
electronics

Article

M3-AC: A Multi-Mode Multithread SoC FPGA Based
Acoustic Camera

Jurgen Vandendriessche 1,* , Bruno da Silva 1,2,* , Lancelot Lhoest 1 , An Braeken 1

and Abdellah Touhafi 1,2

����������
�������

Citation: Vandendriessche, J.; da

Silva, B.; Lhoest, L.; Braeken, A.;

Touhafi, A. M3-AC: A Multi-Mode

Multithread SoC FPGA Based

Acoustic Camera. Electronics 2021, 10,

317. https://doi.org/10.3390/

electronics10030317

Academic Editor: Alexander Barkalov

Received: 23 December 2020

Accepted: 22 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Engineering Sciences and Technology (INDI), Vrije Universiteit Brussel (VUB), 1050 Brussels,
Belgium; Lancelot.charles.lhoest@vub.be (L.L.); an.braeken@vub.be (A.B.); abdellah.touhafi@vub.be (A.T.)

2 Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
* Correspondence: Jurgen.Vandendriessche@vub.be (J.V.); bruno.da.silva@vub.be (B.d.S.)

Abstract: Acoustic cameras allow the visualization of sound sources using microphone arrays
and beamforming techniques. The required computational power increases with the number of
microphones in the array, the acoustic images resolution, and in particular, when targeting real-time.
Such a constraint limits the use of acoustic cameras in many wireless sensor network applications
(surveillance, industrial monitoring, etc.). In this paper, we propose a multi-mode System-on-Chip
(SoC) Field-Programmable Gate Arrays (FPGA) architecture capable to satisfy the high computational
demand while providing wireless communication for remote control and monitoring. This architec-
ture produces real-time acoustic images of 240 × 180 resolution scalable to 640 × 480 by exploiting
the multithreading capabilities of the hard-core processor. Furthermore, timing cost for different
operational modes and for different resolutions are investigated to maintain a real time system under
Wireless Sensor Networks constraints.

Keywords: acoustic camera; SoC FPGA; Hardware–Software Co-Design, multi-mode; multithread;
Delay-and-Sum beamforming; Wireless Sensor Networks

1. Introduction

Acoustic cameras visualize the intensity of sound waves, which is used to be graph-
ically represented as an acoustic heatmap, allowing the identification and localization
of sound sources. Arrays of microphones are used to collect the acoustic information
from certain beamed directions by applying beamforming techniques. Due to the high
Input/Output (I/O) capability required to interface such microphone arrays, the high
level of parallelism presented in such systems and the relatively low-power that Field-
Programmable Gate Arrays (FPGAs) offer nowadays, most of the acoustic cameras use
this technology to compute the needed operations for acoustic imaging. Combining these
acoustic images with images from a Red-Green-Blue (RGB) camera adds another layer
of information, which facilitates the identification and the localization of sound sources.
The combination of both sensorial information demands, however, additional computa-
tional power to provide a near real-time response. Despite the fact that FPGAs are known
for offering massive parallelism, power efficiency and low latency for streaming applica-
tions, they also demand a high design effort, which does not facilitate the addition of new
operational modes.

Solutions based on standalone CPU do not provide the necessary parallelism that
is required to generate real-time acoustic heatmaps out of the streamed signals coming
from a microphone array. Furthermore, it also cannot provide the high number of I/O
capabilities required to interface large arrays composed of tens of microphones like the
SoundCompass [1]. On the other hand, although current FPGAs can satisfy the computa-
tional demands, the support of different operational modes would require the use of large

Electronics 2021, 10, 317. https://doi.org/10.3390/electronics10030317 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9872-0134
https://orcid.org/0000-0002-4877-9688
https://orcid.org/0000-0002-4970-6341
https://orcid.org/0000-0002-9965-915X
https://orcid.org/0000-0001-8891-180X
https://doi.org/10.3390/electronics10030317
https://doi.org/10.3390/electronics10030317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10030317
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/3/317?type=check_update&version=4

Electronics 2021, 10, 317 2 of 35

FPGAs due to the additional resource consumption. Moreover, further updates can still be
limited by the resources of the FPGA.

Nowadays System-on-Chip (SoC) FPGA architectures are an alternative to single
FPGAs. The combination of the high performance offered by FPGAs with the flexibility
of a processor is here presented as a solution for real-time multi-mode acoustic cameras.
Therefore, while the FPGA part processes the microphone signals to generate acoustic
images, the processor not only performs additional image processing but also manages the
wireless communication. In fact, the multi-mode support allows the adaptation for different
scenarios like hand held devices or to deploy on nodes in Wireless Sensor Networks
(WSNs). One of the most popular SoC FPGAs is the Xilinx Zynq, which does not only offer
a relatively large amount of reconfigurable logic resources in the Programmable Logic (PL),
but it also provides an ARM-based general purpose processor in the Processing System
(PS) for fast software deployment. The communication between these two parts becomes
a challenge to fully exploit the available bandwidth (BW) for real-time applications such
as acoustic cameras. In order to maximize the throughput, an optimal distribution of the
tasks between the FPGA and the CPU is required, while also minimizing the overhead in
the communication.

This paper extends the work and results presented in [2]. On the one hand, the pre-
sented acoustic camera can combine visual and acoustic information by integrating an RGB
camera into the system. As a result, new operational modes are supported. On the other
hand, the multicore processor available in the target heterogeneous SoC is exploited by
using multiple threads. It increases the flexibility of our acoustic camera to target different
applications, like handheld devices or Wireless Sensor Networks (WSN), where low BW
and power consumption are crucial. Therefore, the throughput of the supported modes is
investigated and compared to the available bandwidth of Bluetooth Low Energy (BLE) in
order to evaluate the feasibility of using the novel multi-mode multithread acoustic camera
as a node in a WSN. These extensions result in a novel Multi-Mode Multithread Acoustic
Camera (M3-AC). More specifically, we have improved the previous work with respect to
the following aspects:

1. The proposed multithread approach exploits the multicore SoC FPGA in order to
support new modes while providing real time response.

2. Combination of acoustics and visual information is now supported, enabling data
fusion and additional image operations.

3. The original architecture has been optimized to almost double performance and to
reduce the memory resource consumption on the FPGA part.

This paper is organized as follows. The state-of-the art of FPGA-based acoustic cam-
eras is discussed in Section 2. An extensive comparison, regarding size of the microphone
array, the acoustic image resolutions and the performance among others are here presented.
The reconfigurable architecture of the M3-AC is described in Section 3. The balance of
the image operations between the CPU and the FPGA is discussed. Firstly, the proposed
architecture implemented on the FPGA to generate real-time acoustic images is described.
Secondly, the operations performed on the CPU and the supported operational modes
are presented. In Section 4, our multithread approach is discussed and compared to a
single threaded approach. The multithread approach allows a different frame rate be-
tween the FPGA and the CPU, and improves the throughput by eliminating the need for
a handshake mechanism between both parts. The evaluation of the M3-AC is done in
Section 5. The optimized architecture is profiled in terms of performance, resource and
power consumption. The timings for the different operations of each mode on the CPU are
measured and compared to the frame rate and timing of the FPGA. Finally, conclusions are
drawn in Section 6.

2. Related Work

Several FPGA-based acoustic cameras have been proposed in the last years. For in-
stance, an acoustic camera able to reach acoustic image resolutions of 320 × 240 pixels is

Electronics 2021, 10, 317 3 of 35

proposed in [3], which embeds in a Xilinx Spartan 3E FPGA the operations to generate
such acoustic heatmaps. Their architecture includes a Delay-and-Sum (DaS) beamfomer
and a delay generator for the corresponding beamed directions, but it does not include any
filter beyond the inner filtering during the Analog-to-Digital Converter (ADC) conversion
of the incoming data from their analog Electrec Condenser Microphones (ECMs). As a
result, their acoustic heatmap includes ultrasound acoustic information, reaching up to
42 kHz due to a missed high-pass filtering stage.

Digital Micro Electro-Mechanical Systems (MEMS) microphones are combined with
FPGAs for robot-related acoustic imaging applications in [4]. Although their system
supports up to 128 digital MEMS microphones due to the high I/O available in the chosen
FPGA, only 44 microphones are used for their example. Their system reaches up to 60 FPS
with an unspecified resolution, thanks to the multithread computation of the Fast Fourier
Transform (FFT) required for the beamforming operations.

The authors in [5] propose an architecture using a customized filter together with DaS
beamforming operations in the FPGA. Nevertheless, the authors do not provide further
information about the power consumption, the timing or Frames Per Second (FPS) neither
the output resolution, which is assumed to be 128 × 96 pixels as mentioned in [6].

The performance achieved with FPGA-based acoustic imaging systems has resulted
in commercial products, as detailed in [7]. The authors describe a beamforming-based
device (SM Instruments’ Model SeeSV-S200 and SeeSV-S205) to detect squeak and rattle
sources. The FPGA implements the beamforming stage, supporting up to 96 microphones
and generating sound representations up to 25 FPS with an unspecified resolution.

The authors in [8] present a system to visually track auto vehicles and to characterize
the acoustic environment in real-time. Their system is a microphone array composed of
80 MEMS microphones and a time-domain LCMV beamformer [9] embedded on an FPGA.
The FPGA is only in charge of the filtering and the Filter-and-Sum beamforming operations.
However, their resolution is only of 61 × 61 pixels reaching 31 FPS.

One of the few heterogeneous acoustic cameras is described in [10]. This system
combines a SoC FPGA, a Graphics Processing Unit (GPU) and a computer desktop to
generate acoustic images using a planar MEMS microphone array composed of 64 digital
MEMS microphones. In the full embedded mode, the Xilinx Zynq 7010 performs the signal
demodulation and filtering on the FPGA part while computing the beamforming operations
on the embedded hard-processor. This acoustic imaging system is used to estimate the
real position of the fan inside a fan matrix [11] and to create virtual microphone arrays for
higher resolution acoustic images in [12]. Similarly, the authors in [13,14] implemented a
3D impulsive sound-source localization method on combining one FPGA with a Personal
Computer (PC). The proposed system computes the DaS beamforming operation on the
PC while the FPGA filters the acquired audio signals and displays through Video Graphics
Array (VGA) the acoustic heatmap generated on the PC. However, there is no specifications
about the resolution or achieved FPS.

An acoustic camera is proposed as part of a screen-based sport simulation in [15].
Their system combines an FPGA, which processes the audio signals and performs the DaS
beamforming, a microcontroller, which detects the target type of sound and generates the
steering vectors for the DaS beamformer, and a PC performing a specific sound recognition.
Despite that the authors affirm the system operates in real time, they do not provide
information about the FPS, number of steering vectors or resolution.

The authors in [16] propose a GPU-based acoustic camera combined with a special
RGB camera. Although their architecture could achieve real time for lower resolutions,
it only reaches around 2.8 FPS for the relatively high resolution of 672 × 376 pixels.
Moreover, their solution is not scalable and it would present performance degradation
when increasing the number of microphones.

Table 1 summarizes the most relevant features of the acoustic cameras. Parameters like
the FPS or the acoustic image resolution, which determine the number of beamed directions,
reflect the performance and the image quality of the FPGA-based architectures respectively.

Electronics 2021, 10, 317 4 of 35

Most of the architectures summarized in Table 1 do not only use an FPGA for the acoustic
imaging operations, but combinations with other hardware accelerators like GPUs [10]
or with multicore processors [13] to compute the beamforming operations, the filter’s
coefficients or to generate the visualization. Nevertheless, there is not a clear answer why
recent FPGA-based acoustic cameras are not fully embedded like in [2] or in [3].

Table 1. Summary of architectures for acoustic imaging. The contributions described in this thesis are marked in bold.

Reference Application Year Type of MIC Model of
MIC

MICs per
Array Device Beamforming

Algorithm Resolution Real-Time

[3] Acoustic
Imaging 2010 Analog ECM Ekulit

EMY-63M/P 32
Xilinx

Spartan-3E
XC3S500E

Time-Domain
Delay-and-

Sum
320 × 240 10 FPS

[4] Robotic
Applications 2012 Digital

MEMS
Not

Specified 44
Xilinx

Spartan-6
LX45

Frequency-
Domain

Generalized
Inverse

Not
Specified 60 FPS

[5,6] Acoustic
Imaging 2014 Digital

MEMS
Not

Specified 32
Xilinx

Spartan-6
XC6SLX16

Time-Domain
Delay-and-

Sum
128 × 96 Not

Specified

[7]

Detection
squeak and

rattle
sources

2014 Digital
MEMS

Analog
Devices

ADMP 441
30 or 96

National
Instruments

sbRIO or
FlexRIO

(Xilinx Zynq
7020)

Time-Domain
Unspecified

Beamforming

Not
Specified 25 FPS

[8] Acoustic
Imaging 2015 Analog

MEMS
InvenSense
ICS 40720 80

Xilinx
Virtex-7
VC707

Linearly
Constrained
Minimum
Variance

61 × 61 31 FPS

[10–12] Acoustic
Imaging 2016 Digital

MEMS
ST Microlec-

tronics
MP34DT01

64

National
Instruments

myRIO
(Xilinx Zynq

7010)

Frequency-
Domain

Wideband
40 × 40 33.4 ms to

257.3 ms

[13,14], Acoustic
Imaging 2017 Analog

MEMS
ST Microlec-

tronics
MP33AB01

25
Xilinx

Artix-7
XC7A100T

Time-Domain
Delay-and-

Sum
Not

Specified
Not

Specified

[2] Acoustic
Imaging 2018 Digital

MEMS
Knowles
Acoustics

SPH0641LU4H
12 Xilinx Zynq

7020
Time-Domain

Delay-and-
Sum

160 × 120
up to

640 × 480
32.5 FPS

to 1.8 FPS

[15]
Screen-based

Sports
Simulator

2019 Analog
MEMS

Knowles
SPH1642HT5H-

1
13 up to 49

Xilinx
Artix-7
A200T

Time-Domain
Delay-and-

Sum
Not

Specified
Not

Specified

[16] Acoustic
Imaging 2020 Digital

MEMS
TDK

InvenSense
ICS-52000

10
GPU

NVIDIA
Jetson TX2

Time-Domain
GCC-PHAT 672 × 376 2.8 FPS

Present
Work

Acoustic
Imaging 2020 Digital

MEMS
Knowles
Acoustics

SPH0641LU4H
12 Xilinx Zynq

7020
Time-Domain

Delay-and-
Sum

160 × 120
up to

640 × 480
61.8 FPS

to 3.8 FPS

Our M3-AC outperforms the discussed solutions not only in terms of resolution or
performance (FPS) but also in flexibility thanks to supporting multiple modes. On the
one hand, the M3-AC offers a variable range of resolutions, which can be changed on
demand. The cost to pay is the reduction of the achievable FPS when increasing the
resolutions. On the other hand, the multi-mode capability that the M3-AC offers does
not only cover the output resolutions and the FPS but also the use of different operations
to perform the identification of Regions-Of-Interest (ROIs) or the image compression to
satisfy dynamic WSN context demands. Furthermore, few of the discussed acoustic camera
solutions provide data fusion with other types of sensors such as our M3-AC does with the
RGB camera.

3. A Multi-Mode SoC FPGA-Based Acoustic Camera System

The M3-AC system intends to exploit the combination of the Programming System
(PS) and the Programmable Logic (PL) components of the SoC FPGAs to extend the
use of acoustic cameras in WSN-related applications. SoC FPGAs such as Xilinx Zynq
devices are composed by an FPGA part referred as (PL) and an ARM-based multicore
processor referred as Programming System (PS). While the reconfigurable logic on the PL

Electronics 2021, 10, 317 5 of 35

part satisfies the low-power demands of WSNs, it also provides enough computational
power to produce acoustic images in real-time. On the other hand, the PS part not only
provides the necessary control to interface WSNs but also the flexibility to support multiple
configurations without the need to partially reconfigure the FPGA logic. The computational
balance between both components presents, however, several trade-offs that must be
analyzed before reaching the true potential of SoC FPGAs for this particular application.
Moreover, the presented solution supports multiple operational modes, which are decided
by the WSN and managed by the PS, to better respond to WSN’s demands. The use of
multithreading to extend the capabilities of the M3-AC system is described in Section 4.

3.1. FPGA-CPU Distribution

Figure 1 depicts the proposed distribution of the computations between the CPU and
the FPGA part. The main components of the M3-AC system are the microphone array,
the RGB camera, the FPGA and the CPU parts of the Zynq architecture, and the wireless
communication. The microphone array and the FPGA part compose the front-end while
the RGB camera, the CPU part is the back-end.This separation becomes defined by the
functional separation between the generation of the acoustic image (front-end) and the
acoustic image processing (back-end).

PL PS

Front End Back End

Fi
lte

r S
ta

ge

Be
am

fo
rm

in
g

St
ag

e

Po
w

er
St

ag
e Xillybus

Im
ag

e
Co

m
pr

es
sio

n

Im
ag

e
Sc

al
in

g

M
ic

ro
ph

on
e

Ar
ra

y

USB Camera

USB
BLE

Display

Store

ROI

He
at

m
ap

Ge
ne

ra
tio

n

Merging

Figure 1. Distribution of the components into the Zynq 7020 device.

3.1.1. Proposed Front-End and Back-End

At the front-end, the FPGA part receives the acquired acoustic signal from the micro-
phone array. The audio signal is retrieved from the microphones acquired signal after a
filtering process performed in the filter stage. The beamforming stage aligns the audio
signals in order to focus into a particular orientation determined by a steering vector while
discriminating the inputs from other orientations [1]. In order to calculate the Steering
Response Power (SRP), the output signal needs to be converted to an output power at the
power stage. The SRP values obtained for each orientation are propagated to the CPU
part to be represented as an acoustic heatmap. Xillybus simplifies the use of the AXI4
interfaces to transfer data from the FPGA part to the CPU [17], achieving experimental BW
of 103MB/s [18]. On the FPGA side, a FIFO buffer is used to store the data, while on the
CPU side, the data can be read by calling the read function like one would read from a
file [19].

The back-end performs the local image processing, supports multiple image enhance-
ments, interfaces the RGB camera and manages the WSN communication. The SRP values
of the 3D beamforming are graphically represented in a heatmap format. The number
of orientations or steering vectors (No) performed by the beamformer determines the
heatmap resolution. While a low value of No leads to higher FPS, low resolutions are
supported to satisfy the real-time constraints. The heatmap resolution is controlled by the
WSN through the CPU, which adjusts the value of No on the FPGA to satisfy the WSN
demands. This capability offers trade-offs in terms of performance and image resolution.
Although a relatively low resolution acoustic heatmap is performed at the FPGA side to
provide a real-time response, several image processing operations such as image scaling

Electronics 2021, 10, 317 6 of 35

are supported on the CPU part to improve the image resolution. Our multithreading
approach enables multiple real-time image processing operations such as the generation of
the heatmap from the values generated on the FPGA part, the scaling of the image, the RGB
frame capturing and the merging with acoustic heatmaps, the identification of ROIs and
the image compression. As a result, multiple modes are supported in order to adapt the
image operations on the CPU part and to adjust the heatmap resolution on the FPGA side
to satisfy the WSN demands. For instance, sound sources can be identified in the heatmap,
where ROIs are marked based on predefined amplitude thresholds to be lately profiled.
The identified ROIs and their coordinates are compressed and sent to the wireless network,
reducing the overall BW consumption.

3.1.2. Distribution of the Roles

The distribution of the operations between the CPU and the FPGA is not a trivial
task. The proposed computational balance between both technologies is motivated by
several factors.

OpenCV Support

Despite the achievable performance on FPGAs encourages the implementation of
most of the image processing operations on the FPGA, the support of all modes would
result in a significant area demand. On the other hand, the processing of the acoustic
heatmap on the CPU allows full usage of the advantages of the OpenCV library and
functions. Although it is possible to use Xilinx HLS to implement certain image operations
on the FPGA, not all openCV functions are fully supported yet. Table 2 provides a brief
comparison of the support for the most relevant image operations used on the M3-AC
system. For example, it is possible to upscale the image, but only three scaling modes are
supported in Xilinx OpenCV (xfOpenCV) v2019.1 [20]. Similarly, relevant operations such
as image compression techniques are not supported by the xfOpenCV library. The CPU
provides enough flexibility to enable or disable different operations in the processing chain
while supporting multiple operational and output modes. Moreover, the support provided
by xfOpenCV limits the porting of required image processing operations to the FPGA,
increasing the design effort for any future extension of the M3-AC system.

Table 2. Comparison of supported image operations in OpenCV 4.4.0 and xfOpenCV 2019.1 library.

Image Operations Functions/Parameters OpenCV 4.4.0 [21] xfOpenCV 2019.1 [20]

Resize

Nearest neighbor X X

Bilinear X X

Bicubic X

Area X X

Lanczos X

Heatmap color applyColorMap X X

Overlay addWeighted X X

Edge detection
cvtColor X X

Blur X X

Canny edge X X

ROI

Threshold X X

findCountours X

boundingRect X

Image compression PNG X

JPG X

Electronics 2021, 10, 317 7 of 35

Computational Load

From the point of view of the computational demand, the proposed distribution
between the FPGA and the CPU part intends to allocate on the reconfigurable logic the
computational workload related to the acoustic heatmaps generation. Since the proposed
architecture does not operate with floating-point data representation, the computational
demand can be expressed in OPerations per Second (OPS), which is a much more suitable
performance unit for FPGAs. Although the number of microphones in the array has a
direct impact on the computational demands due to the audio recovering and filtering,
the computational workload rounds 380 MOPS. The major computational demand comes,
in fact, from the beamforming operation. Due to the generation of relatively large acoustic
heatmaps in real time, the latest stages of the architecture operate at 100 MHz, requiring up
to 1.4 GOPS. As a result, the standalone acoustic heatmaps generation demands around
1.78 GOPS, without considering the additional image processing operations such as edge
detection or data fusion operations performed on the CPU part. Moreover, the FPGAs
are not only well-known to satisfy real-time demands of signal processing applications,
but also due to their power efficiency. For instance, while the CPU standalone consumes
a minimum of 1.8 W when activated, our architecture demands a few hundreds of mW
running on the FPGA. A simple comparison between the FPGA and the CPU of the Zynq
for this application shows that the FPGA offers up to 6 times better performance per
Watt than the CPU, with values up to 8.91 GOPS/W and 1.48 GOPS/W for the FPGA
and the CPU respectively [22]. Such a power efficiency encourages us to embed on the
FPGA the acoustic heatmaps generation while running on the CPU other image processing
operations defined by the selected operational mode. Potential expansions of the M3-
AC have also been considered. The architecture running on the reconfigurable logic is
designed to easily scale when increasing the number of microphones, leading to a linear
scaling in the computational demands. Such a scalability would not be possible by using a
standalone CPU.

Bandwidth Demand

The BW demand at each stage is shown in Figure 2. The initial stages of the architecture
present a BW demand of several tens of Mbps to retrieve and filter the audio signals of the
12 Pulse Density Modulation (PDM) MEMS microphones. The BW demands drastically
increase after the beamforming stage due to operate at a higher frequency (further details
are provided in Section 3.3). The lowest BW demand occurs after obtaining the SRP values.
The upscaling of the acoustic heatmaps by factors of 2 or 4 significantly increases the overall
BW demand. As a result, the most suitable distribution of the tasks between the FPGA and
the CPU parts is the one depicted in Figure 1. While the front-end performs the minimum
operations required to generate acoustic heatmaps on the FPGA, the flexibility of the CPU
is used to support multiple operational modes on the back-end.

37,5 Mbps

Beamforming
Stage

M
ic

ro
p

h
o

n
e

A
rr

ay

50 Mbps 2,4 Gbps 9,4 Mbps

Power
Stage

Image
Scaling

Filter
Stage

PL

Front End

37,6 Mbps
or

150,6 Mbps

…

Back End

PS

Heatmap
generation

Figure 2. Bandwidth demanded by the first stages of the M3-AC system.

Electronics 2021, 10, 317 8 of 35

3.2. Front-End Description
3.2.1. Microphone Array and RGB Camera

The microphone array consists of 12 digital MEMS microphones SPH0641LU4H-1 [23]
provided by Knowles placed in 2 sub-arrays (Figure 3). The inner sub-array is composed
of 4 microphones placed at a radius of 20.32 mm from the center, whereas the outer 8 mi-
crophones are located at a distance of 40.64 mm from the center. The MEMS microphones
SPH0641LU4H-1 [23] are selected due to their power efficiency when compared to the
MEMS microphones ADMP521 [24] used in the microphone array described in our previ-
ous works [1,25]. The center of the Printed Circuit Board (PCB) has a hole with a diameter
of 30 mm for mounting an RGB camera in the middle such that both the acoustic and video
image can be overlapped.

Sub-Array 2: 8 Mics
(ø 81.28 mm)

Sub-Array 1: 4 Mics

(ø 40.64 mm)

Figure 3. The microphone array (left and center) consists of 12 digital Micro Electro-Mechanical Systems (MEMS) micro-
phones arranged in two concentric sub-arrays. The low-cost Universal Serial Bus (USB) Red-Green-Blue (RGB) Camera
(right) achieves resolutions up to 640 × 480 pixels.

The output of the microphones is a PDM signal, which is internally obtained in each
microphone by a Σ∆ modulator typically running between 1 and 3 MHz. Although analog
microphones have been considered, digital MEMS microphones with PDM output present
several advantages for microphone arrays [26]:

• The synchronization of the microphones is crucial in microphone arrays, forcing ana-
log microphones to be synchronized at the ADC while digital MEMS PDM micro-
phones simply use the same clock signal.

• The additional circuitry required for analog microphones reduces the level of integra-
tion when compared to digital MEMS microphones.

• The use of digital MEMS PDM microphones provides us an additional flexibility
to explore alternative beamforming architectures. For instance, the architecture dis-
cussed in [27] provides a significantly better frequency response and a lower power
consumption at the cost of a performance reduction.

The microphones are paired per sub-array such that 2 clocks and 6 data lines are
required to interface the FPGA, which is done through one Peripheral Module (PMOD)
connector. This sub-array approach enables the deactivation of all microphones of one
sub-array by halting their clock signal. The shortest distance between the microphones
is 23.20 mm and the longest distance equals 81.28 mm, which corresponds to acoustic
frequencies (λ

2) of 7.392 kHz and 2.110 kHz respectively.
The RGB camera depicted in Figure 3 complements our microphone array. This low-

cost Universal Serial Bus (USB) camera does not need a specific driver and is directly
connected to the CPU part of the SoC FPGA. It achieves resolutions up to 640 × 480 pixels,
which is used as upper limit to the resolution of the acoustic heatmaps.

3.2.2. Time-Domain Delay-and-Sum Beamforming Architecture

The reconfigurable architecture running on the FPGA part is based on the high-
performance architecture presented in [25,28]. That DaS architecture offers a response
fast enough to satisfy the performance demands of an acoustic camera. Unfortunately,

Electronics 2021, 10, 317 9 of 35

the price to pay is a small degradation in the accuracy of the beamforming, reflected in a
relatively poor frequency response [29]. Instead, the proposed architecture achieves the
same performance than the high-performance architecture while improving the frequency
response. The architecture parameters are detailed in Table 3, is written in Hardware
Description Language (VHDL) and implemented on the FPGA part using Vivado 2019.2.

Table 3. Configuration of the reconfigurable architecture under analysis.

Parameter Definition Value

Fs Sampling Frequency 3.125 MHz
Fmin Minimum Frequency 1 kHz
Fmax Maximum Frequency 16.275 kHz

BWNyquist Minimum BW to satisfy Nyquist 32.55 kHz

DF Decimation Factor 96
DCIC CIC Filter Decimation Factor 24
NCIC Order of the CIC Filter 4
DFIR FIR Filter Decimation Factor 4
NFIR Order of the FIR Filter 24

Figure 4 depicts the inner components of the three stages of the architecture imple-
mented on the FPGA part. The complete architecture is processed in streaming mode and
pipelines all the operations within each stage.

Filter Stage

The MEMS microphones of the array provide an oversampled PDM signal that needs
to be processed to retrieve the original audio signal by demodulating the PDM signals.
The required operations are performed in the filter stage, which is composed of multi-
ple PDM demodulators or filter chains. Each microphone is associated to a filter chain,
which is composed of a cascade of filters to reduce the signal BW and to remove the high
frequency noise.

Nonetheless, this architecture, originally proposed in [28] and improved in [25],
achieves a high performance at the cost of a higher resource consumption due to dedicate
multiple filters to each microphone. The type and configuration of the filters are selected
based on several design considerations related to the parameters such as the sampling
frequency(Fs), the maximum supported frequency (Fmax) and the decimation factor (DF)
summarized in Table 3. Further considerations about the design of the filter chain are
largely discussed in [27], where a complete design-space exploration of possible PDM
demodulators is presented.

The implemented filter chain is designed to operate in streaming and to minimize the
resource consumption. For instance, the first filter is a 4th order (NCIC) low pass Cascaded
Integrator and Comb (CIC) decimator filter, which has a lower resource consumption since
it only involves additions and subtractions. The CIC filter has a decimation factor (DCIC)
of 24 and it is followed by a moving average filter to remove the Direct Current (DC)
offset introduced by the MEMS microphone. The last component of each filter chain is
a 23rd order low-pass Finite Impulse Response (FIR) filter. The serial design of the FIR
filter drastically reduces the resource consumption but forces the maximum order of the
filter to be equal to the decimation factor of the CIC filter. The data representation used
in the filter chain is a signed 32-bits fixed point representation with 16 bits as fractional
part. Nevertheless, the bit width is increased inside the filters to minimize the quantization
errors that the internal filter operations might have introduced. The data representation is
set to signed 32-bits at the output of each filter by applying the proper adjustment and the
FIR filter’s coefficients are represented with 16 bits. The decimation factor of the FIR filter
(DFIR) is performed in the beamforming stage.

Electronics 2021, 10, 317 10 of 35Power StageControl UnitPDM SplitterMicrophone Array Steered Response Power+Z-1 | |2 1/NamDelays-and-Decimations Sub-Array 1 +Mem Delay Microphone 1 Mem Delay Microphone 4 ...Delays-and-Decimations Sub-Array 2Mem Delay Microphone 5 Mem Delay Microphone 12... SumsBeamforming Stage Mem Delay Sub-Array 2 Mem Delay Sub-Array 1 +Filter Stage PDM MIC1PDM MIC4... 24th-order Low-PassFIR Filter4
th-order CIC Decimator Filter Moving Average Filter 24 24th-order Low-PassFIR Filter4
th-order CIC Decimator Filter Moving Average Filter 24 ...PDM MI5PDM MIC12... 24th-order Low-PassFIR Filter4
th-order CIC Decimator Filter Moving Average Filter 24 24th-order Low-PassFIR Filter4
th-order CIC Decimator Filter Moving Average Filter 24 ... + PS Delays Generator

Figure 4. Overview of the FPGAs components. The PDM input signal is converted to audio in the cascade of filters. The Delay-Decimate-and-Sum beamformer is composed of several memories,
associated to each sub-array to disable those memories linked to the deactivated microphones, to properly delay the input signal. The SRP is finally obtained per steering vector.

Electronics 2021, 10, 317 11 of 35

Beamforming Stage

The presented architecture uses the DaS beamforming technique to focus the array
to thousands of steering vectors, which are determined based on the desired resolution
of the acoustic image. The filtered audio from the filter stage is stored in banks of block
memories acting as steering delays. The audio data is further delayed by a specific amount
of time determined by the focus direction, the position vector of the microphone, and the
speed of sound [1]. All possible delays are generated by the delays generator block and
grouped based on the supported orientations. These delays are continuously generated in
order to save memory resources (mostly BRAM), which otherwise, should be dedicated to
store the precomputed delays generated during the compilation time [25,27].

In order to support a variable Nam, the implementation of the beamforming operation
groups in sub-arrays the incoming signal of microphones. Therefore, the beamforming
operation is only executed on the active sub-arrays, disabling all the operations associated
to the inactive microphones in order to reduce the power consumption [27]. The overall
memory required to perform DaS beforming technique rounds 73 kbits, with 65 kbits and
8 kbits to store the values from the outer and inner microphone sub-array respectively.

The DaS beamforming technique delays the input data a certain amount of time when
beaming to a certain steering vector. These delays are calculated based on the steering
vector, the sample frequency of the input data and the position of each microphone in
the array [1]. Our acoustic camera uses an adapted hypercube distribution [30] to the
Field-of-View (FoV) of the camera, which is 60◦. A rectangular grid is taken in this section
to calculate the euclidian distance between the positions of the microphones in the array
and the points of the grid. These values are then normalized to obtain the vectors used to
calculate the required delays. All calculations are done by the delays generator block in a
continuous loop, which enables a multi-resolution support controlled by the CPU.

Power Stage

At the last stage, the delayed values from the beamforming stage are accumulated
before the calculation of the SRP per orientation. The computation of SRP in the time
domain for different steering vectors is used at the CPU part to generate the acoustic
heatmaps. These steering vectors presenting a higher SRP correspond to the estimated
location of the sound sources.

The heatmaps are displayed using a 24-bits RGB representation. Although, the
heatmaps are generated on the CPU, a threshold of 255 is applied to the normalized
SRP values to facilitate the generation of the heatmaps and the communication with the
back-end by using the 8-bits Xillybus channel.

3.3. Trade-Offs

Architectures such as the one described in [25] support performance strategies to
accelerate the generation of acoustic heatmaps. It has, however, a direct impact on the
accuracy in terms of directivity (DP) [31]. The range of the delays at the beamforming stage
is inversely proportional to the sampling frequency at this stage. Like discussed in [27],
the accuracy in architectures with high sampling rate [29] is higher than in architectures
with lower sampling rate at the beamforming stage [25]. Nevertheless, the price to pay
is the higher latency. Alternative architectures offer higher DP [29] and a significantly
lower power and resource consumption at the expense of performance. The proposed
reconfigurable architecture is an intermediate solution where the highest performance is
achieved while preserving a high level of accuracy.

3.3.1. Performance

The presented reconfigurable architecture solves the latency drawback by increasing
the memory consumption at the beamforming stage. Compared to the architecture pre-
sented in [25], the proposed architecture locates the beamforming stage just between the
low-pass FIR filter and the decimation operation, by combining the beamforming opera-

Electronics 2021, 10, 317 12 of 35

tion with a downsampling operation. During the beamforming operation, DFIR values
read from the BRAMs at the beamforming stage are discarded. The read operation of the
beamforming memories has increments of DFIR, which is equivalent to decimation. On the
one hand, this solution increases by a factor of DFIR the accuracy at the beamforming stage
while performing like the architecture in [25] thanks to support of the same performance
strategies. On the other hand, the memory requirements at the beamforming stage are
increased by a factor of DFIR due to all the undecimated filtered values that must be stored
in the beamforming memories.

The performance strategy called continuous time multiplexing described in [25] is
applied. Firstly, the PDM input signals are continuously filtered and converted to audio
signals in the filter stage independently of the operations performed in the beamforming
stage. Secondly, two clock regions are defined. While the filter stage and the storage of the
audio samples in the beamforming stage are done at a FS frequency, which also corresponds
to the sampling frequency of the microphones, the calculation of the SRP values is done at
a FP frequency. Figure 5 depicts the two clock regions. The continuous time multiplexing
strategy uses the beamforming stage memories to adapt the communication between the
different clock regions. This strategy allow the beamforming stage to operate at a clock
frequency FP significantly higher than FS. As a result, while FS is 3.125 MHz (Table 3), FP is
assigned to 100 MHz. Notice that FP doubles the frequency of the architecture presented
in [2].

Beamforming

Stage

Filter

Stage

Power

Stage

M
ic

ro
p

h
o

n
e

 A
rr

a
y

P
-S

R
PBeamforming

Stage

Power

Stage

P
-S

R
PBeamforming

Stage

Filter

Stage

M
ic

ro
p

h
o

n
e

 A
rr

a
y

Beamforming

Stage

Filter

Stage

Beamforming

Stage

Power

Stage

M
ic

ro
p

h
o

n
e

 A
rr

a
y

P
-S

R
P

Fs FP

Figure 5. The proposed architecture operates at two different clock rates to achieve real-time acoustic imaging.

3.3.2. Frequency Response

A higher accuracy at the beamforming stage directly affects the overall frequency
response of the architecture. Figure 6 depicts the comparison of the previous architectures
and the proposed one. Each architecture has been evaluated for one sound source from
100 Hz to 12 kHz, with the same design parameters (Fs, DF, etc.) as defined in Table 3
and considering 64 steering vectors in 2D for the SoundCompass microphone array [1].
The quality of the frequency response of each architecture is measured based on the
directivity (DP), which reflects the ratio between the main lobes surface and the total
circle in a 2D polar map [31]. The average of all DP along with the 95% confidence
interval is calculated for 64 steering vectors. Moreover, the resulting DP are based on the
active sub-arrays of the original SoundCompass for the proposed architecture. The power-
efficient architecture proposed in [29] is less sensitive per steering vector, presenting a
lower variation on DP as depicted in Figure 6 (top). This is the opposite for the high-
performance architecture discussed in [25,28], whose value of DP strongly depends on the
steering vector. The reconfigurable architecture used here and depicted in Figure 6 (centre)
offers a trade-off in terms of DP, since its response is close to the accuracy obtained by
the power-efficiency architecture proposed in [29]. There exists, however, slightly higher
sensitivity per steered vector for sound source frequencies ranging from 8 to 10 kHz.
As a result, the proposed reconfigurable architecture presents a slight degradation in
DP compared to the power-efficient architecture [29] while performing as fast as the

Electronics 2021, 10, 317 13 of 35

high-performance architecture [25,28]. Nevertheless, the cost is the additional memory
consumption when compared to the architecture in [25,28] due to store DFIR more delayed
values per microphone.

Figure 6. Comparison of the power-efficient architecture [29] (top), the presented architecture (centre) and the high-
performance architecture [25,28] (bottom) using the 2D directivity [1] as metric done in [2]. The shadowed values represent
the confidence interval for the 64 steered orientations.

Electronics 2021, 10, 317 14 of 35

Another property of a microphone array is the spatial resolution or Rayleigh crite-
rion [32]. The spatial resolution is the minimum distance between two uncorrelated sound
sources so that both sound sources can still be distinguished from each other. It depends
on the size, shape of the microphone array and the frequency of the two sound sources.
In Figure 7 three pairs of acoustic images containing two sound sources with different
frequencies are depicted. Each image has a FOV of 60◦ in each direction and a resolution
of 320x240. Both sound sources are placed at symmetric positions one meter from the
center of the array. Notice how the spatial resolution increases if the frequency increases of
either of the sound sources. The images are created using CABE, a Cloud-Based Acoustic
Beamforming Emulator [33]. CABE allows the emulation of microphone arrays with fixed
point and integer-based calculations in order to mimic the calculations that are performed
on the FPGA, such as rounding errors. This emulator has been used as guidance of the
development of the M3-AC architecture.

a)

b)

c)

d) f)

e)

Figure 7. Acoustic heatmaps generated by an emulator to test the spatial resolution of the microphone array. Two sound
sources are placed one meter from the array and moved towards each other to find the minimum distance between required
between the sound sources to identify both sound sources. By increasing the frequency of either of the two sound sources,
the minimum distance required to distinguish both sound sources from each other is decreases. Acoustic heatmaps: (a,b)
two sound sources of 4.5 kHz and 5 kHz placed at (a) 62◦ and (b) 66◦. (c,d) two sound sources of 8 kHz and 7.5 kHz placed
at (c) 74◦ and (d) 78◦. (e,f) two sound sources of 8 kHz and 9.5 kHz placed at (e) 74◦ and (f) 80◦. 90◦ corresponds to the
center of the image.

3.4. Back-End Description

The reconfigurable architecture is embedded on a Zynq 7020 SoC FPGA running
Xillinux 2.0 [34], a Linux Operating System (OS) (Ubuntu 16.04) on the CPU part to enable a
graphical use of the C++ OpenCV library (ver. 4.4) [35], which contains optimized functions
for computer vision applications.

Figure 8 depicts our C++ OpenCV-based operational modes used by the CPU part
to construct an acoustic heatmap from the FPGA data. The communication with the
FPGA logic is via Xillybus [34], which is basically composed of First in First Out (FIFO)
buffers. The CPU reads from the Xillybus FIFOs the SRP values generated on the FPGA.
These values are placed in an H × W matrix, where H and W are the height and the width
of the original heatmap resolution respectively. Once H × W SRP values are received,
one acoustic heatmap frame is constructed. Depending on the selected operational mode,
different OpenCV functions are used for the image enhancement, compression or data
fusion with the data from the RGB camera.

Electronics 2021, 10, 317 15 of 35

Canny EdgeRGB ScalingRGB ReadHeatmap
ColorScaling

Computational Operations

Merging

ROIRGB ScalingRGB ReadHeatmap
ColorScaling Merging

RGB ScalingRGB ReadHeatmap
ColorScaling Merging

Heatmap
ColorScaling

Display

M
od

e
5

Display

Compression Storage

Compression WSN

M
od

e
4

M
od

e
3

M
od

e
2

M
od

e
1

Output Operations

Compression Storage

Compression WSN

Figure 8. Overview of the image processing steps executed on the CPU. Multiple modes are supported to satisfy the most
constrained Wireless Sensor Networks (WSN) demands.

3.4.1. Operational Modes

The architecture supports multiple operational modes based on the computational
operations together with three different output modes as depicted in Figure 8. There exist
five operational modes based on the computational operations, which involve operations
related to the acoustic heatmap processing, the RGB image processing and the combination
of both. The output modes vary for each supported mode, from enabling the local display,
storage or wireless transmission for some of the supported modes. The first mode does no
computations and only stores or transmits the received heatmap as raw values. Displaying
the acoustic heatmap is not supported in this mode because the acoustic heatmap from
the FPGA is expected to have a low resolution. The second mode enables the display of
the acoustic heatmap by first scaling and applying a colormap. Notice that this mode
does not support the wireless transmission or the local storage. Using the first mode
to store/transmit the acoustic heatmap, and performing the scaling and coloring after
loading/receiving the acoustic heatmap, will produce the same result, while the amount of
data that is stored/transmitted is lower.

The other modes combine acoustic heatmaps and RGB frames. These operations add
another layer of information. Displaying this combined frame does provide additional
information, and for obvious reasons, less data will be send when both frames are sent
overlapped instead of sending two separate images. The remaining three modes do
support all possible output modes. Figure 9 shows the M3-AC system and outputs for
some supported modes.

Electronics 2021, 10, 317 16 of 35

Figure 9. The M3-AC system consisting of the zedboard, microphone array and RGB camera used during the experiments
(a). Acoustic hetamap of 320 × 240 with 2× scaling showing two sound sources (b), a single sound source of 4kHz half a
meter (c) and one meter (d) away. The acoustic heatmaps can also be combined with unmodified images from the RGB
camera (e,f) or after applying edge detection on the RGB frame (g,h).

Electronics 2021, 10, 317 17 of 35

3.4.2. WSN Communication

The Nordic nRF52840 USB dongle [36] is used for the WSN communication (Figure 10).
This low-cost programmable USB dongle has been selected due to support Bluetooth 5.0,
BLE, Thread, ZigBee, 802.15.4, ANT and 2.4 GHz proprietary protocols. Such a flexi-
bility facilitates migration to a different wireless standard if the M3-AC is ported to a
different WSN.

Figure 10. Nordic USB Dongle used for Bluetooth Low Energy (BLE) communication [36].

Due to the characteristics of the M3-AC, the default wireless standard is BLE. On the
one hand, the M3-AC can generate images (e.g., acoustic heatmaps) with relatively large
resolutions, and therefore, presents a high throughput. Whereas wireless standards based
on IEEE 802.15.4 support maximum data rates around 250 kbps, BLE achieves data rates
higher than 1 Mbps [37]. On the other hand, several modes of the M3-AC demand stream-
ing transmissions, which is better supported in BLE. Nonetheless, further details regarding
the throughput of the supported modes are discussed in Section 5.3.

For our M3-AC, the dongle is flashed with a softdevice, which contains the Nordic BLE
code, and a Hexadecimal (HEX) file of the written code, generated with SEGGER Embedded
Studio for ARM. Once programmed, the dongle is used as a Universal Asynchronous
Receiver-Transmitter (UART) and an Application Programming Interface (API) written in C
is used to interface the device. The CPU sends data to the dongle via serial communication,
which in turn sends it to a connected device via BLE. String commands can be sent from the
receiving device to the CPU, to change the operational mode of the CPU or to interrupt the
communication. As a result, the benefits of using BLE are not only the available BW and
the low power consumption [38], but also its presence on many devices such as laptops or
smartphones. This allows a wide number of devices to operate as a base station, receiving
the data coming from the M3-AC.

4. Multithread Approach
4.1. Single Thread Operational Mode Problem

In order to remain in real time and prevent a queue of unprocessed frames generated
by the FPGA, the CPU has to process the frames faster than the FPGA generates these
frames. The CPU performs the operations on a frame level basis. One frame is loaded and
processed and then the next frame is loaded and processed. In a single threaded approach
this means that the CPU will not read from the buffer while it is processing. The FPGA will
still send acoustic pixels to the buffer, because it generates the acoustic pixels one at a time.
As a result, the amount of data in the buffer over time changes according to Figure 11.

There are four different situations:

1. The data is not read from the buffer, the amount of data in the buffer grows at the
same speed as the FPGA writes values to it.

2. The CPU is reading frames at a rate that is lower than the frame rate of the FPGA.
There is an accumulation of unprocessed frames in the queue.

3. The CPU is reading frames at the same rate they are generated in the FPGA. At the
exact moment the buffer contains one frame, the CPU reads that frame. The FPGA
and CPU are synchronised.

Electronics 2021, 10, 317 18 of 35

4. The CPU is requesting frames at a higher rate than the frame rate of the FPGA.
In this scenario, the CPU processes the frames faster than the FPGA can generate
them. The CPU needs to wait for the FPGA to finish the generation of the next frame.
Because the CPU cannot process a frame until it has received the full frame, it will
send multiple requests for data to the buffer until it has received enough data.

time

d
at

a
in

b
u

ff
er

tread

tframe

f
ra

m
e
si
z
e

no reading (1)

reading too slow (2)

same speed (3)

reading faster (4)

Figure 11. Data in the buffer for four different situations. (1): no data is read from the buffer and everything remains in the
buffer. (2): data is read from the buffer, but at a slower rate than that it is stored. (3): Data is read from the buffer at the same
speed it is stored. Every time one frame is ready in the buffer, it is read, resulting in an empty buffer. (4): A request for data
is performed at a higher rate than that the data is stored in the buffer.

The first situation is unrealistic because no data is processed. The second situation
will result in a system that is not real time because the amount of unprocessed acoustic
pixels/frames will increase. Even more, because of the finite size of the buffer, the buffer will
overflow over time. As a result, acoustic pixels are lost, hence losing acoustic information
and faulty acoustic images. The third and fourth situations are the best: the CPU is
processing the acoustic frames at the same speed or faster than the FPGA generates the
frames. This relation can also be expressed as:

tprocess <= t f rame − tminRead (1)

where tprocess is the time to process the frame by the CPU, t f rame is the time it takes the
FPGA to generate one frame and tminRead is the minimum time needed to read one frame
from the buffer by the CPU. If tprocess is below this threshold (situation 4), tread will increase
because the CPU cannot start processing the frame until it has received a full acoustic
image. It limits the amount of supported modes when working at a lower resolution.

The finite size of the buffers further limits the processing time if the buffers cannot
store a full frame. If the buffer can store m acoustic pixels and the frame consists of No
acoustic pixels, with m < No, the buffer will overflow even in the third situation. Because
there is no handshake mechanism between the FPGA and the CPU, the CPU will still read
No acoustic pixels to form the acoustic image. However, this acoustic image will consist out
of m acoustic pixels from one image and No − m = n acoustic pixels from another acoustic
image or images. These n acoustic pixels can be from another part of the acoustic image or
the end of one acoustic image and the beginning of the next acoustic image. As a result,
any acoustic image that is transferred from the FPGA to the CPU after a buffer overflow
will also be misaligned. This means that the CPU must start reading from the buffer before
the FPGA sends m acoustic pixels. For this reason, if the buffer cannot store a full frame,

Electronics 2021, 10, 317 19 of 35

tprocess is further limited by the time it takes to fill the buffer. This time corresponds to the
size of the buffer divided by the the speed acoustic pixels are sent to the buffer (dataRate):

tover f lowBu f f er = size(bu f f er)× dataRate (2)

this can be combined with Equation (1) to

tprocess <= min(t f rame − tminRead, tover f lowBu f f er) (3)

For low resolutions, tprocess is limited by t f rame, while for higher resolutions it is limited
by the size of the buffer (see Figure 12). When using a buffer with a size of 16 kB, and a
dataRate of one byte every 850 ns (see Section 5.1.2), it takes 13.6 ms to completely fill the
empty buffer. This corresponds to the same time it takes the FPGA to generate an acoustic
frame with a resolution of 146 × 109.

0 10 20 30 40 50
0

20

40

60

tprocess (ms)

T
im

e
(m

s)

Read time (80 × 60) Read time (160 × 120)

Read time (240 × 180) Read time (320 × 240)

0 20 40 60 80 100
0

20

40

60

Number of bytes to read (kB)

t r
e
a
d
(m

s)

tprocess = 20ms tprocess = 40ms

Figure 12. On the left, time to read data from the buffer for different resolutions. The function “usleep” is used to control
tprocess for different resolutions. The read time for the higher resolutions decreases up to tprocess equal to 16 ms. After this,
the read time becomes constant. This is due to the buffer containing the same amount of data when the read call starts (the
maximum it can contain). On the right, time to read different amounts of bytes from the buffer. tprocess is kept constant to
20 ms and 40 ms and the read time is measured. The read times for both the 20 ms and 40 ms are the same for the same
amount of bytes. The graphs has a linear trend line of y = 0.8599x − 15806 with R2 = 1. One can see that this trend line
gives a relationship between the size of the buffer (around 16 kB) and the time to generate one byte by the FPGA (0.85 µs).

4.2. Multithreading Approach as a Solution

To overcome this limitation on tprocess, without consuming large amounts of resources
to allocate a buffer that can store a full frame, a multithreaded approach is proposed.
In this approach, which can be seen in Figure 13, a second thread is dedicated to reading
the acoustic pixels from the buffer and storing them in application memory. Because the
thread is continuously reading acoustic pixels from the buffer, the speed of set thread is
determined by the speed of the FPGA. At the same time, the processing of the acoustic
frames is performed on the first thread, which can have a different processing time (tprocess).
If tprocess exceeds t f rame the acoustic frames will no longer be misaligned even though there
is no handshake mechanism between the FPGA and the CPU. Instead, some of the acoustic
frames will be discarded and not be processed. This can be seen in Figure 14.

Electronics 2021, 10, 317 20 of 35

M
ic

ro
ph

on
e

Ar
ra

y

USB Camera

USB
BLE

Display

PLPL

Xillybus

PS

Figure 13. The proposed architecture operates at three different rates to reduce consumed resources and to optimize the
execution time.

Read frame 2 Read frame 3 Read frame 4 Read frame 5

Process frame 1 Process frame 2 Process frame 3 Process frame 4

Process
frame 1

Process
frame 1

Process
frame 2

Process
frame 2

Process
frame 3

Process
frame 4

Process frame 1 Process frame 2
Process
frame 4

Read thread

Tprocess = Tframe

Tprocess < Tframe

Tprocess > Tframe

Figure 14. Processed frames for different situations, on top is the thread that reads the frames from the FPGA (stays
synchronised with the FPGA), under that are three different situations where the frames are processed at the same speed
(FLR = 1), faster (FLR < 1) or slower (FLR > 1) than the speed they are generated by the FPGA.

On top is the thread that reads the frames from the buffer. It is assumed that the first
acoustic image is already read from the buffer and can be processed. Below that is the ideal
situation where tprocess is equal to the time it takes the FPGA to generate the frame (t f rame)
and the FPGA and the CPU have the same frame rate. Next is the situation where tprocess
is less than t f rame. Here, certain frames are processed multiple times. The last situation
is when tprocess is higher than t f rame. In this case, the CPU is not processing all frames
but instead skips some frames generated by the FPGA. The Frame Loss Ratio (FLR) that
describes the ratio between processed and generated frames can be expressed as

FLR =
tprocess

t f rame
(4)

In order to have an FLR close to 1, meaning that every acoustic frame is processed
once and no acoustic frames are lost, one needs to have timings for all operations such that
the resolution of the FPGA can be optimized depending on the selected mode. This can be
found in Section 5.2.

Electronics 2021, 10, 317 21 of 35

In order to ensure that the read tread remains synchronised with the FPGA, the time
between read calls is measured in the CPU. If the time between two read calls is too
high, which causes a buffer overflow, the FPGA and read thread are reset. This prevents
misalignment’s of the acoustic frames. The maximum time a read call takes is determined
by the resolution of the acoustic frames. As a redundant strategy, the read time is also
compared to the minimum timings from Figure 12. If the read time is close to the minimum,
it might be possible that the buffer was overflowing at the start of the read call and both
CPU and the read thread are also reset.

5. Experimental Results

Our experiments evaluate the response of the microphone array, the resource con-
sumption and the performance of the architecture and the overall performance of the
system for WSN. Firstly, in Section 5.1 an analysis of the front-end regarding the timing,
performance, resource and power consumption is presented and discussed. Secondly,
in Section 5.2 a profiling of the OpenCV operations required for the supported modes
is done. Finally, in Section 5.3 the supported modes are profiled and their support is
discussed. Although these modes are evaluated in a stand-alone node without the WSN
mote, we also provide experimental measurements of the USB BLE.

5.1. Analysis of the Front-End
5.1.1. Resource and Power Consumption

Table 4 summarizes the resource consumption on the FPGA reported by Vivado 2019.2
after the placement and routing. Although the filters have been designed to minimize the
resource consumption, the filter stage has a dominant consumption of registers, LookUp
Tables (LUTs) and Digital Signal Processors (DSPs) due to the streaming and pipelined
implementation of the architecture. Despite the relatively large resource consumption of
the presented reconfigurable architecture, it represents a lower resource demand when
compared to the architecture in [2]. This reduction is due to the delays generator block,
which generates at runtime the delays necessary to support thousands of steering vectors
during the beamforming operation, reducing to half the demand of LUTs but increasing
the DSP consumption. Thanks to this reduction on the resource consumption, microphone
arrays composed up to 52 microphones (such as the one proposed in [1]) can be processed
in parallel on a single Zynq 7020 SoC FPGA. The reduction of the LUTs consumption also
enables the migration of the reconfigurable architecture to a more power efficient SoC
FPGA devices, like the Flash-based SoC FPGA considered in [29]. Unfortunately, despite
low-power Flash-based SoC FPGAs like the Microsemi’s SmartFusion2 promise a low
power consumption as low as few tens of mW, such devices embed an ARM Cortex-M3
microcontroller, which is not powerful enough to support the use of C++ OpenCV library.

Table 4. Zynq 7020 resource consumption after placement and routing of the proposed architecture
when supporting any resolution between 20 × 15 and 640 × 480.

Resources Available

Utilization

Percentage
Filtering Beam-

forming
Delays

Generator Total

Registers 106,400 10,600 1935 1578 14,331 13.35%
LUTs 53,200 8515 707 1682 10,999 20.67%

LUTs-FFs 53,200 7207 671 1593 9566 17.98%
BRAM18k 280 6 6 4 16 5.71%

DSP48 220 24 4 17 45 20.45%

The estimated power consumption reaches 1.95 W using Vivado 2019.2 power es-
timator tool, with around 1.8 W and 155 mW of dynamic and static power respectively.
The power consumption is dominated by the CPU part, since the activation of the CPU
leads to more than 1.68 W, whereas the FPGA part presents a power consumption of a

Electronics 2021, 10, 317 22 of 35

few hundreds of mW. Notice that the dynamic power consumption represents up to 92 %
of the overall power consumption mainly due to operating at 100MHz to generate the
SRP values.

5.1.2. Timing and Performance Analysis

The filtering and beamforming operations at the FPGA logic can be adjusted to
generate acoustic heatmaps with different resolutions. The latency to process a single
steering vector is determined by design parameters like the sensing time (ts), Fs and
DF. The value of ts, the time the microphone array is monitoring a particular steering
vector, determines the probability of detection of sound sources under low Signal-to-
Noise Ratio (SNR) conditions. Therefore, higher values of ts improve the profiling of the
acoustic environment by increasing the overall execution time per frame (t f rame). The
proposed architecture calculates the SRP with Ns = 64 samples, which represents 6144
input PDM samples per steering vector for a DF = 96 (Table 3). For the Fs described in the
same table, ts ≈ 1.96 ms. The latency to calculate the SRP for one steering vector using
Ns = 64 is 85 clock cycles, independently of the operational frequency at the power stage.
This is possible thanks to storing in the steering delays of the delay-decimate-and-sum
beamforming all the required samples to compute the SRP for one orientation.

The beamforming operation is performed at a higher clock frequency than Fs as the
performance strategy called continuous time multiplexing described in [27]. The opera-
tional frequency FP at the beamforming and power stage has been increased to 100 MHz,
which corresponds to the Xillybus’ clock frequency [34]. Therefore, the time to calculate
the SRP per orientation (to) is approximately 0.85 µs.

Table 5 details some of the possible heatmap resolutions and the expected performance
in FPS when operating at FP = 100 MHz. In order to reach real time, the time per
frame t f rame must be lower than 33.3 ms or 50 ms to reach 30 FPS or 25 FPS respectively.
This requirement drastically reduces the maximum heatmap resolution to 240 × 180.
On the other hand, in order to guarantee the independency of each acoustic heatmap,
each acoustic image must be generated from the acquired acoustic information in a period
higher than ts/2. Therefore, at least 32 out of the 64 samples used to calculate SRP have not
been already used to generate one acoustic image. The value of No, which represents the
acoustic heatmap resolution, must be high enough to satisfy the independency condition.
Therefore, it follows that t f rame ≥ ts/2. This condition limits the minimum supported
resolution because it is only satisfied when No > 1224 based on the design parameter in
Table 3 and by operating at 100 MHz. As a result, resolutions as low as 40 × 30 do not
satisfy the independency condition.

Table 5. Timing (in ms) and Performance (in FPS) of the FPGA part based on the supported resolutions.

Resolution No t f rame [ms] FPS

20 × 15 300 0.255 3921.5
40 × 30 1200 1.02 980.4
80 × 60 4800 4.08 246.1

160 × 120 19,200 16.32 61.8
240 × 180 38,400 32.65 30.6
320 × 240 76,800 65.28 15.3
640 × 480 307,200 261.12 3.8

5.2. Analysis of the Back-End: Individual Computational Operations

Like discussed in Section 4, a dedicated thread is used for receiving and storing the
SRP values from the FPGA, which are used to generate the acoustic pixels in a heatmap
format on the CPU. (Figure 14). A frame is defined as all acoustic pixels generated on
the FPGA for a given resolution (Table 5). The data coming through the Xillybus is read,
and stored into one of two memory arrays that are shared with the processing thread.
The two memory arrays are used as double buffering. Processing of the acoustic heatmap

Electronics 2021, 10, 317 23 of 35

is done on the processing thread. In order to process all frames from the FPGA, it is
important that the processing of one frame takes less time than it takes the PL to generate
one frame (FLR <= 1). Computing intensive modes can be restricted to operate with
lower resolutions to fulfill this requirement. For this reason, it is important to profile each
operation in the processing chain for each mode. Some modes require more operations
than others, e.g., a mode that does not use the RGB camera does not require to read, scale
and combine a frame of the RGB camera with the heatmap from the FPGA. An overview
of the operations used in each mode is here described. All timings are the result of
1000 measurements.

During the measurements, no other program was running and the CPU was in an
idle state (CPU usage < 3%) before starting the test and after ending the test. The code is
compiled with the GCC compiler using C++ 11 [39]. The -O3 option is used to turn on
code optimizations such as loop unrolling, function inlining,.. and pthread, which leads to a
higher speed.

5.2.1. Heatmap Scaling

Most of the modes combine a frame from the acoustic camera with a frame from an
RGB camera. In that case, both frames must have the same resolution, and have the same
data format: either black and white or color. For instance, the raw acoustic heatmap is only
a black and white image, so either the frame from the RGB camera needs to be converted
to black and white or the acoustic heatmap must be converted to color. Our platform used
the latter of the two, scaling the acoustic heatmap to the desired resolution before coloring.
This is done with the OpenCV function resize, which supports multiple modes for resizing
the frame [40–42]:

1. Nearest-neighbour: This method has been discarded since it only selects the value of the
nearest pixel without performing interpolation. Although being the fastest method,
its output images are highly pixelated.

2. Bilinear: This method calculates a new pixel value by taking a weighted average
of the four nearest neighbouring original pixel values. A smoother result than the
Nearest-neighbour is obtained at the cost of undesired lines. Nonetheless, this method
is the fastest of the other three.

3. Bicubic: This type of interpolation provides the best visual result, but also is the more
time demanding algorithm. Each new pixel is calculated by the Bicubic function
using the 16 pixels in the nearest 4 × 4 neighbourhood. The result is a smooth
heatmap image.

4. Lanczos: This interpolation method is based on the sinc function but it demands
roughly double the amount of time to resize an image than the Bicubic method.
Although the result is closer to the Bicubic method, some artefacts might appear in
the rescaled image.

For the sake of simplicity, our acoustic heatmaps are only scaled by a factor of two or
four, for which timings can be found in Figure 15. It can be seen that Bilinear is the fastest
for all resolutions, while Lanczos is twice as slow as Bicubic and even three times slower than
Bilinear. This can be explained by the complexity of the different interpolation techniques
as described before. The time to resize the frame is determined by the output resolution.
As a consequence, when one of the modes is too slow the resolution of the FPGA can be
increased to optimize FLR. This higher resolution means that the FPGA needs to generate
more acoustic pixels, increasing the time to generate one frame. The CPU, on the other
hand, will still require the same amount of time to process the frame. Also the opposite can
be done. If the CPU is processing frames faster than the FPGA generates them, one could
decrease the resolution of the FPGA.

Electronics 2021, 10, 317 24 of 35

40
×
30
�

80
×
60

80
×
60
�

16
0
×
12
0

16
0
×
12
0�

32
0
×
24
0

24
0
×
18
0�

48
0
×
36
0

0

5

10

15

Resolution

T
im

e
(m

s)

Bilinear Bicubic Lanczos

40
×
30
�

16
0
×
12
0

80
×
60
�

32
0
×
24
0

16
0
×
12
0�

64
0
×
48
0

0

5

10

15

20

Resolution

T
im

e
(m

s)

Bilinear Bicubic Lanczos

Figure 15. Time for rescaling the heatmap for different resolutions by a factor of 2 (left) and by a factor of 4 (right). The gray
lines indicate the confidence interval.

5.2.2. Heatmap Color

In order to combine the acoustic heatmap with a frame from the RGB camera, it is desir-
able that both have the same color encoding. This means that the grayscale heatmap needs
to be converted to RGB. This could be done by converting the colorspace. Another option
is applying a colormap using the OpenCV function applyColorMap [43], which assigns each
pixel a color based on the value of set pixel in the grayscale heatmap. The timing for this
operation can be found in Table 6. Because each pixel in the output image of this function
gets a color based on the value of the same pixel in the original image, the time increases
linear with the number of pixels. However, for higher resolutions like 640 × 480, OpenCV
uses multithreading to improve the speed [44]. It explains why the resolution 640 × 480 is
not 4 times slower than 320 × 240. In some cases, it can be interesting to slightly increase
the resolution so that the OpenCV uses multiple threads. Unfortunately, this is not our
case since the resolution 640 × 480 is slower than 480 × 360. Moreover, it might be that a
resolution of 520 × 400 is slower than 640 × 480. This also means that the code is executed
on both cores and special care needs to be taken so that the read thread that is dedicated to
reading out the FIFO is not stalled too long. If this is not the case, both cores can be used
because the read thread spends most of its time in an idle state, waiting for values from
the FPGA.

Table 6. Timing (in ms) for different operations on the CPU based on the supported resolutions
together with the confidence intervals.

Resolution #Pixels Colormap [ms] Canny Edge [ms] Merging [ms]

80 × 60 4,800 3.775 ± 0.017 1.262 ± 0.017 0.772 ± 0.003
160 × 120 19,200 4.828 ± 0.027 3.463 ± 0.035 2.883 ± 0.003
320 × 240 76,800 9.510 ± 0.026 11.717 ± 0.076 12.422 ± 0.038
480 × 360 172,800 16.569 ± 0.024 23.274 ± 0.108 25.905 ± 0.067
640 × 480 307,200 17.801 ± 0.114 41.942 ± 0.146 45.961 ± 0.098

5.2.3. ROI

When working with higher resolutions, some modes can become too slow resulting
in missed frames from the FPGA. To improve the overall timing it could be interesting
to do a part of the processing on the full frame and then detect some ROIs. This results
in a couple of time improvements. First of all, frames without any ROI can be discarded.
If there is nothing interesting in the frame, the frame should not be processed, allowing to
process the next frame faster and reducing the amount of processed data. A second reason
why this improves timing is because it introduces the possibility to only process the ROIs
instead of the full frame.

Electronics 2021, 10, 317 25 of 35

Figure 16 depicst the operations needed to identify ROIs. The first operation to identify
ROIs is to upscale the acoustic heatmap before applying the colormap. On this acoustic
heatmap a threshold is applied. All pixels that are below the threshold are set to zero,
while pixels above the threshold are set to one. This is done by using the OpenCV function
threshold [45]. After applying the threshold the contours are extracted and a bounding box
for each contour is generated. This is done by using the OpenCV functions findContours [46]
and boundingRect [47]. Timing for detecting different amounts of ROIs can be found in
Figure 17. During the experiments, each ROI is 1/16 the size of the image and none of
the ROIs overlapped. The time to detect the ROIs increases linearly with the resolution.
The time to identify ROIs increases with the number of ROIs, but this increment is lower
than when changing the resolution.

80x60
Heatmap

320x240
Resized Heatmap

Colored Heatmap

Mask and contours

ROIs

Figure 16. Operations applied to identify Regions-of-Interest (ROIs).

80 × 60 160 × 120 320 × 240 480 × 360 640 × 480
0

2

4

6

8

Resolution

T
im

e
(m

s)

1 ROI 2 ROI 4 ROI 8 ROI

Figure 17. Time for detecting one, two, four or eight ROIs. The gray lines indicate the confidence interval.

5.2.4. RGB Reading from Camera

The acoustic camera combines the acoustic heatmap with an RGB frame from an
RGB camera. During the experiments a low cost USB camera is used [48,49]. The camera
operates at 30 FPS and has a resolution of 640 × 480. Frames from the camera are read
directly on the CPU, and not in the FPGA. This adds the advantage that the camera can
be replaced by another model, with a different pixel encoding, resolution or frame rate
without the need to make changes to the code or architecture. The openCV function
VideoCapture::read() is used [50] to read from the camera, which blocks the thread until it
has read a frame from the camera. This function also ensures that the frame is provided in
RGB format. The current camera uses YUYV encoding, while another may use MJPG at
60 FPS. By reading the frames on the CPU, replacing the camera only requires a physical
change of the camera while doing the same when reading the frames in FPGA would also
require changes in the FPGA logic.

Electronics 2021, 10, 317 26 of 35

The duration of the VideoCapture::read() method is not fixed, and varies based on
the time between two calls to the read function. This is because of a similar principle as
described in Section 4.1. When a second call to the read function happens before a frame is
ready, the function will block the thread until the frame is ready. This results in the same
behavior for the timing as in Section 4.1 and can be seen in Figure 18. Because there is no
buffer that can overflow, there is no need for a second thread. Due to the fact that the read
function always waits on a new frame from the camera, the frame rate of the application
will always be below the frame rate of the camera.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

Delay time (ms)

T
im

e
(m

s)

Figure 18. Time for reading a frame from the RGB camera. “usleep” is used for the delay time. The read time (blue line)
drops to a minimum when the delay is above 22 ms. The orange line is the average of the read times (13.22 ms) when the
delay is more than this 22 ms.

5.2.5. RGB Scaling

The combination of the acoustic heatmap with the RGB frame demands a rescaling of
the RGB frame from 640 × 480 to match the upscaled resolution of the acoustic heatmap.
Unlike the rescaling of the acoustic heatmap, the frame needs to be downscaled instead of
upscaled, resulting in different timings that can be found in Figure 19. Downscaling the
frame to 320 × 240 with Bilinear takes almost the same time as downscaling it to 160 × 120.
The reason is that OpenCV internally uses a special function for downscaling by a factor of
two with Bilinear specifically aimed to improve the speed for this special case of Bilinear
interpolation [51]. However, the other two modes follow the same pattern as in the case of
the resizing the acoustic heatmap: Bicubic is slower than Bilinear and Lanczos is more than
twice as slow as Bicubic.

80 × 60 160 × 120 320 × 240 480 × 360
0

20

40

60

80

Resolution

T
im

e
(m

s)

Bilinear Bicubic Lanczos

Figure 19. Time for downscaling the RGB to different resolutions with different modes. The original resolution of the image
is 640 × 480. The gray lines indicate the confidence interval.

Electronics 2021, 10, 317 27 of 35

5.2.6. Canny Edge

One of the optional modes needs to apply edge detection on the RGB frame for which
the timing can be found in Table 6. This mode uses Canny Edge, which is supported in
OpenCV by applying two consecutive functions: blur [52] and canny [53]. In order to apply
these functions, the frame from the RGB camera needs to be converted to a grayscale image
first using the cvtColor function [54]. Blur reduces the noise in the image and canny is used
for the edge detection. Like coloring of the acoustic heatmap, the relationship between
the resolution and the time to apply canny edge is linear. Furthermore it can also be seen
that the canny edge for a resolution of 640 × 480 takes more than 40 ms. This means that
this mode can never be executed in real time for this resolution (remain above 30 FPS,
as explained in Section 5.3).

5.2.7. Overlay

After the pre-processing of both, the RGB and acoustic heatmap image can be com-
bined to form one image so it can later be send over wireless or stored in memory. Over-
laying both images is done using the OpenCV function addWeighted [55]. This is again
an operation where the time to perform the operation is linear with the number of pixels.
The timing can be found in Table 6. For lower resolutions, the merging is faster than gen-
erating the colormap. When the resolution increases, the roles are reversed, and merging
the images together becomes slower than generating the colormap. Both functions operate
on each pixel individually and do not use neighbouring pixels to determine the color of
the output pixel. But the merging needs to process three times more values, because each
pixel is represented by an RGB value (24 bits), while the colormap is converting a single
channel (8 bit) image into an RGB image. The merging also needs to read a value from
two different images and as a result of this, it has to process six times more bytes than the
colormap function.

5.2.8. Compression

In order to send the image it first needs to be compressed. The compression is done
using the OpenCV functions imencode for memory and imwrite for writing to a file [56].
Two compression techniques are used. The first one being JPG which is a lossy compression
and the second one is Portable Network Graphics (PNG), which is lossless allowing to
retrieve the original image. Depending on the mode of the camera the unscaled raw
acoustic heatmap is compressed (mode 1) or the combined image of the acoustic heatmap
and the RGB camera is compressed (mode 3, 4 or 5). The first has only 8 bits/pixel (single
channel) while the latter has 24 bits/pixel (three channels). As a result, there are two
different timings and compression sizes. The compression time and size of the compressed
image for mode 1 can be found in Figure 20a,c, while the size and timing for compressing
the output image generated by mode 3, 4 and 5 can be found in Figure 20b,d.

The time to compress the image using JPG and PNG together with the size of the
compressed image are depicted in Figure 20. To measure the time to compress an image,
first 1000 acoustic images are generated and stored as single channel images without
rescaling. The images are stored as PNG files so that the original image can be reconstructed
later and reused for all resolutions. Different images are loaded and rescaled to several
resolutions to time the compression techniques. If the RGB compression mode is tested,
than the images are converted from grayscale to RGB by applying the colormap.

Because there is no added value to scale the acoustic heatmap and than compress it,
the resolutions for the grayscale acoustic heatmap are lower and follow the resolutions
of the FPGA. This combined with the fact that only one channel instead of three needs to
be compressed, makes this mode faster than the RGB version. It is also clear that it takes
more time to store the image on the Secure Digital (SD) card than storing it in memory.
This is true for both PNG and JPG. Notice that JPG has a smaller size and takes less time to
compress than PNG for the same image size.

Electronics 2021, 10, 317 28 of 35

40 × 30 80 × 60 160 × 120 240 × 180
0

2

4

6

Resolution

T
im

e
(m

s)

JPG (mem) JPG (file) PNG (mem) PNG (file)

(a)

80 × 60 160 × 120 320 × 240 480 × 360 640 × 480
0

20

40

60

80

Resolution

T
im

e
(m

s)

JPG (mem) JPG (file) PNG (mem) PNG (file)

(b)

40 × 30 80 × 60 160 × 120 240 × 180
0

5

10

15

Resolution

S
iz

e
(k

B
)

JPG (mem) JPG (file) PNG (mem) PNG (file)

(c)

80 × 60 160 × 120 320 × 240 480 × 360 640 × 480
0

20

40

60

80

100

120

Resolution

S
iz

e
(k

B
)

JPG (mem) JPG (file) PNG (mem) PNG (file)

(d)

Figure 20. (a) Time to compress a grayscale acoustic heatmap for different resolutions and (c) the corresponding size of the compressed
image (mode 1). (b) Time to compress an RGB image for different resolutions and (d) the size of the compressed image (mode 3, 4 and
5). The gray lines indicate the confidence interval.

5.3. Analysis of the Back-End: Operational Modes

Using the timings from the previous section, the modes from Section 3.4.1 can be
evaluated to identify which modes can operate in real time. The timings for each operational
mode, output mode, and resolution can be found in Table 7. Mode 1 does not use scaling
and only the four resolutions of the FPGA that have an FPS above 30 are supported. For the
other modes, five different resolutions for the CPU are evaluated, the lowest being 80 × 60
and the highest being 640 × 480. Because these resolutions do not match the resolution
of the FPGA, the heatmaps are first scaled by a factor of two using Bilinear. Bilinear is
used because it is the fastest. For the resolution of 640 × 480, a resolution on the FPGA
of 160 × 240 is used, and the heatmap is scaled by a factor of four. This is because the
resolution of 320 × 240 has a FPS of 15.3 on the FPGA, which is below 30 FPS. A frame rate
of 30 FPS is considered the minimum frame rate to be real time. This does not mean that the
CPU cannot reach 30 FPS if the FPGA works with a resolution of 320 × 240. Like discussed
in Section 5.2.1, the time to scale the heatmap depends mainly on the targeted resolution
and not on the original resolution. All five modes, together with the timing for each
operation and resolution can be found in Table 7.

Because Mode 1 does not need to perform any manipulation of the data, its timing
depends only on the chosen output mode. The WSN mode requires compression and
sending. It can be seen that sending the data takes the majority of the time for the output
mode. This is caused by the fact that the data has to be transferred over UART to the
BLE dongle. UART has a much lower BW than BLE and as a result of this it forms a
bottleneck in the timing. Replacing the UART by another communication protocol to access
the dongle, or choosing a platform that already provides a built-in BLE module would
improve the throughput.

Electronics 2021, 10, 317 29 of 35

The other modes allow the use of the display output mode, and the frame rates can be
found in Figure 21. It can be seen that the two lowest resolutions support all 4 modes while
achieving real time. On he other hand, the resolution of 640 × 480 is never real time despite
the fact that it does not require the RGB frame to be rescaled. When looking at Table 7, one
can see that displaying the frame requires 23 ms. This is the minimum time to display the
image using the OpenCV function imshow [57] combined with waitkey [58] because waitkey
allows the insertion of a wait time, which is set to a minimum of 1 ms. When looking at
Figure 21 it can also be seen that the resolution of 480 × 360 is almost real time for mode 2,
achieving a frame rate of 29 FPS.

80 × 60 160 × 120 320 × 240 480 × 360 640 × 480
0

20

40

60

80

100

120

140

160

180

Resolution

F
ra
m
e
ra
te

(F
P
S
)

Mode 2 Mode 3 Mode 4 Mode 5

Figure 21. Output frame rate of each mode. The orange line represents the real time threshold of
30 Frames Per Second (FPS). The gray lines indicate the confidence interval.

In the previous sections, the timing of each individual operation is analysed. Figure 22
reflects the timing for the different modes, showing which one are the most time demanding
operations. The read time of the RGB camera dominates the time consuming for the lowest
resolutions. This is a fixed time independent of the resolution or the operational mode, and
can only be changed by replacing the RGB camera. Although the coloring of the acoustic
heatmap increases when increasing the output resolution, it is the merging of the two
frames which dominates the execution time for the modes 3 and 4, while the edge detection
dominates in Mode 5. At 320 × 240 merging takes almost the same amount of time as
reading the frame from the camera. And for 480 × 360 and 640 × 480 it even becomes the
most time consuming operation. Despite the fact that the resolution of 640 × 480 does not
require scaling the RGB frame, the time to scale down the frame to 480 × 360 and merge it
with the heatmap is less than merging both frames at 640 × 480.

Electronics 2021, 10, 317 30 of 35

Table 7. Timing and confidence interval for each operation performed in each mode for different resolutions. The resolution
after scaling is indicated in bold. All values are in ms.

Res FPGA Res CPU Scaling HM Color RGB Read RGB Scaling ROI Canny Merging

Display

Total TimeCompression + Storage

Compression Sending

Mode 1: Raw heatmap

40 × 30 40 × 30
- -

0.793 ± 0.201 0.793
0.281 ± 0.003 66.532 ± 0.382 66.813

80 × 60 80 × 60
- -

0.947 ± 0.003 0.947
0.569 ± 0.002 154.325 ± 1.148 154.894

160 × 120 160 × 120
- -

2.378 ± 0.319 2.378
1.546 ± 0.004 401.286 ± 3.203 402.832

240 × 180 240 × 180
- -

3.619 ± 0.052 3.619
3.089 ± 0.006 697.661 ± 5.487 700.750

Mode 2: Scaling + HM color + Display

40 × 30 80 × 60 0.223 ± 0.002 3.775 ± 0.017
1.855 ± 0.202 5.853

- -
- - -

80 × 60 160 × 120 0.704 ± 0.011 4.828 ± 0.027
2.742 ± 0.019 8.274

- -
- - -

160 × 120 320 × 240 2.453 ± 0.021 9.510 ± 0.026
7.110 ± 0.041 19.073

- -
- - -

240 × 180 480 × 360 3.707 ± 0.032 16.569 ± 0.024
14.124 ± 0.056 34.400

- -
- - -

160 × 120 640 × 480 6.580 ± 0.047 17.801 ± 0.114
23.658 ± 0.060 48.039

- -
- - -

Mode 3: Scaling + HM color + RGB read + RGB scaling + Output mode

40 × 30 80 × 60 0.223 ± 0.002 3.775 ± 0.017 13.218 ± 0.075 1.353 ± 0.006 0.772 ± 0.003
1.855 ± 0.202 21.196
2.276 ± 0.553 21.617

1.000 ± 0.002 283.791 ± 1.955 304.132

80 × 60 160 × 120 0.704 ± 0.011 4.828 ± 0.027 13.218 ± 0.075 3.505 ± 0.006 2.883 ± 0.003
2.742 ± 0.019 27.880
3.532 ± 0.101 28.670

2.952 ± 0.007 733.093 ± 5.752 761.183

160 × 120 320 × 240 2.453 ± 0.021 9.510 ± 0.026 13.218 ± 0.075 4.099 ± 0.016 12.422 ± 0.038
7.110 ± 0.041 48.812
10.536 ± 0.034 52.238

9.812 ± 0.017 1893.760 ± 15.502 1945.274

240 × 180 480 × 360 3.707 ± 0.032 16.569 ± 0.024 13.218 ± 0.075 16.281 ± 0.040 25.905 ± 0.067
14.124 ± 0.056 89.804
21.724 ± 0.131 97.404

20.654 ± 0.030 3276.708 ± 26.344 3373.042

160 × 120 640 × 480 6.580 ± 0.047 17.801 ± 0.114 13.218 ± 0.075 - 45.961 ± 0.098
23.658 ± 0.060 107.218
36.368 ± 0.067 119.982

35.283 ± 0.050 4917.320 ± 39.874 5036.136

Mode 4: Scaling + HM color + RGB read + RGB scaling + ROI + Merging + Output mode

40 × 30 80 × 60 0.223 ± 0.002 3.775 ± 0.017 13.218 ± 0.075 1.353 ± 0.006 0.211 ± 0.002 0.772 ± 0.003
1.855 ± 0.202 21.407
2.276 ± 0.553 21.828

1.000 ± 0.002 283.791 ± 1.955 304.343

80 × 60 160 × 120 0.704 ± 0.011 4.828 ± 0.027 13.218 ± 0.075 3.505 ± 0.006 0.626 ± 0.003 2.883 ± 0.003
2.742 ± 0.019 28.506
3.532 ± 0.101 29.296

2.952 ± 0.007 733.093 ± 5.752 761.809

160 × 120 320 × 240 2.453 ± 0.021 9.510 ± 0.026 13.218 ± 0.075 4.099 ± 0.016 2.361 ± 0.005 12.422 ± 0.038
7.110 ± 0.041 51.173
10.536 ± 0.034 54.599

9.812 ± 0.017 1893.760 ± 15.502 1947.635

240 × 180 480 × 360 3.707 ± 0.032 16.569 ± 0.024 13.218 ± 0.075 16.281 ± 0.040 4.254 ± 0.029 25.905 ± 0.067
14.124 ± 0.056 94.058
21.724 ± 0.131 101.658

20.654 ± 0.030 3276.708 ± 26.344 3377.296

160 × 120 640 × 480 6.580 ± 0.047 17.801 ± 0.114 13.218 ± 0.075 - 7.314 ± 0.018 45.961 ± 0.098
23.658 ± 0.060 114.532
36.368 ± 0.067 127.242

35.283 ± 0.050 4917.320 ± 39.874 5043.477

Mode 5: Scaling + HM color + RGB read + RGB scaling + Canny + Merging + Output mode

40 × 30 80 × 60 0.223 ± 0.002 3.775 ± 0.017 13.218 ± 0.075 1.353 ± 0.006 1.262 ± 0.017 0.772 ± 0.003
1.855 ± 0.202 22.458
2.276 ± 0.553 22.879

1.000 ± 0.002 283.791 ± 1.955 305.394

80 × 60 160 × 120 0.704 ± 0.011 4.828 ± 0.027 13.218 ± 0.075 3.505 ± 0.006 3.463 ± 0.035 2.883 ± 0.003
2.742 ± 0.019 31.343
3.532 ± 0.101 32.133

2.952 ± 0.007 733.093 ± 5.752 764.646

160 × 120 320 × 240 2.453 ± 0.021 9.510 ± 0.026 13.218 ± 0.075 4.099 ± 0.016 11.717 ± 0.076 12.422 ± 0.038
7.110 ± 0.041 60.529
10.536 ± 0.034 63.955

9.812 ± 0.017 1893.760 ± 15.502 1956.991

240 × 180 480 × 360 3.707 ± 0.032 16.569 ± 0.024 13.218 ± 0.075 16.281 ± 0.040 23.274 ± 0.108 25.905 ± 0.067
14.124 ± 0.056 113.078
21.724 ± 0.131 120.678

20.654 ± 0.030 3276.708 ± 26.344 3396.316

160 × 120 640 × 480 6.580 ± 0.047 17.801 ± 0.114 13.218 ± 0.075 - 41.942 ± 0.146 45.961 ± 0.098
23.658 ± 0.060 149.160
36.368 ± 0.067 161.870

35.283 ± 0.050 4917.320 ± 39.874 5078.105

Electronics 2021, 10, 317 31 of 35

80 × 60 160 × 120 320 × 240 480 × 360 640 × 480
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Resolution

T
im

e
(m

s)

Merging
RGB scaling
RGB read
HM color
HM scaling

80 × 60 160 × 120 320 × 240 480 × 360 640 × 480
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Resolution

T
im

e
(m

s)

Merging
RGB scaling
RGB read
ROI
HM color
HM scaling

80 × 60 160 × 120 320 × 240 480 × 360 640 × 480
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Resolution

T
im

e
(m

s)

Merging
RGB scaling
RGB read
Canny edge
HM color
HM scaling

Figure 22. Time for each computational operation in Mode 3 (left), Mode 4 (center) and Mode 5 (right) for different
resolutions. The orange line represents the threshold of 33 ms (30 FPS). The gray lines indicate the confidence interval.

Notice that the detection of ROIs in Mode 4 is not a time demanding operation.
Therefore, like discussed in Section 5.2.3, the ROI can be used to improve the timing by
discarding frames that do not have any ROI or by only processing the ROIs instead of full
frames. This is of course only possible when the output mode is not display. The new
multithreaded approach accelerates the identification of multiple ROIs. Although the
interval between processed frames changes depending on the amount of ROIs that are
detected in the acoustic heatmap, there is no queue building up of unprocessed frames
between the FPGA and CPU, allowing the FPGA and the CPU to stay synchronised.
Without this multithreaded approach, a buffer should be allocated that is big enough to
store multiple frames, increasing the amount of resources consumed, or a handshake is

Electronics 2021, 10, 317 32 of 35

needed between the FPGA and the CPU, decreasing the throughput between FPGA and
CPU because the CPU needs to wait for a start signal from the FPGA and make sure that it
has read a complete frame, and not two partial frames.

The NORDIC USB BLE dongle achieves the highest throughput when using UART
for the communication between the CPU and the BLE dongle. However, UART limits the
throughput from 92 to 115.2 kbps while the BLE dongle supports theoretical thoughputs
up to 2 Mbps [36]. This theoretical throughput, combined with the average compression
size, can be used to estimate achievable timing and throughput. Despite this comparison
is only performed for Mode 3, there is an analog relationship with the other modes.
A comparison between the current throughput and achievable throughput can be found in
Table 8. Notice that the throughput increases for all resolutions with more than a factor of
9. The resolution 80 × 60 has an achievable timing of 33.821 ms, which is almost 30 FPS.
One of the advantages of the M3-AC system is its flexibility to support different wireless
communication standards, by using additional WSN motes or another communication
protocol. For instance, the BLE dongle could be replaced by a wireless protocol that
supports a higher BW, e.g., a Wi-Fi dongle or a dongle that supports 4G/5G. Although
this solution would support video and audio streaming, it would increase significantly the
overall power consumption.

Table 8. Comparison between current timing/throughput and achievable timing/throughput for mode 3. The achievable
throughput is based on the maximum throughput of 2 Mbps that is supported by the BLE dongle [36].

Resolution Current Timing [ms] Theoretical Timing [ms] Current Throughput [kB/s] Theoretical
Throughput [kB/s]

80 × 60 304,132 33,821 11,081 99,642
160 × 120 761,183 62,710 11,370 138,016
320 × 240 1,945,274 140,762 11,470 158,509
480 × 360 3,373,042 250,662 11,438 153,920
640 × 480 5,036,163 350,379 11,494 165,204

6. Conclusions

The presented M3-AC system is designed to not only offering wireless capabilities
but also multiple operational modes to satisfy different applications. The embedded
architecture is designed to exploit the FPGAs features by making use of the data parallelism
and operating in pipeline to achieve high FPS for relatively high resolutions. In fact,
the optimized architecture not only almost doubles the performance of the original one,
the relatively low resource consumption also enables the use of larger microphone arrays
composed of more than 50 microphones at a very low power consumption. On the other
hand, the multithread approach allows a better workload balance between the FPGA
and the CPU. The flexibility of the CPU facilitates the support of multiple modes with
different resolutions. By profiling the timing of the different operations performed in
each mode, the resolution of the FPGA can be adapted to match the timing of the CPU.
Thanks to adapting the resolution, it is possible to remain in real time, even with the
more time-demanding modes. As a consequence, the M3-AC system achieves real time
performance in several supported modes providing multiple configurations to satisfy the
constrained bandwidth.

Author Contributions: Methodology, J.V. and B.d.S.; hardware-software co-design, J.V., L.L. and
B.d.S.; validation, J.V. and B.d.S.; writing—original draft preparation, J.V., B.d.S. and A.B.; writing—
review and editing, J.V., B.d.S. and A.B.; supervision, B.d.S., A.B. and A.T.; funding acquisition, A.T.;
All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the European Regional Development Fund (ERDF)
and the Brussels-Capital Region-Innoviris within the framework of the Operational Programme 2014–
2020 through the ERDF-2020 Project ICITYRDI.BRU. This work is also part of the COllective Research
NETworking (CORNET) project "AITIA: Embedded AI Techniques for Industrial Applications" [59].

Electronics 2021, 10, 317 33 of 35

The Belgian partners are funded by VLAIO under grant number HBC.2018.0491, while the German
partners are funded by the BMWi (Federal Ministry for Economic Affairs and Energy) under IGF-
Project Number 249 EBG.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding authors upon request.

Acknowledgments: The authors would like to thanks Xilinx for the provided software and hardware
under the Xilinx University Program (XUP) donation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tiete, J.; Domínguez, F.; da Silva, B.; Segers, L.; Steenhaut, K.; Touhafi, A. SoundCompass: A Distributed MEMS Microphone

Array-Based Sensor for Sound Source Localization. Sensors 2014, 14, 1918–1949. [CrossRef] [PubMed]
2. Da Silva, B.; Segers, L.; Rasschaert, Y.; Quevy, Q.; Braeken, A.; Touhafi, A. A Multimode SoC FPGA-Based Acoustic Camera for

Wireless Sensor Networks. In Proceedings of the 13th International Symposium on Reconfigurable Communication-Centric
Systems-on-Chip, ReCoSoC 2018, Lille, France, 9–11 July 2018; pp. 1–8.

3. Zimmermann, B.; Studer, C. FPGA-based real-time acoustic camera prototype. In Proceedings of the 2010 IEEE International
Symposium on Circuits and Systems (ISCAS), Paris, France, 30 May–2 June 2010; p. 1419.

4. Perrodin, F.; Nikolic, J.; Busset, J.; Siegwart, R. Design and calibration of large microphone arrays for robotic applications.
In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura-Algarve,
Portugal, 7–12 October 2012; pp. 4596–4601.

5. Sanchez-Hevia, H.; Gil-Pita, R.; Rosa-Zurera, M.; others. FPGA-based real-time acoustic camera using PDM MEMS microphones
with a custom demodulation filter. In Proceedings of the Sensor Array and Multichannel Signal Processing Workshop (SAM),
A Coruna, Spain, 22–25 June 2014; pp. 181–184.

6. Sánchez-Hevia, H.A.; Mohino-Herranz, I.; Gil-Pita, R.; Rosa-Zurera, M. Memory Requirements Reduction Technique for Delay
Storage in Real Time Acoustic Cameras. In Proceedings of the Audio Engineering Society Convention 136, Audio Engineering
Society, Berlin, Germany, 26–29 April 2014.

7. Kim, Y.; Kang, J.; Lee, M. Developing beam-forming devices to detect squeak and rattle sources by using FPGA. INTER-NOISE
and NOISE-CON Congress and Conference Proceedings. Inst. Noise Control Eng. 2014, 249, 4582–4587.

8. Netti, A.; Diodati, G.; Camastra, F.; Quaranta, V. FPGA implementation of a real-time filter and sum beamformer for acoustic
antenna. INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Inst. Noise Control Eng. 2015, 250, 3458–3469.

9. Bourgeois, J.; Minker, W. (Eds.) Linearly Constrained Minimum Variance Beamforming. In Time-Domain Beamforming and Blind
Source Separation: Speech Input in the Car Environment; Springer: Boston, MA, USA, 2009; pp. 27–38.

10. Izquierdo, A.; Villacorta, J.J.; del Val Puente, L.; Suárez, L. Design and evaluation of a scalable and reconfigurable multi-platform
system for acoustic imaging. Sensors 2016, 16, 1671. [CrossRef] [PubMed]

11. Del Val, L.; Izquierdo, A.; Villacorta, J.J.; Suárez, L. Using a Planar Array of MEMS Microphones to Obtain Acoustic Images of a
Fan Matrix. J. Sens. 2017, 2017, 3209142. [CrossRef]

12. Izquierdo, A.; Villacorta, J.J.; del Val, L.; Suárez, L.; Suárez, D. Implementation of a Virtual Microphone Array to Obtain High
Resolution Acoustic Images. Sensors 2017, 18, 25. [CrossRef] [PubMed]

13. Seo, S.W.; Kim, M. 3D Impulsive Sound-Source Localization Method through a 2D MEMS Microphone Array using Delay-and-
Sum Beamforming. In Proceedings of the 9th International Conference on Signal Processing Systems, Auckland, New Zealand,
27–30 November 2017; pp. 170–174.

14. Seo, S.W.; Kim, M. Estimation of 3D ball motion using an infrared and acoustic vector sensor. In Proceedings of the 2017
International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 18–20 October 2017;
pp. 1047–1049.

15. Seo, S.W.; Yun, S.; Kim, M.G.; Sung, M.; Kim, Y. Screen-Based Sports Simulation Using Acoustic Source Localization. Appl. Sci.
2019, 9, 2970. [CrossRef]

16. Fréchette-Viens, J.; Quaegebeur, N.; Atalla, N. A Low-Latency Acoustic camera for Transient Noise Source Localization.
In Proceedings of the 8th Berlin Beamforming Conference, Berlin, Germany, 2–3 March 2020.

17. Costas, L.; Fernández-Molanes, R.; Rodríguez-Andina, J.J.; Fariña, J. Characterization of FPGA-master ARM communication
delays in zynq devices. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON,
Canada, 22–25 March 2017; pp. 942–947.

18. Lin, Z.; Chow, P. Zcluster: A zynq-based hadoop cluster. In Proceedings of the 2013 International Conference on Field-
Programmable Technology (FPT), Kyoto, Japan, 9–11 December 2013; pp. 450–453.

19. Xillybus Host Application Programming Guide for Linux. Available online: http://xillybus.com/downloads/doc/xillybus_
host_programming_guide_linux.pdf (accessed on 27 October 2020).

20. Xilinx OpenCV User Guide, UG1233 (v2019.1). Available online: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2019_1/ug1233-xilinx-opencv-user-guide.pdf (accessed on 12 November 2020).

http://doi.org/10.3390/s140201918
http://www.ncbi.nlm.nih.gov/pubmed/24463431
http://dx.doi.org/10.3390/s16101671
http://www.ncbi.nlm.nih.gov/pubmed/27727174
http://dx.doi.org/10.1155/2017/3209142
http://dx.doi.org/10.3390/s18010025
http://www.ncbi.nlm.nih.gov/pubmed/29295485
http://dx.doi.org/10.3390/app9152970
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1233-xilinx-opencv-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1233-xilinx-opencv-user-guide.pdf

Electronics 2021, 10, 317 34 of 35

21. OpenCV Modules . Available online: https://docs.opencv.org/4.4.0/ (accessed on 12 November 2020).
22. Xilinx Zynq–7000 All Programmable Soc Overview. Available online: https://www.xilinx.com/support/documentation/data_

sheets/ds190-Zynq-7000-Overview.pdf (accessed on 15 January 2021).
23. Knowles Acoustics MEMS Microphones SPH0644HM4H-1 RevB Datasheet. Available online: https://www.digikey.jp/

htmldatasheets/production/3083460/0/0/1/sph0644hm4h-1-datasheet-.html (accessed on 15 September 2020).
24. Analog Devices, ADMP521 Datasheet. Available online: http://www.analog.com/media/en/technical-documentation/obsolete-

data-sheets/ADMP521.pdf (accessed on 15 September 2020).
25. Da Silva, B.; Braeken, A.; Steenhaut, K.; Touhafi, A. Design Considerations When Accelerating an FPGA-Based Digital Microphone

Array for Sound-Source Localization. J. Sens. 2017, 2017, 20. [CrossRef]
26. Da Silva, B.; Braeken, A.; Touhafi, A. FPGA-Based Architectures for Acoustic Beamforming with Microphone Arrays: Trends,

Challenges and Research Opportunities. Computers 2018, 7, 29. [CrossRef]
27. Da Silva, B.; Segers, L.; Braeken, A.; Steenhaut, K.; Touhafi, A. Design Exploration and Performance Strategies Towards

Power-Efficient FPGA-based Architectures for Sound Source Localization. J. Sens. 2019, 2019, 31. [CrossRef]
28. Da Silva, B.; Segers, L.; Braeken, A.; Touhafi, A. Runtime reconfigurable beamforming architecture for real-time sound-source

localization. In Proceedings of the 26th International Conference on Field Programmable Logic and Applications, FPL 2016,
Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–4.

29. Da Silva, B.; Segers, L.; Braeken, A.; Steenhaut, K.; Touhafi, A. A Low-Power FPGA-Based Architecture for Microphone
Arrays in Wireless Sensor Networks. In Proceedings of the Applied Reconfigurable Computing. Architectures, Tools, and
Applications—14th International Symposium, ARC 2018, Santorini, Greece, 2–4 May 2018; pp. 281–293.

30. Saff, E.B.; Kuijlaars, A.B. Distributing many points on a sphere. Math. Intell. 1997, 19, 5–11. [CrossRef]
31. Taghizadeh, M.J.; Garner, P.N.; Bourlard, H. Microphone array beampattern characterization for hands-free speech applications.

In Proceedings of the 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken, NJ, USA,
17–20 June 2012; pp. 465–468.

32. Johnson, D.H.; Dudgeon, D.E. Array Signal Processing: Concepts and Techniques, 1st ed.; Pearson: London, UK, 1993.
33. Segers, L.; Vandendriessche, J.; Vandervelden, T.; Lapauw, B.J.; da Silva, B.; Braeken, A.; Touhafi, A. CABE: A Cloud-Based

Acoustic Beamforming Emulator for FPGA-Based Sound Source Localization. Sensors 2019, 19, 3906. [CrossRef] [PubMed]
34. Xillybus. Available online: http://xillybus.com (accessed on 15 September 2020).
35. OpenCV. Available online: https://opencv.org (accessed on 15 September 2020).
36. nRF52840 Dongle. Available online: https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/

nRF52840-Dongle-product-brief.pdf (accessed on 15 September 2020).
37. Bluetooth Low Energy 5.0, Maximum Throughput. Available online: https://www.novelbits.io/bluetooth-5-speed-maximum-

throughput/ (accessed on 26 October 2020).
38. Bluetooth-SIG. Specification of the Bluetooth system. Bluetooth 2010, 6, 14–24.
39. GCC Linux Manual. Available online: https://man7.org/linux/man-pages/man1/gcc.1.html (accessed on 19 August 2020).
40. Ye, Z.; Suri, J.; Sun, Y.; Janer, R. Four image interpolation techniques for ultrasound breast phantom data acquired using Fischer’s

full field digital mammography and ultrasound system (FFDMUS): A comparative approach. In Proceedings of the IEEE
International Conference on Image Processing 2005, Genova, Italy, 14 September 2005; Volume 2.

41. Sharma, H.; Saurav, S.; Singh, S.; Saini, A.K.; Saini, R. Analyzing impact of image scaling algorithms on viola-jones face detection
framework. In Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics
(ICACCI), Kochi, India, 10–13 August 2015; pp. 1715–1718.

42. OpenCV Resize. Available online: https://docs.opencv.org/4.4.0/da/d54/group__imgproc__transform.html#ga47a974309e910
2f5f08231edc7e7529d (accessed on 14 August 2020).

43. OpenCV ApplyColorMap. Available online: https://docs.opencv.org/4.4.0/d3/d50/group__imgproc__colormap.html#gadf478
a5e5ff49d8aa24e726ea6f65d15 (accessed on 14 August 2020).

44. OpenCV: How to Use the OpenCV Parallel_for_ to Parallelize Your Code . Available online: https://docs.opencv.org/4.4.0/d7
/dff/tutorial_how_to_use_OpenCV_parallel_for_.html (accessed on 14 August 2020).

45. OpenCV Threshold. Available online: https://docs.opencv.org/4.4.0/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca7
8c626a53577199e9c57 (accessed on 14 August 2020).

46. OpenCV FindContours. Available online: https://docs.opencv.org/4.4.0/d3/dc0/group__imgproc__shape.html#gadf1ad6a0b8
2947fa1fe3c3d497f260e0 (accessed on 2 September 2020).

47. OpenCV BoundingRect. Available online: https://docs.opencv.org/4.4.0/d3/dc0/group__imgproc__shape.html#ga103fcbda2f5
40f3ef1c042d6a9b35ac7 (accessed on 2 September 2020).

48. Robu.in. Available online: https://robu.in/product/1-4-cmos-640x480-usb-camera-with-collapsible-cable-for-raspberry-pi-3
(accessed on 7 September 2020).

49. Banggood. Available online: https://www.banggood.com/Raspberry-Pi-USB-Camera-Module-with-Adjustable-Focusing-
Range-for-Raspberry-Pi-32BB-p-1462594.html?cur_warehouse=CN (accessed on 7 September 2020).

50. OpenCV VideoCapture. Available online: https://docs.opencv.org/4.4.0/d8/dfe/classcv_1_1VideoCapture.html#a473055e7
7dd7faa4d26d686226b292c1 (accessed on 14 August 2020).

https://docs.opencv.org/4.4.0/
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.digikey.jp/htmldatasheets/production/3083460/0/0/1/sph0644hm4h-1-datasheet-.html
https://www.digikey.jp/htmldatasheets/production/3083460/0/0/1/sph0644hm4h-1-datasheet-.html
http://www.analog.com/media/en/technical-documentation/obsolete-data-sheets/ADMP521.pdf
http://www.analog.com/media/en/technical-documentation/obsolete-data-sheets/ADMP521.pdf
http://dx.doi.org/10.1155/2017/6782176
http://dx.doi.org/10.3390/computers7030041
http://dx.doi.org/10.1155/2019/5761235
http://dx.doi.org/10.1007/BF03024331
http://dx.doi.org/10.3390/s19183906
http://www.ncbi.nlm.nih.gov/pubmed/31510098
http://xillybus.com
https://opencv.org
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-Dongle-product-brief.pdf
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52840-Dongle-product-brief.pdf
https://www.novelbits.io/bluetooth-5-speed-maximum-throughput/
https://www.novelbits.io/bluetooth-5-speed-maximum-throughput/
https://man7.org/linux/man-pages/man1/gcc.1.html
https://docs.opencv.org/4.4.0/da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d
https://docs.opencv.org/4.4.0/da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d
https://docs.opencv.org/4.4.0/d3/d50/group__imgproc__colormap.html#gadf478a5e5ff49d8aa24e726ea6f65d15
https://docs.opencv.org/4.4.0/d3/d50/group__imgproc__colormap.html#gadf478a5e5ff49d8aa24e726ea6f65d15
https://docs.opencv.org/4.4.0/d7/dff/tutorial_how_to_use_OpenCV_parallel_for_.html
https://docs.opencv.org/4.4.0/d7/dff/tutorial_how_to_use_OpenCV_parallel_for_.html
https://docs.opencv.org/4.4.0/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57
https://docs.opencv.org/4.4.0/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57
https://docs.opencv.org/4.4.0/d3/dc0/group__imgproc__shape.html#gadf1ad6a0b82947fa1fe3c3d497f260e0
https://docs.opencv.org/4.4.0/d3/dc0/group__imgproc__shape.html#gadf1ad6a0b82947fa1fe3c3d497f260e0
https://docs.opencv.org/4.4.0/d3/dc0/group__imgproc__shape.html#ga103fcbda2f540f3ef1c042d6a9b35ac7
https://docs.opencv.org/4.4.0/d3/dc0/group__imgproc__shape.html#ga103fcbda2f540f3ef1c042d6a9b35ac7
https://robu.in/product/1-4-cmos-640x480-usb-camera-with-collapsible-cable-for-raspberry-pi-3
https://www.banggood.com/Raspberry-Pi-USB-Camera-Module-with-Adjustable-Focusing-Range-for-Raspberry-Pi-32BB-p-1462594.html?cur_warehouse=CN
https://www.banggood.com/Raspberry-Pi-USB-Camera-Module-with-Adjustable-Focusing-Range-for-Raspberry-Pi-32BB-p-1462594.html?cur_warehouse=CN
https://docs.opencv.org/4.4.0/d8/dfe/classcv_1_1VideoCapture.html#a473055e77dd7faa4d26d686226b292c1
https://docs.opencv.org/4.4.0/d8/dfe/classcv_1_1VideoCapture.html#a473055e77dd7faa4d26d686226b292c1

Electronics 2021, 10, 317 35 of 35

51. OpenCV Resize Source Code (Github). Available online: https://github.com/opencv/opencv/blob/61c4cfd89624617121725a119
482dde278f82955/modules/imgproc/src/resize.cpp#L3730 (accessed on 4 September 2020).

52. OpenCV Blur. Available online: https://docs.opencv.org/4.4.0/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801
b0b2e440fce37l (accessed on 14 August 2020).

53. OpenCV Canny. Available online: https://docs.opencv.org/4.4.0/dd/d1a/group__imgproc__feature.html#ga04723e007ed888
ddf11d9ba04e2232de (accessed on 14 August 2020).

54. OpenCV CvtColor. Available online: https://docs.opencv.org/4.4.0/d8/d01/group__imgproc__color__conversions.html#ga397
ae87e1288a81d2363b61574eb8cab (accessed on 12 November 2020).

55. OpenCV AddWeighted. Available online: https://docs.opencv.org/4.4.0/d2/de8/group__core__array.html#gafafb2513349db3
bcff51f54ee5592a19 (accessed on 14 August 2020).

56. OpenCV Image Encoding. Available online: https://docs.opencv.org/4.4.0/d4/da8/group__imgcodecs.html (accessed on
14 August 2020).

57. OpenCV Imshow. Available online: https://docs.opencv.org/4.4.0/d7/dfc/group__highgui.html#ga453d42fe4cb60e5723281a8
9973ee563 (accessed on 10 September 2020).

58. OpenCV Waitkey. Available online: https://docs.opencv.org/4.4.0/d7/dfc/group__highgui.html#ga5628525ad33f52eab1
7feebcfba38bd7 (accessed on 10 September 2020).

59. Brandalero, M.; Ali, M.; Le Jeune, L.; Hernandez, H.G.M.; Veleski, M.; da Silva, B.; Lemeire, J.; Van Beeck, K.; Touhafi, A.;
Goedemé, T.; et al. AITIA: Embedded AI Techniques for Embedded Industrial Applications. In Proceedings of the 22020
International Conference on Omni-layer Intelligent Systems (COINS), Barcelona, Spain, 31 August–2 September 2020; pp. 1–7.

https://github.com/opencv/opencv/blob/61c4cfd89624617121725a119482dde278f82955/modules/imgproc/src/resize.cpp#L3730
https://github.com/opencv/opencv/blob/61c4cfd89624617121725a119482dde278f82955/modules/imgproc/src/resize.cpp#L3730
https://docs.opencv.org/4.4.0/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801b0b2e440fce37l
https://docs.opencv.org/4.4.0/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801b0b2e440fce37l
https://docs.opencv.org/4.4.0/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de
https://docs.opencv.org/4.4.0/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de
https://docs.opencv.org/4.4.0/d8/d01/group__imgproc__color__conversions.html#ga397ae87e1288a81d2363b61574eb8cab
https://docs.opencv.org/4.4.0/d8/d01/group__imgproc__color__conversions.html#ga397ae87e1288a81d2363b61574eb8cab
https://docs.opencv.org/4.4.0/d2/de8/group__core__array.html#gafafb2513349db3bcff51f54ee5592a19
https://docs.opencv.org/4.4.0/d2/de8/group__core__array.html#gafafb2513349db3bcff51f54ee5592a19
https://docs.opencv.org/4.4.0/d4/da8/group__imgcodecs.html
https://docs.opencv.org/4.4.0/d7/dfc/group__highgui.html#ga453d42fe4cb60e5723281a89973ee563
https://docs.opencv.org/4.4.0/d7/dfc/group__highgui.html#ga453d42fe4cb60e5723281a89973ee563
https://docs.opencv.org/4.4.0/d7/dfc/group__highgui.html#ga5628525ad33f52eab17feebcfba38bd7
https://docs.opencv.org/4.4.0/d7/dfc/group__highgui.html#ga5628525ad33f52eab17feebcfba38bd7

	Introduction
	Related Work
	A Multi-Mode SoC FPGA-Based Acoustic Camera System
	FPGA-CPU Distribution
	Proposed Front-End and Back-End
	Distribution of the Roles

	Front-End Description
	Microphone Array and RGB Camera
	Time-Domain Delay-and-Sum Beamforming Architecture

	Trade-Offs
	Performance
	Frequency Response

	Back-End Description
	Operational Modes
	WSN Communication

	Multithread Approach
	Single Thread Operational Mode Problem
	Multithreading Approach as a Solution

	Experimental Results
	Analysis of the Front-End
	Resource and Power Consumption
	Timing and Performance Analysis

	Analysis of the Back-End: Individual Computational Operations
	Heatmap Scaling
	Heatmap Color
	ROI
	RGB Reading from Camera
	RGB Scaling
	Canny Edge
	Overlay
	Compression

	Analysis of the Back-End: Operational Modes

	Conclusions
	References

