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Abstract: A decision tree is a well-known machine learning technique. Recently their popularity
has increased due to the powerful Gradient Boosting ensemble method that allows to gradually
increasing accuracy at the cost of executing a large number of decision trees. In this paper we
present an accelerator designed to optimize the execution of these trees while reducing the energy
consumption. We have implemented it in an FPGA for embedded systems, and we have tested it
with a relevant case-study: pixel classification of hyperspectral images. In our experiments with
different images our accelerator can process the hyperspectral images at the same speed at which
they are generated by the hyperspectral sensors. Compared to a high-performance processor running
optimized software, on average our design is twice as fast and consumes 72 times less energy.
Compared to an embedded processor, it is 30 times faster and consumes 23 times less energy.

Keywords: decision trees; GBDT; FPGA; energy efficiency

1. Introduction

Decision trees are a light and efficient machine learning technique that have proved
their effectiveness in several classification problems. In the context of embedded systems,
energy efficiency is as much important as accuracy, so it is necessary to search for efficient
algorithms liable to be accelerated. This makes the decision trees a perfect target to develop
an FPGA accelerator.

A single decision tree is frequently not very accurate for complicated tasks but, thanks
to ensemble methods, it is possible to combine several trees in order to deal with complex
problems. Gradient Boosting Decision Trees (GBDT) [1] is an ensemble method that
allows to improve the accuracy gradually adding new trees in each iteration that improve
the result of the previous ones. Conventional implementations of GBDT suffer from
poor scaling for large datasets or a large number of features, but recently some efficient
implementations have overcome this drawback such as XCGBoost [2], CatBoost [3], or
LightGBM [4]. For instance, LightGBM is a highly efficient open-source GBDT-based
framework that offers up to 20 times higher performance over conventional GBDT. With
the support of LightGBM, GBDTs are currently considered one of the most powerful
machine learning models due to its efficiency and accuracy. For example, recently they
have been used for many winning solutions in several machine learning competitions [5].
They can be used for very different problems. For instance, they have been successfully
used to produce accurate forecasts for the COVID-19 evolution, and to identify factors
that influence its transmission rate [6]; to detect fraud from customer transactions [7]; to
estimate major air pollutants risks to human health [8] using satellite-based aerosol optical
depth; or to classify the GPS signal reception in order to improve its accuracy [9]. Moreover,
a recent publication [10] analyzed different machine learning methods for image processing
in remote systems, focusing on on-board processing, which requires both performance and
low-power. In this work the authors identified that GBDTs present a very interesting trade-
off between the use of computational and hardware resources and the obtained accuracy.
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Their accuracy results were close to those obtained with convolutional neural networks,
which currently is the most accurate method, while carrying out one order of magnitude
less computational operations. Moreover, most of their operations during inference are
integer comparisons, which can be efficiently calculated even by very simple low-power
processors, and can be easily accelerated by FPGAs. For that reason they represent a good
option for embedded system.

In this paper we present an accelerator for Gradient Boosting Decision Trees (GBDT)
that can execute the GBDT trained with LightGBM. We have created a repository in
which we include the GBDT models used, and our source codes [11]. Our accelerator
has been designed for embedded systems, where hardware resources and power budget
are very limited. Hence, our primary goal is efficiency. The register-transfer level (RTL)
design of our accelerator has been written in VHDL , and, to demonstrate its potential,
we have implemented it in a low-cost FPGA evaluation board (ZedBoard) [12], which
includes an FPGA for embedded systems, and we have used our implementation for the
relevant case study analyzed in [10]: pixel classification of hyperspectral images with
the objective of processing the data at run-time. We have measured the execution time
and power consumption of our accelerator and we have identified that our design can
be used to process complex GBDT models even when using a small FPGA. In our case
study, our accelerator can process the hyperspectral information at the same speed at which
the hyperspectral sensors generate it, and the dynamic energy consumption due to the
execution is an order of magnitude less in both cases, compared to a high performance
CPU and compared to an embedded system CPU. Hence it could be used for on-board
processing in remote sensing devices.

2. Related Work

Several previous works have targeted FPGA acceleration of Decision Trees. Refer-
ence [13] focuses on the training processes. In our case we assume that training is carried
out offline and we want to focus on inference, which will be computed online. Refer-
ence [14] presented a custom pipeline architecture which demonstrated the potential of
an accelerator for decision trees. However they do not support GBDT and they apply
their techniques only to simple case studies. Reference [15] proposes to use a high-level
synthesis approach to design an FPGA accelerator. They focus on Random Forest, which
is an ensemble technique that calculates the average value of several trees trained with
different input data to generate a more accurate and robust final output. We have decided
to focus on GBDT instead of Random Forest since recently GBDT have demonstrated an
enormous potential [5]. Moreover, [10] compared the results of Random Forest and GBDT
and the results show that GBDT provided better accuracy while using smaller models,
hence we believe that it is a better approach for embedded systems. Another difference
is that we have designed a custom register-transfer level (RTL) architecture instead of
using a high-level synthesis that will automatically generate the RTL design from a C-code.
High-level synthesis is very interesting for portability, and to reduce the design cycle,
but with our RTL design we can fully design the final architecture and explore several
advanced optimization options. Reference [16] is another work that analyzes the benefits
of implementing Random Forest on FPGAs. They compare the effectiveness of FPGAs,
GP-GPUs, and multi-core CPUs for random forest classifiers. They conclude that FPGAs
provide the highest performance solution, but they do not scale due to the size of the
forest. In this sense, as explained before, GBDT models require fewer trees to obtain the
same accuracy, so it is a more suitable model for FPGAs. Reference [17] proposes to use
FPGAs to accelerate the execution of decision trees used in the Microsoft Kinect vision
pipeline to recognize human body parts and gestures. They use a high performance FPGA,
and obtain very good results for decision tress organized as random forest. However,
they identify that their design cannot be used in low-power FPGAs due to its memory
requirements. Reference [18] is a very recent work that presents an algorithm that pro-
duces compact and almost equivalent representations of the original input decision trees
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by threshold compaction. The main idea is to merge similar thresholds to reduce the
number of different thresholds needed, and store those values as hard-wired logic. With
this approach the size of the trees can be reduced. This technique is orthogonal to our
approach and can be beneficial to our design since it reduces the size of the trees, which
simplifies its storage in embedded systems. Reference [19] is another recent work that
analyzes the benefits of FPGA acceleration for Gradient-boosted decision trees. In this
case they evaluate the services provided by Amazon cloud, which include the access to
high-performance FPGAs that can be used through high-level interfaces. Therefore, this
work is complementary to ours, as it focuses on high-performance cloud servers while we
focus on embedded systems.

In summary, the previous works indicate the potential of FPGAs for the execution
of decision trees. Most of these works focus on Random Forest, and they either only
implement small systems, or they need to use high performance FPGAs. Therefore, it is
necessary to improve the scalability of these solutions in order to use them in embedded
systems. In this paper we present a GBDT-based accelerator capable of solving very
complex models even in a relatively small FPGA. GBDTs have achieved excellent results
in various machine learning problems, and their characteristics are very interesting for
embedded systems. Therefore, we have designed a hardware accelerator for FPGAs with
the objective of running complex models based on GBDT in low-cost and low-energy
consumption systems. To demonstrate the potential of our design we have implemented
an equivalent solution to the most complex GBDT model proposed in [10], which used
GPUs to execute the models, on a Xilinx Zedboard FPGA which is a small model oriented
to embedded systems.

3. Gradient Boosting Decision Trees

A Decision Tree is a decision algorithm that uses a tree-like model to generate its
output. It can be seen as a way to display an algorithm that only contains conditional
control statements. In each tree the decision is based on a series of comparisons connected
between them as in a binary tree structure. Each internal node represents a comparison used
to decide the following node, and each leaf node contains the result of the prediction [20].
When decision trees are used for classification problems each leaf of the tree is labeled with
the predicted class or with a probability for a given class or a probability distribution over
all the classes. Figure 1 shows the operation of a Decision Tree on a series of feature inputs
with a toy example. In the first place, this tree takes feature 4 of the input and compares its
value with 20; as the input value is lower it continues on the left child, and keeps with the
same procedure until it reaches the leaf with 0.3 as output value.

Feature: 4
Cmp. value: 20

] 0 1 2 3 4 5

<=

> Pixel: 25 30 15 10 15 25

|

Feature: 0

Cmp. value: 10 ] o

> Inference steps:

Feature: 3 ] . Pixel(4) = 15 <= 20 --> left child
Cmp. value: 15

« Pixel(0) = 25 > 10 --> right child

o » Pixel(3) = 10 <= 15 --> left child

Figure 1. Decision Tree example.

One of the benefits of using Decision Trees over other techniques is that they do
not need any input preprocessing such as data normalization, scaling or centering. They
work with the input data as it is [20]. The reason is that features are never mixed. As
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can be seen in Figure 1, in each comparison the trees compare the value of an input
feature with another value of the same feature. Hence, several features can have different
scales. In other Machine Learning models, features are mixed to generate a single value,
therefore, if their values belong to different orders of magnitude, some features will initially
dominate the result. This can be compensated during the training process, but in general
normalization will be needed to speed up training and improve the results. Avoiding
normalization reduces the run-time computations needed, hence it is a very interesting
feature for embedded systems.

Besides, the size of the input data does not directly affect the size of the model, or its
computations. Hence, dimensionality reduction techniques such as Principal Component
Analysis are not needed to reduce the model size. Again, this is very interesting for
embedded systems since it substantially reduces the amount of calculation needed at
inference. During training the most meaningful features are selected and used for the
comparisons in the tree. Hence the features that contain more information will be used
more frequently for the comparison, whether those that do not provide useful information
for the classification problem will simply be ignored. This is an interesting property of this
algorithm since, based on the same decisions made during training to choose features, we
can easily determine the feature importance. This means that Decision Trees can be used
to find out which features provide more meaningful information, and this can be used to
train even smaller models keeping most of the information with less memory impact.

Nevertheless, a single Decision Tree does not provide accurate results for complex
classification tasks. The solution is to use an ensemble method that combines the results of
several trees in order to improve the accuracy levels. Gradient Boosting is an ensemble
method that combines the results of different predictors in such a way that each tree
attempts to improve the results of the previous ones. Specifically, the gradient boosting
method consists in training predictors sequentially so each new iteration try to correct the
residual error generated in the previous one. That is, each predictor is trained to correct the
residual error of its predecessor. Once the trees are trained, they can be used for prediction
by simply adding the results of all the trees [20].

The GBDT model also allows designers to trade off accuracy for computation and
model size. For example, if a GBDT is trained for 100 iterations, it will generate 100 trees
for each class. Afterwards, the designer can decide whether to use all of them, or to discard
the final ones. It is possible to find similar trade-offs with other ML models, for instance
reducing the number of convolutional layers in a convolutional neural network (CNN).
However, in that case, each possible design must be trained again, whereas in GBDT only
one train is needed, and afterwards the designer can simply evaluate the results using
different number of trees and generate a Pareto curve with the different trade-offs. Again,
this is very suitable for embedded systems, as we can adjust the model size according to
the available memory resources, or the execution time and power consumption restrictions.

In terms of computation, most of the machine learning algorithms need a significant
amount of floating point operations for the inference process. For instance, CNNs and
multilayer perceptrons (MLPs) are based on floating-point multiply-accumulate operations.
By contrast, calculating the output of a tree only involves carrying out some comparisons. If
the input data are integers, as is the case with the pixels in an image, all these comparisons
will only use integers, which greatly reduces the computational load. The only floating
point operation will be the accumulation of the outputs of each tree, in those cases where
the final output is a probability represented in floating point. Hence, there will be a single
floating point-addition for each tree. In embedded systems these additions can be replaced
by operations in fixed precision and the whole model can be executed even in systems that
do not have floating point units.

4. Design Architecture

LightGBM follows a one-vs-all strategy for classification problems that consists in
training a different estimator (i.e., a set of trees) for each class, so each one of them predicts
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the probability of belonging to that class. With this approach each class has their own
private trees, and the probability of belonging to a given class is obtained by adding the
results of its trees, as shown in Figure 2.

Trees of Class 0 Trees of Class N

SN

)

Class 0 percentage Class N percentage

Figure 2. Gradient Boosting Decision Trees (GBDT) results accumulation with one-vs-all approach.

Hence, during inference, each class is independent from the others, and the trees of
each class can be analyzed in parallel. Our accelerator takes advantage of this parallelism
by including one specific module for each class.

To design an efficient accelerator, it is essential to optimize memory resources. Our
goal is to store the trees in the on-chip memory resources of the FPGA to minimize data
transfers with the external memory. However those resources are very limited, so a key
point of the design is to optimize the format used to store the trees in order to reduce their
memory requirements.

All the trees of a class are mapped into its trees_nodes RAM memory, which is local to
the class module. Figure 3 present the representation that we have selected to store the tree
structure on this memory. Our objective is to include all the information of each node in a
32-bit word. Since we use generic parameters in our code, this word size can be enlarged or
reduced as needed. But in our experiments we have observed that 32 bits provides a good
trade-off between the accuracy to represent the trees and the storage requirements. These
32 bits follow two different formats taking into account whether they are leaf nodes or not.

The format for non-leaf includes four fields. The first and the second field store the
information needed to carry out the comparison, that is, which input will be used (8 bit),
and with which value it will be compared (16 bit). Then we need to store the addresses of
the child nodes. As we only have 8 bits remaining, it is not possible to store its absolute
addresses. In fact, with the size of the memories that we are using, we would need almost
all of the 32-bits to store that information. We have solved this issue with two solutions.
First, in the trees_nodes memory, nodes are stored using the pre-order traversal method,
that is, the left child of a non-leaf node is always allocated in the following memory position.
With this approach the address of the left child does not need to be stored, since it can be
obtained adding one to the current address. Hence, we only have to store the address of
the right child. Second, instead of storing the absolute address of the right child, we store a
relative address that indicates its distance with the current address. This relative distance
is stored in a 7-bit field. With this approach the maximum depth of a tree is 128. This is
more than enough for all the trees that we have analyzed, since GBDT does not rely on
very large trees, but in using many of them. Finally, we have included a flag in the less
significant bit of each node: This flag determines whether it is a leaf node or not.

In the case of the leaf nodes, the 32-bits memory word includes four fields. A 16-bits
field stores the output of the three. The next 14-bits are used to store the address of the next
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tree. In our experiments 14 bits were enough for the absolute addresses. The original output
of the LightGBM GBDTs is a 32-bit floating point. However, using a 16-bits fixed-point
representation we obtain similar accuracy in our experiments. In any case, if needed, it is
possible to use more bits for the output without increasing the size of the memory word
by using relative addresses for the @next_tree field instead of absolute addresses. The last
two bits are two flags that identify whether this is the last tree in the class, and whether the
node is a leaf or not.

Non-leaf node representation

31

24123 - 8|7 - 110

@ _feature

cmp_value rel@_right_child

is_leaf <J

Leaf node representation

31

- 16]15 - 2110

leaf_value @ _next_tree ®

<

Feature: 106
Cmp. value: 42
<= >

Feature: 2
mp. value: 85
= >

is_last_tree <J
is_leaf

Figure 3. Node representation.

Figure 4 presents a simple example in which two trees of a class are stored. As can be
seen in the figure, the root node of the first tree is stored in address 0. Then, the entire tree
structure corresponding to its left child is stored, following these same rules recursively, and
finally the right child is stored in the last place. The bits corresponding to rel@_right_child
field store the relative jump to its right child. All the leaf nodes of the first tree indicate
that the next tree begins in address 5. Finally, the leaf nodes of the second tree indicate that
there are no more trees to process. This simple example includes 8 nodes. If we execute it
in our architecture we will visit four or five of these nodes, it depends on the result of the
first comparison, and we will need approximately one clock cycle to process each node.
In larger trees, the number of visited nodes will be much lower than the number of total
nodes, and the execution time will remain approximately one cycle per visited node.

@ 31 - 24 23 - 16 15 - 8 7 - 2 [1]0
0 2 85 4 0
1 106 42 2 0
2 0.3 5) 01
3 0.5 5 0|1
4 0.7 5 01
5 15 34 2 0
6 0.05 - 11
7 -0.05 - 11

Figure 4. Trees representation example.

Figure 5 depicts the internal design of one of the modules that execute the trees of a
class. The design includes the previously described trees_nodes RAM memory, a register,
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@_last_node, that is used to store the address of the last visited node, and the logic that
carries out the comparisons, compute the next node to visit, and accumulate the results of
the trees.

REG 14b
@_last_node + @_node
rel@_right_child 6b
160 feature
i e 1],
@_feature 8b
cmp_value 16 <= [
node 32p >
trees_nodes -
@_next_tree 14b
32}) /
REG
leaf_value  16b result { RESULT

is_leaf T

B
+
L.
is_last_tree |_.

Figure 5. Class diagram.

In this design the @_ feature field of non-leaf nodes is used to select one feature among
all the input features of the system. The selected feature is compared with the cmp_value
field. If the value of the feature is less or equal than the cmp_value, the left child of the
non-leaf node is selected. To this end, we add 1 to the @_last_node. Otherwise, we add
the rel@_right_child to select the right child. This will generate the @_node that will be
used to address the trees_nodes RAM memory in case that the current node is a non-leaf
(is_leaf value is 0). If the current node is a leaf (is_leaf value is 1), and this is not the last
tree (is_last_tree value is 0), the selected value to address the trees_nodes RAM memory
will be the @_next_tree field of the leaf node. On every leaf node, the result register will
accumulate the leaf_value field to the previous result value.

According to the selected memory representation of the nodes, the maximum size
of the trees_nodes RAM will be 214 words, as we dedicate 14 bits to the @ next_tree, and
the theoretical maximum number of nodes of the same tree will be 2° due to the size of
the relative jump rel@_right_child. Regarding the size of the RAM, we could address any
number of trees just making the @_next_tree a relative address from the current node by
adding it to @_last_node, nevertheless the current size is even bigger than our needs. In
our design we dedicate 8 BRAMs of 32 Kb to the trees of each class, which is 8192 words of
32 bits, so we are actually using the 13 less significant of the 14 bits available to address the
trees_nodes RAM. Regarding the number of nodes of each tree, this is only a theoretical
limit due to the relative jump, which actually affects only the left side of each node, that
is, the left side of each node of the tree can only have 63 nodes, so we could reach the
right child in a pre-order traversal. In any case, the maximum number of nodes of our
trees is 61 and the average is between 7 and 22 depending on the dataset, so this is not a
problem either.

Once we receive the features of one pixel, we only need to wait until every class
module has finished and then check the output of the argmax module, which selects the
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number of the class with the higher result. Figure 6 depicts a simplified design of the
accelerator showing this behavior, where we omitted the control lines and the management
of the communications.

result

class O

finish

featureS e E f|n|sh e FINISH ans argmax _>< PRED

result

class N - 1

Figure 6. Accelerator design.

This design can process a node per class in each clock cycle. However, in our exper-
iments, if we implement a system that uses most of the on-chip memory resources, the
place&routing process becomes complex and the clock frequency is just 55 MHz. This
can be solved by using a more modern FPGA, with more capacity, and better integration
technology, but it can also be improved by applying some computer architecture optimiza-
tions similar to those that have been used to optimize the execution of general purpose
processors. We will illustrate this with the following figures. In Figure 7a we present the
execution of the previously described version (single-cycle implementation). The figure
depicts the execution of the nodes in one of the classes. If we have N classes all of them
will be executed in parallel. In the figure three nodes are executed in three clock cycles.
However, as explained before, the clock period is long and the system runs slow.

Node i

Node j

Node k

a) Single-cycle execution

Clk

Node i

Node j

Node k

b) Multi-cycle execution

Figure 7. (a) Single-cycle execution scheme. (b) Multi-cycle execution scheme.
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Tree n

Treem

Tree |

Tree n

Clk

Node i
Node j

Node k

Clk

Node i
Node s
Node w

Node j

Our goal is to improve the speed, while trying to keep processing one node per
cycle. To reduce the clock cycle we have designed a multi-cycle implementation. We
have explored three different options: two, three and four clock cycles. In these versions,
additional registers have been added to the architecture in order to split the longest
combinational paths. From that analysis we selected the option that executes the nodes in
three cycles, because it achieves an important clock-period reduction and at the same time
provides a clear architecture, in which it is easy to identify the actions that are carried out
in each cycle. With four cycles, the benefits were very small, and the resulting execution
scheme was not intuitive. Figure 7b presents the results after this step. AS can be seen in
the figure, the clock frequency has been improved, but the system is slower than before,
since we need three clock cycles for each node. However, since we have partitioned the
design following a clear scheme, we could try to use a pipeline approach. As presented
in Figure 8a we have three different pipeline stages, and each one of them uses different
hardware resources. Hence, we can start executing a second node, as soon as the first one
has finished the first stage. In our design the first step is used to read the node (fetch), the
second step is used to identify the type of the node and read the needed feature (decode),
and the last step is used to compare it with the comparison value, and identify the next
node to execute (execution). The problem of this scheme is that we do not know the next
node until the previous node has finished its execution stage. Hence we cannot fetch
it in advance. Hence, a simple pipeline will not provide any benefit. This is the same
problem that conventional processors have when dealing with instructions that include
conditional branches. High-performance processors alleviate this problem by including
complex support for speculative execution, but it is not an efficient solution for embedded
systems, since it introduces important energy overheads, and it will not achieve good
results, unless it is possible to identify clear patterns for branch predictions. Hence, there is
no straightforward way to take advantage of the pipeline architecture.

| Fetch | Decode | Exec.
Fetch? Fetch? Fetch | Decode Exec.
Fetch? Fetch? Fetch | Decode | Exec. |
a) Pipeline execution
| Fetch Decode Exec.
Fetch Decode Exec.
Fetch Decode Exec.
Fetch Decode Exec.

b) Multi-threaded pipeline execution

Figure 8. (a) Pipeline execution scheme. (b) Multi-threaded pipeline execution scheme.

However, this problem can be solved by combining the pipeline with a multi-threading
approach. The idea is to include support to interleave the execution of three different trees.
This can be done by including three @_last_node registers (that is the same as having three
program counters in a processor). The trees in a class are divided in three sets, and each
counter manages the execution of one of these sets. Figure 8b depicts how the executions
of the three trees are interleaved. In this example three different trees (n, m and 1) are
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executed. With this approach we have the same period that in the multi-cycle approach,
and we can execute one node per cycle, as in the single-cycle implementation.

Figure 9 shows the final structure of the multi-threaded class module. As can be seen
in the figure, the hardware overhead is small. We only need to include a few registers
to store the information needed for each stage, the additional @_last_node counters, two
additional registers which indicate the starting address of the first tree in each set, three
1-bit registers which store a flag indicating whether the processing of each set has been
completed, and finally modify the control unit. Moreover, the memory resources, which
are the most critical in our design, are the same in both versions.

The VHDL source codes of both versions are available in [11].

' REGliast_addr 1 l—'lﬂllasti_addr_Zl b
REG | FeaTuRES REG féaturel feature %
E ; ; —> @_next_node
: @_feature L N +
RAM cmp_value 16p <=
8b : —\L
E [
N PO . rel@_right_child 6b B
> trees_nodes REG
! ] @_next_tree 14b
: 3%
: |—- RG]
s ; leaf_value  16b 4+ — result RESULT
; ; is_leaf f
curr_'addr D
: : . is_last_tree
Stage 3 Stage 1 Stage 2 Stage 3

Figure 9. Multi-threading class diagram.

5. Datasets and Models

Hyperspectral images consist of hundreds of spectral bands, where each band captures
the responses of ground objects at a particular wavelength. Therefore, each pixel of the
image can be considered as a spectral signature, as in Figure 10. As analyzed in [10],
machine learning techniques can achieve very good accuracy classifying the pixels of
hyperspectral images. The best results were obtained using convolutional neural networks.
However, the size of hyperspectral images makes it a very computationally intensive task,
so in on-board systems with very limited resources it is not possible to use this solution.
This study identified that GBDTs present a very interesting trade-off between the use of
computational and hardware resources and the obtained accuracy because it achieved
good accuracy rates, while carrying out few computational operations at run-time. For
that reason GDBTs are a good candidate for an embedded on-board system, and we have
selected it as a case study. Our objective is to achieve the same accuracy results reported
in [10] while executing the trees in our accelerator implemented in a small FPGA. As
a second objective, we want to process the pixels at the same speed at which they are
generated by the hyperspectral sensors.

In hyperspectral images pixel classification, the input is a single pixel composed of a
series of features, where each feature is a 16-bit integer. The number of features depends on
the sensor used to obtain the image, in our case we used datasets from 103 to 224 features.
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Each node of the tree selects one of these features, and compares it with the value stored in
the node to make their decision; that is, whether to select the left or the right child.

Figure 10. Hyperspectral image example.

Our design has been written in VHDL using generic parameters to be very customiz-
able. Hence, it can be used for different images with different number of classes, of input
features, of trees per class... Table 1 summarizes the main characteristics of the hyperspec-
tral images analyzed, Indian Pines (IP), Kennedy Space Center (KSC), Pavia University
(PU) and Salinas Valley (SV), and the selected configuration of the GBDT models, based on
those presented in [10], which analyzed the different GBDT parameters and selected the
optimal ones in each case. The table shows the number of features (ft.) and classes (cl.) of
each image, the total number of trees used (trees), and some key model parameters used to
train the models such as the minimum number of data to split a node (m) and maximum
depth (d). Finally, it presents the accuracy obtained executing the models in [10] with the
LightGBM library, and the achieved accuracy with the equivalent models adapted for our
accelerator. As can be seen in the table, the changes in the original decision trees almost
have no effect on the final accuracy.

The models codified according to the described node representation format are avail-
able in [11].

Table 1. Datasets and model configuration.

Image Model Top1 Accuracy
ft. cl. Trees m d Accelerator LightGBM
P 200 16 2533 20 20 0.802 0.805
KSC 176 13 2600 30 5 0.894 0.894
PU 103 9 1206 30 30 0.922 0.924
SV 224 16 2146 80 25 0.926 0.928

6. Experimental Results

The accelerator has been designed to fit in the FPGA of the Zedboard Xilinx Zyng-7000
(Digilent, Hong Kong, China) evaluation board [12]. This is a very small FPGA with an
old technology, so the needs of the design are very restrictive. The main goal of using this
device is to try to reproduce the characteristics of the rad-hard and rad-tolerant FPGAs
approved for embedded on-board devices. These devices do not use the latest integration
technologies, hence it will not be realistic to use the latest generation of FPGAs. Table 2
shows the hardware resources of single-cycle and multi-threading designs in this FPGA.



Electronics 2021, 10, 314

12 of 15

Table 2. Single-cycle vs. multi-threading resources.

Single-Cycle Multi-Threading incr.

LUTs 15,800 (29.70%) 17,027 (32.01%) 1.08

Flip-Flops 4470 (4.20%) 6250 (5.87%) 1.40
i F7 Muxes 6657 (25.03%) 6657 (25.03%) 1
F8 Muxes 3328 (25.02%) 3328 (25.02%) 1
BRAMs (36Kb) 128 (91.43%) 128 (91.43%) 1

LUTs 11,749 (22.08%) 12,641 (23.76%) 1.08

Flip-Flops 3909 (3.67%) 5351 (5.03%) 1.37
KSC F7 Muxes 4578 (17.21%) 4577 (17.21%) 1
F8 Muxes 2288 (17.20%) 2288 (17.20%) 1
BRAMs (36Kb) 104 (74.29%) 104 (74.29%) 1

LUTs 5228 (9.83%) 5714 (10.74%) 1.09

Flip-Flops 2455 (2.31%) 3436 (3.23%) 1.40
PU F7 Muxes 2016 (7.58%) 2016 (7.58%) 1
F8 Muxes 864 (6.50%) 864 (6.50%) 1
BRAMs (36Kb) 72 (51.43%) 72 (51.43%) 1

LUTs 17,462 (32.82%) 18,628 (35.02%) 1.07

Flip-Flops 4862 (4.57%) 6638 (6.24%) 137
SV F7 Muxes 7681 (28.88%) 7681 (28.88%) 1
F8 Muxes 3584 (26.95%) 3584 (26.95%) 1
BRAMs (36Kb) 128 (91.43%) 128 (91.43%) 1

The only perceptible increment is the number of LUTs and Flip-Flops, the rest are
null or negligible. These increments are not important for the design, since it uses a small
percentage of these resources. As can be seen in the table, the bottleneck of the system are
the on-chip memory resources. In fact, some images use almost all memory resources. For
that reason it was very important to optimize the memory format used to store the trees.

Table 3 presents the performance results. In this case, the multi-threaded design
provides a performance improvement of 67-85%. Hence, in this accelerator the com-
puter architecture optimizations provide a major performance improvement with minimal
area cost.

The Multi-threaded design has a small penalty, between 1% and 4%, in terms of the
number of cycles needed to process each node (Avg. Cycles/Node), which leads to a higher
number of cycles per pixel (Avg. Cycles/px.). The reason is that the trees are divided into
three sets, which will not always be perfectly balanced. When one of the sets ends, only
two of the three threads have useful work to do. To reduce this problem we grouped the
trees taking into account their average depth, trying to make the workload similar in all
groups. Since the depth of the trees depends on the path chosen, and will be different
for each input, we can not guarantee a perfect balance, and these small penalties appear.
Nevertheless, we achieved a very small penalty and the frequency increase is enough to
reach better throughput.

Regarding the communications, in our design we have included a DMA to read
the input data from the external off-chip memory. With this approach the latency of
sending the input data of one pixel is smaller than the computation itself, so it can be
entirely overlapped with the processing time of the previous input data, and does not affect
the throughput.

In order to evaluate the performance of our multi-threading design, we have executed
the inference of the models described in [10] in a high performance (HP) CPU, an Intel(R)
Core(TM) i5-8400 CPU @ 2.80GHz (Intel Corporation, Santa Clara, CA, USA), and also
in an embedded system (ES) CPU, the Dual-core ARM Cortex-A9 @ 667 MHz (Arm
Ltd., Cambridge, England) that is part of the same system-on-a-chip as the FPGA in the
Zedboard evaluation board [12]. Regarding the software, for the Intel i5-8400 we measured
the execution of the LightGBM library inference, while for the Cortex-A9, we designed an
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equivalent C version that uses the same data format as the FPGA design, hence, it has the
same computational and memory requirements. This code has been compiled with gcc
7.3.1 with -O3 optimization level. Table 4 shows the total energy required for the execution
of the entire test set for each image and also the performance in pixels per second. These
measurements have been performed with a Yokogawa WT210 digital power meter, a device
accepted by standard performance evaluation corporation (SPEC) for power efficiency
benchmarks [21]. In the table we only include the dynamic energy consumption, that is,
the consumption due to the execution of the trees. To this end, we measured the power
consumption of the FPGA, the Cortex-A9 and the i5-8400 during five minutes both in idle
mode, and during the execution of the models, and from that measures we computed the
average increase in the power consumption due to the execution of the trees in each case.
The Power consumption measurements used to calculate the energy are 75 W for the HP
CPU, 1.5 W for the ES CPU and 2 W for the FPGA.

Table 3. Single-cycle vs. multi-threading throughput.

Single-Cycle Multi-Threading Gain
Freq. (MHz) 60.61 105.263
Avg. Cycles/px. 1658.15 1700.9
P Avg. us/px. 27.36 16.16 1.69
Avg. px/s. 36,552.78 61,886.65 ’
Avg.
Cycles/Node ! 1.026
Freq. (MHz) 62.5 105.263
Avg. Cycles/px. 2542.76 2564.55
Avg. ps/px. 40.69 24.36
KSC Avg. px/s. 24,579.60 41,045.41 167
Avg.
Cycles/Node ! 1.009
Freq. (MHz) 66.67 125
Avg. Cycles/px. 1857.34 1938.70
Avg. ps/px. 27.86 15.51
PU Avg. px/s. 35,895.42 64,476.20 180
Avg.
Cycles/Node ! 1.044
Freq. (MHz) 55.56 105.263
Avg. Cycles/px. 1447.13 1479.37
Avg. ps/px. 26.05 14.05
sV Avg. px/s. 38,393.23 71,153.94 1.85
Avg.
Cycles/Node 1 1.022

Table 4. Energy and performance comparisons.

Energy (J) Performance (Pixels/s)
Test Pixels FPGA HP CPU ES CPU FPGA HP CPU ES CPU
IP 8721 0.280 27.750 9.858 62,293 23,568 1327
KSC 4435 0.136 6.150 3.024 65,221 53,860 2200
PU 38503 1.194 58.500 15.960 64,494 49,336 3619
SV 48726 1.370 171.000 36.863 71,133 21,332 1983
Average 0.500 36.147 11.508 65,706 22,422 2139

According to these results, the HP CPU execution consumes in average 72 times more
energy than the FPGA design to perform the inference of the test benches, while the FPGA
design is twice faster. In the case of the ES CPU, it consumes 23 times more energy while the
FPGA design is 30 times faster. The last comparison is interesting, because this processor
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is on the same chip as the FPGA, using the same main memory and a clock almost seven
times faster. This demonstrates the benefits of a custom accelerator both for performance,
and for energy efficiency.

Finally, one of our objectives was to process the pixels at the same speed at which
they are generated by the hyperspectral sensors. According to [22] the AVIRIS sensor that
was used to obtain most of our datasets must process 62, 873.6 pixels per second to fully
achieve real-time performance. Our multi-threading design achieves this speed in three
of the four images (KSC, PU and SV), and achieves 98.4% of that speed in a third one (IP).
Hence, we can conclude that this design is capable of achieving real-time performance in
many scenarios even using a small FPGA.

7. Conclusions

GDBT are a very powerful machine learning model. Its characteristics make it specially
indicated to be accelerated in FPGAs, since its basic operations are simple comparisons.
A key factor in the design of the accelerator has been the memory restrictions. Optimizing
the format used to store the trees has been the key to allow complex models to be imple-
mented in small FPGAs. Moreover, after analyzing the execution of our accelerator, we
have managed to find a pipeline and multi-threading execution scheme that maximizes
the utilization of the FPGA resources and achieves 67-85% performance improvement
compared to the single-cycle execution. We have tested our accelerator with complex
models for a relevant case-study, and we have demonstrated that it can be used to process
data at run-time with a very small power-consumption overhead. Moreover, compared to
the execution of LightGBM in a high performance CPU our model is capable of achieving
2x performance while consuming 72x less energy. In the case of an embedded system CPU,
our design reaches a 30x performance improvement while maintaining 23x less energy con-
sumption during the execution. Hence, this design is suitable to provide high-performance
for embedded systems, that was our original target.
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