
 
 

 

 
Electronics 2021, 10, 312. https://doi.org/10.3390/electronics10030312 www.mdpi.com/journal/electronics 

Article 

An Effective Method for Parameter Estimation of a Solar Cell 
Abhishek Sharma 1,*, Abhinav Sharma 2,*, Moshe Averbukh 3, Vibhu Jately 4 and Brian Azzopardi 4 

1 Department of Research and Development, University of Petroleum and Energy Studies,  
Dehradun 248007, India 

2 Department of Electrical and Electronics Engineering, School of Engineering, University of Petroleum and 
Energy Studies, Dehradun 248007, India 

3 Department of Electrical and Electronics Engineering, Ariel University, Ariel 40700, Israel;  
mosheav@ariel.ac.il 

4 Institute of Engineering and Transport, Malta College of Arts, Science and Technology (MCAST),  
Paola PLA9032, Malta; vibhu.jately@mcast.edu.mt (V.J.); brian.azzopardi@mcast.edu.mt (B.A.) 

* Correspondence: abhishek_sharma@ddn.upes.ac.in (A.S.); abhinav.sharma@ddn.upes.ac.in (A.S.) 

Abstract: Parameter extraction of the photovoltaic cell is a highly nonlinear complex optimization 
problem. This article proposes a new hybrid version of whale optimization and particle swarm op-
timization algorithm to optimize the photovoltaic cell parameters. The exploitation ability of particle 
swarm optimization with adaptive weight function is implemented in the pipeline mode with a 
whale optimization algorithm to improve its exploitation capability and convergence speed. The 
performance of the proposed hybrid algorithm is compared with six different optimization algo-
rithms in terms of root mean square error and rate of convergence. The simulation result shows that 
the proposed hybrid algorithm produces not only optimized parameters at different irradiation lev-
els (i.e., 1000 W/m2, 870 W/m2, 720 W/m2, and 630 W/m2) but also estimates minimum root mean 
square error even at a low level of irradiations. Furthermore, the statistical analysis validates that 
the average accuracy and robustness of the proposed algorithm are better than other algorithms. 
The best values of root mean square error generated by the proposed algorithm are 7.1700 ൈ 10ିସ 
and 9.8412 ൈ 10ିସ for single-diode and double-diode models. It is observed that the estimated pa-
rameters based on the optimization process are highly consistent with the experimental data. 

Keywords: photovoltaic; parameter extraction; single-diode model; double-diode model; swarm in-
telligence 
 

1. Introduction 
The depletion of fossil fuel resources and resulting environmental impact due to their 

usages embarks the need for alternate energy resources [1]. Solar energy is one of the most 
promising alternative sources for fossil fuel. The free access to the energy of sunlight can 
be extracted employing the photovoltaic (PV) panels. The rapid adoption of solar energy 
by the domestic and industrial sector makes it a vital source to be explored [2]. Despite 
the very low operational and maintenance cost, there are various limitations for efficient 
energy generation. An enormous amount of research has been performed and carried out 
to better the power output from the PV panels [3,4]. The major limitation in the execution 
and implementation of the solar PV power plants is the very high capital cost for installa-
tion [5]. PV cells are having nonlinear current-voltage (I-V) and power-voltage (P-V) char-
acteristics curves with some operational limitations [6]. This non-linearity makes it diffi-
cult for any probability and approximation to increase efficiency. Every PV panel can op-
erate at maximum efficiency, as defined by the manufacturer, only if the practical param-
eters (voltage-current) are somewhat close to or coinciding with the maximum power 
point (MPP). The real behaviour of PV panels rather different from the optimal conditions, 
due to the non-linearity of I-V characteristics of solar cells makes it essential to determine 
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the MPP in each moment. It could be done through simulation techniques for better oper-
ational efficiency [7]. This technology is ensured by the model of the equivalent circuit 
having several inherent parameters. However, the parameters provided by the PV panel 
manufacturer don’t specify the model parameters. The given information states the open-
circuit voltage (Voc), short circuit current (Isc), and current at maximum power point (Impp) 
under standard test conditions (i.e., 1000 W/m2, 25 °C). The practical parameters vary at 
every instant with a change in weather conditions. The aging effects of PV also alter the 
parameters of the equivalent circuit [3,8,9]. 

The core unit of the PV system is a solar cell, and it is of utmost priority to extract the 
parameters for a close analysis of the PV panel performance around its MPP. The simula-
tion study of cells combined all together give the performance analysis of entire PV panels 
[8,10]. The equivalent circuit for the single- and double-diode model for parameter extrac-
tion is the recent and most widely used approach. The method of parameter extraction 
can be bifurcated into two major categories: analytical and optimization methods [11–15]. 
Although the analytical methods are the simplest and yields result quickly, but it misses 
the accuracy under normal day conditions with variable lighting. The deterministic ways 
of parameter extraction such as Newton-Raphson, nonlinear least square, Lambert W-
functions [16], iterative curve fitting [17], conductivity method [18] and the Levenberg-
Marquardt algorithm [19] have many boundaries such as continuity, differentiability, and 
convexity related to objective functions. The boundary conditions further impose limita-
tions on the usage of the above analytical methods, as they obtain local minima when 
dealing with multi-modal problems. Thus, analytical methods are not suitable to extract 
the parameters. 

To get more accurate and precise parameters from nonlinear implicit equations with 
high accuracy, evolutionary algorithms [20] were proposed. The bio-related algorithms 
are more accurate and powerful optimization algorithms to simplify nonlinear transcen-
dental equations as it doesn’t include complex mathematics. Although, researchers have 
developed number of metaheuristic algorithm but there is no algorithm that provides op-
timal solution to all sets of problems which has also been proven by No free lunch theo-
rem. This has motivated researchers to design new algorithms to efficiently solve complex 
science and engineering problems. A gradient-based optimizer (GBO) [20] inspired from 
the gradient-based Newton’s method, Harris-Hawk optimizer (HHO) [21] inspired from 
cooperative behavior and chasing style of the Harris Hawks Heap-based optimizer (HBO) 
[22] inspired from corporate rank hierarchy and slime mould algorithm (SMA) [23] in-
spired from diffusion and foraging conduct of slime mould are some of the recently de-
veloped metaheuristic algorithms. Some of the recent optimization algorithms used for 
parameter extraction are the genetic algorithm (GA) [24], differential evolution (DE) [25], 
simulated annealing (SA) [26], pattern search (PS) [27], harmony search (HS) [28], cuckoo 
search (CS) [29], flower pollination algorithm [30], bacterial foraging optimization (BFO) 
[31], bird mating [32], and artificial bee swarm optimization (ABSO) [33]. The proposed 
algorithms suffer from the problem of premature convergence. The primary disadvantage 
of GA is that it involves wide parameter optimization search space which makes the sys-
tem quite complicated and slow. The problem of large search space was overcome by im-
plementing PSO. However, it imposed the problem of the randomly chosen initial param-
eter value. The value exchange in SA between the cooling timetable and the original tem-
perature makes it less popular. There is a likelihood that PSO will choose an incorrect 
pattern, leading to premature convergence or no convergence. PSO with reverse barrier 
restriction for series resistance (Rs), shunt resistance (Rsh), and diode ideality factor (a) is 
suggested for fast and coherent convergence of optimization issue to global optima, con-
sidering the temperature impact to reduce the modeling errors in differential evolution 
[31–35]. Although the BFO technique offers excellent outcomes but involving too many 
parameters that have complicated the scheme and imposed a computational strain. Au-
thors in [36], implemented improved teaching-learning based optimization (ITLBO), 
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where a good trade-off is established between the exploration and exploitation by elimi-
nating the worst learner. This increases the global search ability of the population in a 
defined search space. A hybridization approach is carried out by the researchers in [34] 
for parameter extraction of solar PV cell. In this approach, the hybridization of two algo-
rithms are implemented, the firefly and pattern search. The exploration phase is com-
pleted by the firefly algorithm during the first half iteration and then the pattern search 
algorithm takes control of the population for the exploitation phase. A new opposition-
based learning approach is incorporated with whale optimization and shuffled complex 
evolutionary algorithm for optimization of solar cell parameters [35,36]. This approach is 
tested on unimodal as well as on multimodal benchmark functions and simulation results 
clearly show the robustness of the algorithms. 

The whale optimization algorithm (WOA) [37] and particle swarm optimization 
(PSO) [38] are the two most prominent used metaheuristics techniques as available in the 
literature. However, they differ from each other in the search mechanism for the best so-
lution in a defined search space. WOA mimics the social behaviour of humpback whales 
while PSO mimics the searching behaviour of the birds in a group. It is shown by many 
previous research studies that WOA is good at exploring [39] the search space but suffers 
from a slow convergence rate due to low exploitation ability while PSO don’t have good 
capability in exploring [40] the search space but have good local search capability. the 
convergence speed of the algorithm. In [41], the author proposed a chaotic WOA (CWOA) 
to improve maps utilized their dynamic behavior to prevent an optimization algorithm to 
trap in local optima and improves its global search capability. In [42], the author proposed 
Levy flight trajectory based WOA (LWOA) to improve the accuracy and convergence 
speed of the algorithm. Levy flight allowed for the algorithm to get rid of local optima 
and prevents premature convergence. 

There are certain complex and non-convex optimization problems that are not solved 
by continuous metaheuristic therefore, in [43], the author proposed binary WOA (BWOA). 
In [44], the author proposed a modified WOA that includes whale memory and new ran-
dom search agent to enhance the exploitation capability of the algorithm. In [45], the au-
thor improved the exploration capability of WOA and proposed three modified WOA 
which are based on opposition-based learning, exponentially decreasing parameters, and 
re-initialization of the worst particles. The hybridization of metaheuristic algorithms is 
another approach to improve the exploration and exploitation capability of population 
based stochastic algorithm. Furthermore, researchers have proposed hybrid approach 
grey wolf optimization (HAGWO) [46], WOA-CBO (colliding bodies optimization) [47], 
memetic-WOA (MWOA) [48], WOA-SA (simulated annealing) [39], WOA-MFO (moth 
flame optimization) [49], Sine-Cosine (SC-WOA) [50], WOA-PS (Pattern Search) [51], and 
Brain Storm (BS-WOA) [52–54] to improve the global and local search capability of WOA. 

According to the literature survey, WOAPSO has not yet been implemented for the 
parameter extraction of the solar cell (and it cannot be used to establish a PV parameter 
estimation technique that can overcome all existing techniques). Therefore, this research 
paper aims to anticipate a new parameter estimation algorithm for solar cell/module. The 
novelty of the proposed study is that the exploitation capability of WOA is significantly 
improved by incorporating the exploitation capability of PSO with adaptive weight in 
sequential mode. As a result, equivalent circuit parameters converge equally good to the 
true values with minimum error. The proposed WOAPSO algorithm’s performance is 
measured based on convergence analysis, robustness, reliability, and statistical analysis 
for three PV models at diverse operating conditions.  

The manuscript is organized as follows: the problem formulation and mathematical 
model for solar PV cell/module are presented in Section 2. Section 3 gives a brief introduc-
tion of the WOA, PSO, and proposed WOAPSO algorithm and discussed its implementa-
tion to estimate the optimized value of unknown parameters of a single-diode, double-
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diode, and PV module model. In Section 4, the simulation results of the WOAPSO algo-
rithm are discussed and compared with pre-existing metaheuristic algorithms. Finally, 
Section 5 provides a conclusive remark to summarize the paper. 

2. Methodology 
In this section, the equivalent circuits of a photovoltaic solar cell are formulated using 

a single-diode and double-diode models. These equivalent circuit models are used to de-
scribe the current-voltage characteristics of a solar cell. 

2.1. PV Panel Model 
The equivalent circuit of PV panel module is shown in Figure 1. The relation between 

current and voltage at output terminal for the PV panel module is expressed as: 𝐼௟/𝑁௣ = 𝐼௣ − 𝐼ௌ஽ ቈ𝑒𝑥𝑝 ቆ𝑞൫𝑉௟/𝑁௦ + 𝑅௦𝐼௟/𝑁௣൯𝑎ଵ𝑘஻𝑇 ቇ − 1቉ − 𝑉௟/𝑁௦ + 𝑅௦𝐼௟/𝑁௣𝑅௦௛  
(1) 

where 𝑁௦ and 𝑁௣ represents the number of solar cells connected in series and parallel 
respectively. It is clearly depicted from Figure 1 that only five parameters (𝐼௣, 𝐼ௌ஽, 𝑎ଵ, 𝑅௦ 
and 𝑅௦௛) are needed to be estimated for minimum value of the RMSE. 

 
Figure 1. Equivalent circuit of PV panel module model. 

2.2. Objective Function 
The key purpose of this work is to optimize the unknown parameters for both the 

models (SDM and DDM) and to reduce the error between experimental and estimated 
data. The objective function for error used here is same as the authors have used previ-
ously in as: 

RMSE = ඩ1k ෍𝑓(୩
୒ୀଵ 𝑉௟ , 𝐼௟ ,𝑋)  (2) 

where 𝑉௟ and 𝐼௟ are the measured voltage and current of PV module. The parameter ‘k’ 
stands for the number of experimental data set. The best solution found by WOAPSO is 
represented by a vector X. For the single-diode model: 
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ቐ𝑓௦௜௡௚௟௘(𝑉௟ , 𝐼௟ ,𝑋) = 𝐼௣-𝐼ௌ஽ ቈ𝑒𝑥𝑝 ቆ𝑞(𝑉௟ + 𝐼௟𝑅௦)𝑎ଵ𝑘஻𝑇 ቇ -1቉ -𝑉௟ + 𝐼௟𝑅௦𝑅௦௛ -𝐼௟൫𝑋 =  𝐼௣, 𝐼ௌ஽ ,𝑎ଵ,𝑅௦,𝑅௦௛  ൯      (3) 

For the double-diode model: 

⎩⎪⎨
⎪⎧𝑓ௗ௢௨௕௟௘(𝑉௟ , 𝐼௟ ,𝑋) =  𝐼௣ − 𝐼ௌ஽ଵ ቈ𝑒𝑥𝑝 ቆ𝑞(𝑉௟ + 𝐼௟𝑅௦)𝑎ଵ𝑘஻𝑇 ቇ − 1቉−𝐼ௌ஽ଶ ൤𝑒𝑥𝑝 ൬𝑞(𝑉௟ + 𝐼௟𝑅௦)𝑎ଶ𝑘஻𝑇 ൰ − 1൨ − 𝑉௟ + 𝐼௟𝑅௦𝑅௦௛ − 𝐼௟൫𝑋 =  𝐼௣, 𝐼ௌ஽ଵ, 𝐼ௌ஽ଶ,𝑎ଵ,𝑎ଶ,𝑅௦,𝑅௦௛  ൯  (4) 

For the PV panel module model: 

⎩⎪⎪
⎨⎪
⎪⎧𝑓௦௜௡௚௟௘(𝑉௟ , 𝐼௟ ,𝑋) =  𝐼௣ − 𝐼ௌ஽ ൦𝑒𝑥𝑝൮𝑞 ൬𝑉௟𝑁௦ + 𝑅௦𝐼௟𝑁௣ ൰𝑎ଵ𝑘஻𝑇 ൲ − 1൪

−𝑉௟/𝑁௦ + 𝑅௦𝐼௟/𝑁௣𝑅௦௛ − 𝐼௟/𝑁௣൫𝑋 =  𝐼௣, 𝐼ௌ஽,𝑎ଵ,𝑅௦,𝑅௦௛  ൯ 
 (5) 

2.3. Hybrid Algorithm 
The hybridization of the metaheuristic algorithm plays a vital role in improving their 

performance. The fundamental principle of hybridization is to blend the best features of 
two or more metaheuristic algorithms to improve search capability, accuracy, and conver-
gence speed of an individual algorithm. A hybrid algorithm is also known as a memetic 
algorithm. In the last few years, researchers have proposed different strategies for hybrid-
izing metaheuristic algorithms. The three most explored methodologies of hybridization 
are multi-stage, sequential and parallel.  

In the multi-stage methodology, one of the algorithms globally explores the search 
space and the second algorithm locally discovers the optimal solution. In sequential 
search, both the algorithms run sequentially and find the optimal solution in the search 
space. In the parallel mode, both the algorithms run parallel on the same population of 
the defined problem. 

2.3.1. Particle Swarm Optimization (PSO) 
Particle swarm optimization is a nature inspired stochastic optimization technique 

proposed by J. Kennedy and R. C. Eberhard in 1995. It is a population-based computa-
tionally inexpensive technique that is inspired by the social behaviour of fish schooling 
and bird flocking. The methodology of the algorithm is that the swarm of particles fly in 
the search space and finds the optimal solution by updating their own best solution and 
the best solution obtained by the swarms. The swarm is randomly initialized as particles 
in N-dimensional search space with position xi and velocity vi. The position of the particles 
represents the probable solution, and the velocity represents the rate of change of position 
of the particle concerning the current position. The particles change their positions with 
respect to the positions of the best particle. The velocity update equations are given by: 𝑣௜ௗ(𝑡 + 1) = 𝑤 × 𝑣௜ௗ(𝑡) + 𝑐ଵ × 𝑟ଵ × ቀ𝑝𝑏𝑒𝑠𝑡௜ௗ(𝑡) − 𝑥௜ௗ(𝑡)ቁ + 𝑐ଶ × 𝑟ଶ × ൫𝑔𝑏𝑒𝑠𝑡ௗ − 𝑥௜ௗ൯ (6) 𝑥௜ௗ(𝑡 + 1) = 𝑥௜ௗ(𝑡) + 𝑣௜ௗ(𝑡 + 1) (7) 

where 𝑣௜ௗ(t) and 𝑥௜ௗ(𝑡)represents the velocity and position of ith particle in dth dimension 
at tth iteration, 𝑣௜ௗ(𝑡 + 1) and 𝑥௜ௗ(𝑡 + 1)is the velocity and position of the ith particle in 
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dth dimension at (t + 1)th iteration. 𝑝𝑏𝑒𝑠𝑡௜ௗ represents the current best position of the par-
ticles and 𝑔𝑏𝑒𝑠𝑡ௗrepresents the best position among all the particles in dth dimension, c1 
and c2 are the acceleration parameter, r1 and r2 are the random number in the range [0, 1] 
and 𝑤 is the inertial weight vector which maintains balance between exploration and ex-
ploitation. 

2.3.2. Whale Optimization Algorithm (WOA) 
The whale optimization algorithm is a population-based optimization algorithm that 

mimics the social behaviour of humpback whales and was proposed by Mirjalili and 
Lewis in 2016. Humpback whales are long in size and have an interesting food searching 
capability: they attack their prey (krill and small fishes) by a bubble-net hunting strategy. 
WOA is inspired by this hunting behaviour, and works in three phases. First, it searches 
for prey then encircles the prey and lastly, attacks the prey. Humpback whales swim 
around the prey either following a shrinking path or through a spiral movement. A prob-
ability factor p assumed to be 50% simultaneously choose either of the two movements. 

Shrinking Movement 
Initially in the exploration phase, humpback whales search around a prey chosen 

randomly in the search space with the following mathematical model: 𝐷ሬሬ⃗ = ห𝐶 × 𝑋⃗௥௔௡ௗ − 𝑋⃗ห (8) 𝑋⃗(𝑡 + 1) = 𝑋⃗௥௔௡ௗ − 𝐴 × 𝐷ሬሬ⃗  (9) 

where t is the current iteration and (t + 1)th is the next iteration, 𝑋⃗௥௔௡ௗ is the random po-
sition of the prey, 𝐴 and 𝐶 are the coefficient vectors and is defined as: 𝐴 = 2𝑎⃗𝑟 − 𝑎⃗ (10) 𝐶 = 2 × 𝑟 (11) 

where 𝑎⃗ is decreased from 2 to 0 over the course of iterations and 𝑟 is the random num-
ber in the range [0, 1]. In the exploitation phase the position of whales are updated based 
on the position of the best search prey 𝑋⃗∗. Mathematically it is defined as: 𝐷ሬሬ⃗ = ห𝐶 × 𝑋⃗∗ − 𝑋⃗ห (12) 𝑋⃗(𝑡 + 1) = 𝑋⃗∗ − 𝐴 × 𝐷ሬሬ⃗  (13) 

Spiral Movement 
In the spiral movement of the humpback whale, first the distance is evaluated be-

tween the whale located at (X, Y) and best search prey located at (X*, Y*). Once the dis-
tance is evaluated then the helix-shaped movement of whale around the prey is defined 
with following mathematical equation: 𝑋⃗(𝑡 + 1) = 𝐷ሬሬ⃗ ᇱ ∙ 𝑒௕௟ ∙ cos(2𝜋𝑙) + 𝑋⃗∗(𝑡) (14) 

where 𝐷ሬሬ⃗ ᇱ = ห𝑋⃗∗(𝑡) − 𝑋⃗(𝑡)ห is the distance between the whale and best searched prey, b is 
the constant which maintains the shape of the logarithmic spiral and l is the random num-
ber defined in the range [–1, 1]. 

In WOA, coefficient vector ‘A’ maintains the balance in exploration and exploitation, 
when the value of p < 0.5 and A > 1 then the positions are updated by Equations (9) and 
(13) while when p < 0.5 and A < 1 the positions are updated by Equations (13) and (14) and 
when the p ≥ 0.5 then the positions are updated using Equation (14). 
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2.3.3. Hybrid WOAPSO Algorithm 
In this section, the principle of the proposed hybrid WOAPSO algorithm is briefly 

addressed. In general, the performance of any optimization technique while solving any 
NLP problem is affected by premature convergence and slow rate of convergence. Some 
algorithms better explore the search space and have a slow convergence rate while some 
algorithms less diversely explore the search space and did not find the optimal solution. 
Maintaining the balance between exploration and exploitation is a critical issue in any 
optimization algorithm. WOA has good exploration capability but exploitation depends 
on evaluating the distance between the whale and the best position of the prey, and if the 
distance is large then it takes more time to converge. While PSO has fast rate of conver-
gence but it is prone to premature convergence due to weakness in global search capabil-
ity. Since in PSO, if the global best solution gets trapped in local optima, then the rest of 
the particles do not explore the search space and follow the global best solution, and be-
come trapped in local optima. Therefore, it can be concluded that WOA is good at explor-
ing the search space, but suffers from a slow convergence rate while PSO doesn’t have 
good capability in exploring the search space but have good local search capability. The 
aim of the proposed hybrid algorithm is to enhance the exploitation capability of WOA 
by embedding the PSO algorithm to find an optimal solution around the region explored 
by WOA. The proposed approach is mixed, co-evolutionary in which PSO is used as a 
component of WOA and thus the hybrid approach utilizes the strength of both the algo-
rithms to avoid the premature convergence and local optima. Figure 2 depicts the process 
flow chart of the proposed algorithm. The mathematical model of the proposed algorithm 
is illustrated in the following steps: 

Step 1: Initialize the random population of search agents with position and velocity de-
fined as: 𝑋௜ =  ൫𝑥௜ଵ, … … … … . 𝑥௜ௗ , … … … . 𝑥௜௡൯,𝑓𝑜𝑟 𝑖 = 1,2, … … … … .𝑁 (15) 𝑉௜ =  ൫𝑣௜ଵ, … … … … . 𝑣௜ௗ , … … … . 𝑣௜௡൯,𝑓𝑜𝑟 𝑖 = 1,2, … … … … .𝑁 (16) 

Step 2: Calculate the fitness of each search agent. If the problem is the minimization prob-
lem, then 𝑋⃗∗ is the position corresponding to the minimum fitness and for maximization 
problem 𝑋⃗∗ is the position corresponding to the maximum fitness. 𝑋⃗∗ is the best search 
agent. 
Step 3: Update the constant parameters A, C, using Equations (10) and (11) and l lying 
between [–1, 1] and p is the probability between 0 and 1.  
Step 4: If p < 0.5 and |A|≥1, then select the random position of search agent (X*) in search 
space and update the position of search agent using Equations (9) and (13). 

Else if p < 0.5 and |A|<1, then update the position of search agent using Equations 
(13) and (14). 

Else p > 0.5, then update the position of search agent using Equation (14). 
Step 5: Update the velocity of search agent based on the best position of search agent (X*) 
in the search space using the following equation: 𝑣௜ௗ(𝑡 + 1) = 𝑤 × 𝑣௜ௗ(𝑡) + 𝑐ଵ × 𝑟ଵ × ൫𝑋∗ − 𝑥௜ௗ(𝑡)൯ (17) 

Step 6: Update the position of the particles using Equation (17). 
Step 7: Go to step 3 until the termination criteria is met. The algorithm terminates when 
either maximum number of iterations or minimum error criteria is attained. 
Step 8: In the last iteration the returned value of 𝑋⃗∗ represents the global minimum and 
the position corresponding to it represents the solution of the problem. 
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Figure 2. Flowchart of proposed hybrid version of whale optimization and particle swarm optimization WOAPSO algo-
rithm. 

2.3.4. Implementation of WOAPSO for Parameter Extraction 
Single-Diode Model 

Initialize the population of search agents of fifth order dimension in the search space. 
The fifth order dimension represents the photovoltaic current (Ip), series resistance (Rs), 
shunt resistance (Rsh), diode saturation current (ISD) and diode ideality factor (a1). The 
range of these parameters are [0–1, 0.001–0.5, 0–100, 0.01–0.5, 1–2]. 

Regulate the fitness of all agents in the search space using Equation (3). 
Update the position of the agents at every iteration using WOAPSO. The algorithm 

is designed to work in the minimization mode thus the location of particles that acquire 
minimum cost represents the optimized parameters of SDM with minimum RMSE. 

Double-Diode Model 
Initialize population of search agents of seventh-order dimension in the search space. 

The seventh-order dimension represents the photovoltaic current (Ip), series resistance 
(Rs), shunt resistance (Rsh), diode saturation currents (ISD, ISD1), and diode ideality factor 
(a1, a2). The range of these parameters are [0–1, 0.001–0.5, 0–100, 0.01–0.5, 0.01–0.5, 1–2, 1–
2]. 

Regulate the fitness of all agents in the search space using Equation (4). 
Update the position of all agents at every iteration using WOAPSO. The algorithm is 

designed to work in the minimization mode. Thus, the location of particles having mini-
mum cost represents the parameters of the double-diode model with minimum RMSE. 

3. Results 
In this section, the feasibility of the proposed new hybrid WOAPSO was tested and 

evaluated using mainly two types of PV devices: one PV cell (R.T.C France solar cell) and 
one PV module (SS2018P) at different solar irradiation. As a result, the retrieved PV cell 
and module parameters were monitored and used to create simulated I-V data for each 
device type. The accuracy and reliability of the WOAPSO were assessed by comparing the 
techniques published in the literature with the existing art. The efficiency of the proposed 
method is evaluated based on distinct empirical tools such as the individual absolute error 
(IAE), the relative error (RE), the precision of the curve fitting, and the global minimum 
convergence patterns. The experimental values of current and voltage are taken from [55] 
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by using R.T.C France solar cell at standard temperature condition i.e., 1000 W/m2 at 33 
°C. The SS2018P PV module is composed of 36 polycrystalline cells connected in series 
and generate the I-V data under different irradiance levels i.e., 1000 W/m2, 870 W/m2, 720 
W/m2 and 630 W/m2. The data collection consists of a total of 20 I-V measurements for 
solar cell and 27 for PV module. The values of current and voltage for solar PV module 
(SS2018P) are measured across variable resistive load (0.1–250 Ω, 2 A). The measured 
value of voltage and current at different irradiance level is presented in supplementary 
materials. For a reasonable comparison, the search ranges (i.e., upper and lower bound) 
for each parameter are tabulated in Table 1, which are the same as those being used by 
investigators in [27]. The proposed WOAPSO algorithm is implemented on MATLAB 
2018a platform with Intel ® core ™ i7-HQ CPU, 2.4 GHz, 16 GB RAM Laptop. In order to 
conduct the experiment, the sample size, and the estimated number of objective function 
evaluations are set at 30 and 50,000, respectively. Furthermore, a minimum of 30 separate 
runs are carried out to prevent the contingency. 

Table 1. Range of parameters for SDM, DDM and PV Module. 

Parameter 
SDM/DDM SS2018P PV Module 

Lower Bound Upper Bound Lower Bound Upper Bound 
Ip (A) 0 1 0 10 

Isd, Isd1 (µA) 0.01 0.5 0 50 
Rs (Ω) 0.001 0.5 0.001 2 
Rsh (Ω) 0 100 0 2000 
a, a1, a2 1 2 0 100 

3.1. Parameter Estimation of Single-Diode Model Using WOAPSO 
Only five parameters (Ip, Isd, a, Rs, Rsh) are required to be estimated for a single-diode 

model. Table 2 signifies the values of parameters optimized by WOAPSO and RMSE for 
the comparison. The WOAPSO algorithm provides the lowest RMSE of 7.1700 × 10−4 than 
others (Tables 2 and S2). Here RMSE values are acquired as the index for the evaluation 
of results with previously existing algorithms implemented by the researchers. 

Table 2. Comparison of WOAPSO with different parameter estimation methods for SDM. 

Algorithms Iph (A) ± SD Isd (µA) ± SD Rs (Ω) ± SD Rsh (Ω) ± SD a ± SD RMSE 
GSA 0.7607 ± 0.0053 0.05 ± 0.0265 0.0339 ± 0.0076 63.7784 ± 4.304 1.5486 ± 0.0042 1.2012 × 10ିଷ 
SCA 0.7595 ± 0.0209 0.002 ± 0.034 0.0519 ± 0.0229 90.0685 ± 4.517 1.2641 ± 0.140 1.9123 × 10ିଷ 

GWO 0.7695 ± 0.0038 1 ± 0.193 0.0269 ± 0.0037 47.9136 ± 16.872 1.6232 ± 0.0311 9.4095 × 10ିସ 
PSO 0.7383 ± 0.023 1 ± 0.023 0.0501 ± 0.0053 25.1251 ± 3.213 1.6605 ± 0.024 1.4320 × 10ିଷ 

WOA 0.7573 ± 0.0019 0.016 ± 0.0056 0.053 ± 0.0028 58.5839 ± 0.354 1.2476 ± 0.0043 9.9529 × 10ିସ 
PSOGSA 0.7677 ± 0.0071 0.01 ± 0.006 0.0522 ± 0.0066 18.4587 ± 37.62 1.218 ± 0.0349 1.2400 × 10ିଷ 
WOAPSO 0.7597 ± 0.0012 0.499 ± 0.004 0.0342 ± 0.0007 83.0131 ± 0.027 1.5483 ± 0.001 7.1700 × 10ିସ 

The characteristics curve of current-voltage and power-voltage for a single-diode 
model is redrawn based on the best optimized parameters obtained by implementing the 
WOAPSO algorithm and depicted in Figure 3. It is observed that the calculated data ob-
tained by the WOAPSO is very effectively in keeping with the experimental data set, un-
der S.T.C (i.e., 1000 w/m2 and 33 °C), all over the voltage range. The error relating the 
measurement results for each of 20 pair points is determined by IAE and RE, which is 
calculated by using Equations (18) and (19), respectively. 𝐼𝐴𝐸 = |𝐼௠௘௔௦௨௥௘ௗ − 𝐼௦௜௠௨௟௔௧௘ௗ| (18) 𝑅𝐸 = (𝐼௠௘௔௦௨௥௘ௗ − 𝐼௦௜௠௨௟௔௧௘ௗ)/𝐼௠௘௔௦௨௥௘ௗ (19) 
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Figure 3. I-V and P-V characteristics curve for estimated and experimental values for single-diode 
model of R.T.C France solar cell. 

3.2. WOAPSO for Parameter Estimation of Double-Diode Model 
In the case of DDM, the seven parameters (Ip, Isd, Isd1, a1, a2, Rs, Rsh) are required to be 

optimized. The values of optimized parameters and minimum of RMSE are presented in 
Table 3. The characteristics curve in terms of current-voltage and power-voltage for the 
double-diode model is redrawn based on the best optimized parameters (Figure 4). It can 
be observed that the estimated data based on optimized parameters are in keeping with 
the experimental data set. 

 
Figure 4. I-V and P-V characteristics curve for estimated and experimental values for double-diode 
model of R.T.C France solar cell. 
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Table 3. Comparison of WOAPSO with different parameter estimation methods for DDM. 

Algorithms Iph (A) ± SD Isd1 (µA) ± SD Isd2 (µA) ± SD Rs (Ω) ± SD Rsh (Ω) ± SD a1 ± SD a2 ± SD RMSE 
GSA 0.7641 ± 0.0079 0.05 ± 0.177 0.001 ± 0.1191 0.0344 ± 0.0091 37.780 ± 1.21 1.9943 ± 0.1756 1.5492 ± 0.1076 2.03 × 10ି3 
SCA 0.7623 ± 0.0097 0.0012 ± 0.059 0.001 ± 0.046 0.0595 ± 0.0067 52.4903 ± 24.02 2 ± 0.3030 1.2197 ± 0.2088 3.18 × 10ି3 

GWO 0.7609 ± 0.0026 0.3156 ± 0.0052 0.0001 ± 0.008 0.0323 ± 0.0015 65.6799 ± 6.5859 1.9426 ± 0.0625 1.5312 ± 0.0272 1.60 × 10ି3 
PSO 0.7676 ± 0.0016 0.0216 ± 0.027 0.0947 ± 0.234 0.0335 ± 0.012 54.9501 ± 5.4630 1.4606 ± 0.203 1.8363 ± 0.0137 2.90 × 10ି3 

WOA 0.76354 ± 0.0019 0.169 ± 0.0017 0.163 ± 0.0011 0.0410 ± 0.0022 35.7342 ± 0.7539 2 ± 0.034 1.4420 ± 0.0036 4.30 × 10ି3 
PSOGSA 0.7611 ± 0.0041 0.432 ± 0.0171 0.01 ± 0.0021 0.0347 ± 0.0042 61.72 ± 18.7135 1.9 ± 0.0183 1.5489 ± 0.0144 1.48 × 10ି1 
WOAPSO 0.7601 ± 0.0007 0.5 ± 0.0020 0.5 ± 0.0027 0.0311 ± 0.0005 100 ± 0.4345 1.5755 ± 0.0043 1.7314 ± 0.0015 9.8412 × 10ି4 

3.3. WOAPSO for Parameter Estimation of SS2018P PV Module 
In order to further evaluate the efficiency of the proposed WOAPSO algorithm, pa-

rameters for SS2018P PV module were also estimated at different level of irradiance by 
utilizing the SDM model. The optimal value of five parameters (Ip, Isd, a, Rs, Rsh) for SDM 
of solar PV module at distinct levels of irradiance and constant temperature of 25 °C is 
presented in Table 4 and Tables S7–S9. The characteristics curve of current-voltage and 
power-voltage for solar PV module is redrawn based on best optimized parameters ob-
tained by implementing the WOAPSO algorithm at a different level of irradiance, i.e., 1000 
W/m2, 870 W/m2, 720 W/m2, and 630 W/m2 and is depicted in Figure 5. It is found that the 
calculated data obtained by the WOAPSO is very effectively in keeping with the experi-
mental data set. The curve of IAE between experimental and estimated values at 1000 
W/m2, 870 W/m2, 720 W/m2, and 630 W/m2, is shown in Figure 6. 

Table 4. Comparison of proposed WOAPSO with different parameter estimation methods for SS2018P PV module (1000 
W/m2). 

Parameters 
Algorithms 

GSA SCA GWO PSO WOA PSOGSA WOAPSO 
Iph (A) 1.0959 ± 0.0037 1.1742 ± 0.011 1 ± 0.024 1.1796 ± 1.009 1.181 ± 0.0103 1.168 ± 0.053 1.1707 ± 0.0025 

Isd (µA) 0.001 ± 0.2246 0.0092 ± 0.388 0.001 ± 0.0759 0.001 ± 0.707 0.019 ± 1.034 0.001 ± 1.358 0.0074 ± 0.0348 
Rs (Ω) 0.001 ± 0.0253 0.0011 ± 0.0187 0.001 ± 0.0022 0.0022 ± 0.583 0.0024 ± 0.007 0.0075 ± 0.0342 0.2 ± 0.0017 
Rsh (Ω) 455.5284 ± 13.67 139.676 ± 19.5323 100 ± 0.842 1308.079 ± 2.466 18.166 ± 10.71 2000 ± 4.63 177.219 ± 0.026 

a 53.5976 ± 0.2493 1.4147 ± 1.021 1.2628 ± 0.0399 1.2429 ± 0.252 1.289 ± 0.6784 1.246 ± 0.24 1.3939 ± 0.0068 
RMSE 1.68 × 10ି1 1.51 × 10ି3 1.59 × 10ି1 5.13 × 10ି3 7.82 × 10ି4 3.22 × 10ି3 7.6714 × 10ି4 

CPU time (s) 17 12.45 9.3 10 7.56 13.17 7.81 
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(b) 

Figure 5. Characteristics curve of simulated and experimental values at different level of irradiance (a) I-V curve and (b) 
P-V curve for single-diode model of SS2018P PV module. Symbols represent the estimated data while the solid lines rep-
resent the measured data. 

 
Figure 6. Internal absolute error between measured and simulated current for single-diode model of SS2018P PV module 
at different level of irradiance. 

3.4. Convergence Analysis 
To analyze the computational competence of WOAPSO, the convergence curves of 

the single-diode model, double-diode model, and PV module is presented in Figure 7. It 
is depicted that the proposed WOAPSO algorithm outperforms the GSA, SCA, GWO, 
PSO, WOA, PSOGSA algorithms in terms of convergence speed and generates a precise 
solution for the identical number of function evaluations (i.e., 50,000). 
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Figure 7. Convergence curve of WOAPSO and other six algorithms for (a) single-diode model (b) 
double-diode model of R.T.C France solar cell and (c) single-diode model of SS2018P PV module. 

3.5. Robustness and Statistical Analysis 
This section presents statistical evaluation based on mean, minimum, maximum, and 

standard deviation of RMSE for all previously implemented methods, and a comparison 
with respect to precision and consistency of the distinct algorithms in a total of thirty runs 
and depicted in Table 5. The mean of RMSE is calculated to evaluate the precision of al-
gorithms, and the standard deviation is calculated to evaluate the consistency of the pa-
rameter estimation methods.  

The statistical results presented in Table 5 indicate that WOAPSO is the most accurate 
and reliable parameter optimization technique. As shown in Table 6, based on the Fried-
man ranking test result, the best ranking is obtained by the WOAPSO, followed by WOA, 
GWO, GSA, PSOGSA, SCA, and PSO. Also, Figure 8 shows the distribution of results (i.e., 
RMSE) obtained from the distinct algorithms in 30 runs in the form of a boxplot graph for 
the SDM, DDM, and PV module. It can be anticipated from Figure 8 that the proposed 
WOAPSO algorithm delivers the best results in terms of accuracy and reliability com-
pared to the other six algorithms. 

Table 5. Statistical results of RMSE of different algorithms for all three models. 

Model Algorithm 
RMSE 

Min Mean Max SD 

Single-diode model 

GSA 1.2012 × 10ିଷ 5.4701 × 10ିଷ 2.4211 × 10ିଵ 1.3129 × 10ିଷ 
SCA 1. 9123 × 10ିଷ 9.6515 × 10ିଷ 2.1642 × 10ିଵ 9.4066 × 10ିଷ 

GWO 9. 4095 × 10ିସ 1.0441 × 10ିଷ 1.3506 × 10ିଷ 1.4050 × 10ିହ 
PSO 1. 4320 × 10ିଷ 1.2534 × 10ିଷ 1.4074 × 10ିଷ 1.1520 × 10ିସ 

WOA 9. 9529 × 10ିସ 9.2032 × 10ିସ 7.1240 × 10ିଷ 9.0250 × 10ିଷ 
PSOGSA 1.2400 × 10ିଷ 1.7660 × 10ିଷ 5.2460 × 10ିଷ 1.9880 × 10ିଷ 
WOAPSO 7.1701 × 10ିସ 7.8030 × 10ିସ 1.3436 × 10ିଷ 2.4290 × 10ି଺ 

Double-diode model 

GSA 2.0330 × 10ିଷ 4.7041 × 10ିଷ 2.6058 × 10ିଵ 1.5796 × 10ିଷ 
SCA 3.1800 × 10ିଷ 1.7932 × 10ିଷ 1.2470 × 10ିଵ 7.7256 × 10ିଶ 

GWO 1.6000 × 10ିଷ 2.6901 × 10ିଷ 8.2830 × 10ିଶ 2.6995 × 10ିଷ 
PSO 2.9000 × 10ିଷ 4.9713 × 10ିଷ 3.3402 × 10ିଶ 3.5833 × 10ିଶ 

WOA 4.3000 × 10ିଷ 5.2967 × 10ିଷ 1.8698 × 10ିଶ 3.9481 × 10ିଷ 
PSOGSA 1.4812 × 10ିଵ 1.4833 × 10ିଵ 1.4732 × 10ିଵ 1.0977 × 10ିଶ 
WOAPSO 9.8412 × 10ିସ 1.2481 × 10ିଷ 1.9312 × 10ିଷ 1.0581 × 10ିଷ 

SS2018P module model 

GSA 1.6877 × 10ିଵ 1.9462 × 10ିଵ 2.0011 × 10ିଵ 4.4500 × 10ିଷ 
SCA 1.5149 × 10ିଷ 5.2657 × 10ିଷ 2.0345 × 10ିଵ 1.0058 × 10ିଶ 

GWO 1.5938 × 10ିଵ 1.5940 × 10ିଵ 5.2494 × 10ିଵ 1.6793 × 10ିଶ 
PSO 5.1329 × 10ିଶ 1.2512 × 10ିଶ 2.6323 × 10ିଵ 1.9334 × 10ିଶ 

WOA 7.8164 × 10ିସ 1.8268 × 10ିଷ 2.1078 × 10ିଶ 1.3639 × 10ିଷ 
PSOGSA 3.2258 × 10ିଷ 3.9510 × 10ିଷ 2.2333 × 10ିଵ 4.0336 × 10ିଷ 
WOAPSO 7.6714 × 10ିସ 7.4601 × 10ିସ 7.5388 × 10ିସ 7.4516 × 10ିହ 
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(c) 

Figure 8. Boxplot graph of best RMSE in 30 runs for (a) single diose model (b) double-diode model (c) polycrystalline 
SS2018P PV module. 

Table 6. Ranking of the proposed WOAPSO and other compared algorithms on three PV models 
according to the Friedman test. 

Algorithms Friedman Ranking Final Ranking 
GSA 3.9 4 
SCA 5.91 6 

GWO 3.36 3 
PSO 6.53 7 

WOA 2.05 2 
PSOGSA 5.22 5 
WOAPSO 1 1 

4. Discussion 
To evaluate the reliability of the WOAPSO, the proposed hybrid algorithm is com-

pared with six well established metaheuristics algorithms, i.e., GSA [56], SCA [57], GWO 
[58], PSO [59], WOA [37], PSOGSA [60] as well as other algorithms existing in the litera-
ture. It is observed that the estimated parameters based on the optimization process are 
highly consistent with the experimental data for SDM, DDM, and SS2018P PV module. 

For SDM, the hybrid WOAPSO algorithm generates the lowest RMSE values 
(7.1700 × 10ିସ) compared to the GSA, SCA, GWO, PSO, and WOA, PSOGSA algorithms 
(Table 2). The RMSE of the proposed WOAPSO algorithm is also compared with previ-
ously studied algorithms (Table S2). It is noted that the hybrid WOAPSO algorithm pro-
vides the lowest RMSE values than that of others. Table S3 represents the absolute IAE for 
SDM analysis. The magnitude of IAE for different observations is less than 0.0018 (Table 
S3), which indicates that the parameters optimized by the WOAPSO are very precise. 

In the case of DDM analysis, the MLBSA, EHHO, IJAYA, and GOTLBO algorithms 
produce the best value of RMSE (Table S4). However, WOAPSO generates the third-best 
value of RMSE (9.8412 × 10ିସ), which is very close to MLBSA (9.8249 × 10ିସ), EHHO 
(9.8360 × 10ିସ ), IJAYA (9.8293 × 10ିସ ), and GOTLBO (9.8317 × 10ିସ ). However, the 
computational cost in terms of function evaluation is 1/3 of MLBSA, EHHO, IJAYA, and 

RM
SE
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GOTLBO. Moreover, WOAPSO shows superiority over other algorithms in terms of 
RMSE (Table 3). For DDM, the magnitude of IAE for different observations is depicted in 
Table S5. It is noticed that the IAE values are less than 0.0097, which demonstrates the 
accuracy of optimized parameters produced by WOAPSO. 

For the SS2018P PV module, the hybrid WOAPSO algorithm produces the lowest 
RMSE values compared to the GSA, SCA, GWO, PSO, WOA, and PSOGSA algorithms. 
The IAE magnitudes for different observations (at 1000 W/m2) are less than 0.0018 (Table 
S6). More importantly, the computational time for WOAPSO is less than other algorithms 
(Table 4). The average execution time of each algorithm on the three PV models is calcu-
lated and illustrated in Figure 9. The WOAPSO algorithm requires less time (about 26.1 s) 
than GWO, PSO, SCA, WOA, and PSOGSA, while GSA has the worst execution time of 
approximately 52 s. 

 
Figure 9. Comparison of the execution time. 

Furthermore, the Friedman ranking test is also performed for all algorithms and de-
picted in Table 6. Table 6 shows that the proposed WOAPSO algorithm significantly out-
performs the GSA, SCA, GWO, PSO, WOA, PSOGSA algorithms for all three models, i.e., 
single-diode, double-diode, and PV module models. 

5. Conclusions 
In this study, the hybridization of whale optimization and particle swarm optimiza-

tion algorithm (WOAPSO) is anticipated. The exploitation ability of PSO is only imple-
mented in pipeline mode when WOA stops to improve the best-found solution. The col-
laboration of both metaheuristic algorithms can establish an effective balance between ex-
ploitation and exploration ability. The proposed technique is further used to estimate the 
parameter of three PV cell models, i.e., single-diode, double-diode, and SS108P PV panel 
module model at different operating conditions. It should be noted that this suggested 
technique is, for the first time, intended to track the estimation of parameters for photo-
voltaic models reliably. The major conclusions are classified as follows: 
• The proposed WOAPSO is relatively accurate and reliable at delivering the solution 

in terms of RMSE as compared with other algorithms such as GSA, SCA, GWO, PSO, 
WOA, PSOGSA, and existing algorithms in the literature.  

• The I-V and P-V characteristic curves and IAE results indicate that WOAPSO can 
generate the optimized value of estimated parameters for all the models of solar PV 
cell as compared with other algorithms. 

• The statistical analysis clearly depicts the robustness of the proposed WOAPSO tech-
nique on parameter estimation problem at different operating conditions. 
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• The convergence curves demonstrate that the best values of estimated parameters 
are obtained by WOAPSO, and RMSE is 7.1700 × 10ିସ and 9.8412 × 10ିସ in the 
case of single- and double-diode respectively.  

• At different irradiation levels (i.e., 1000 W/m2, 870 W/m2, 720 W/m2, and 630 W/m2), 
the proposed WOAPSO algorithm is best in producing optimized parameters (Ip, Isd, 
a, Rs, Rsh) and minimum value of RMSE for PV module even at a low level of irradi-
ation (630 W/m2). 
The proposed WOAPSO algorithm has limitation for DDM analysis. The RMSE value 

(9.8412 × 10ିସ) of WOAPSO algorithm is lower than that of recently developed metaheu-
ristics algorithms (MLBSA, EHHO, IJAYA, and GOTLBO algorithms). 

The WOAPSO is an efficient and robust technique to estimate the unknown opti-
mized parameters of the solar PV model at different operating conditions. For future 
study, the implementation of proposed WOAPSO to solve the other problems related to 
energy optimization such as economic load dispatch, energy scheduling and optimization 
of PV array configuration may also be interesting for scientists and research scholars. 

Supplementary Materials: The supplementary materials are available online at 
www.mdpi.com/2079-9292/10/3/312/s1. 
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Abbreviations and Symbols 
The following abbreviations and nomenclature are used in this manuscript: 
Ip Photo Diode Current  
Isd Reverse Saturation Current 
Rs Series Resistance 
Rsh Shunt Resistance 
a Diode Ideality Factor 
RMSE Root Mean Square Error  
PV Photo Voltaic  
I-V Current-Voltage 
P-V Power-Voltage 
MPP Maximum Power Tracking  
Voc Open Circuit Voltage 
Impp Maximum Power Point Current 
Isc Short Circuit Current  
GBO Gradient Based Optimizer 
HHO Harris-Hawk optimizer 
HBO Heap-Based Optimizer 
SMA Slime Mould Algorithm 
GA Genetic Algorithm  
DE Differential Evaluation  
SA Simulating Annealing  
PS Pattern Search  
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HS Harmony Search  
CS Cooku Search  
FPA Flower Pollination Algorithm 
BFO Bacterial Foraging Algorithm  
BM Bird Mating 
ABSO Artificial Bee Swarm Optimization 
PSO Particle Swarm Optimization  
ITLBO Improved Teaching-Learning Based Optimization 
WOA Whale Optimization Algorithm  
CWOA Chaotic Whale Optimization Algorithm 
LWOA Levy flight trajectory based WOA 
BWOA Binary Whale Optimization Algorithm 
HAGWO Hybrid Approach Grey Wolf Optimization 
WOA-CBO Whale Optimization Algorithm Colliding Bodies Optimization 
MWOA Memetic Whale Optimization Algorithm 
WOA-SA Whale Optimization Algorithm-Simulated Annealing 
WOA-MFO Whale Optimization Algorithm-Moth Flame Optimization 
SC-WOA Sine-Cosine Whale Optimization Algorithm 
WOA-PS Whale Optimization Algorithm- Pattern Search 
BS-WOA Brainstorm- Whale Optimization Algorithm 
SDM Single-diode Model 
DDM Double-diode Model  
IAE Internal Absolute Error  
RE Relative Error 
GSA Gravitational Search Algorithm  
SCA Sine Cosine Algorithm  
GWO Grey Wolf Optimization  
PSOGSA Particle Swarm Optimization Gravitational Search Algorithm  
MLBSA Multiple Learning Backtracking Search Algorithm 
EHHO Enriched Harris Hawks Optimization 
IJAYA Improved Jaya Algorithm 
GOTLBO Generalized Opposition-Based Teaching Learning Based Optimization  
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