the necessary requirements after bending and folding. A fatigue test was carried
out to illustrate that the prepared film has high mechanical flexibility, which expands the
application field of antenna.
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