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Abstract: Currently, a significant amount of interest is focused on research in the field of Human Ac-
tivity Recognition (HAR) as a result of the wide variety of its practical uses in real-world applications,
such as biometric user identification, health monitoring of the elderly, and surveillance by authorities.
The widespread use of wearable sensor devices and the Internet of Things (IoT) has led the topic of
HAR to become a significant subject in areas of mobile and ubiquitous computing. In recent years,
the most widely-used inference and problem-solving approach in the HAR system has been deep
learning. Nevertheless, major challenges exist with regard to the application of HAR for problems in
biometric user identification in which various human behaviors can be regarded as types of biometric
qualities and used for identifying people. In this research study, a novel framework for multi-class
wearable user identification, with a basis in the recognition of human behavior through the use
of deep learning models, is presented. In order to obtain advanced information regarding users
during the performance of various activities, sensory data from tri-axial gyroscopes and tri-axial
accelerometers of the wearable devices are applied. Additionally, a set of experiments were shown to
validate this work, and the proposed framework’s effectiveness was demonstrated. The results for
the two basic models, namely, the Convolutional Neural Network (CNN) and the Long Short-Term
Memory (LSTM) deep learning, showed that the highest accuracy for all users was 91.77% and
92.43%, respectively. With regard to the biometric user identification, these are both acceptable levels.

Keywords: human activity recognition (HAR); biometric user identification; wearable sensor devices;
mobile and ubiquitous computing; deep learning; human behaviors; convolutional neural network
(CNN); long short-term memory (LSTM)

1. Introduction

Among researchers in both academia and industry whose goal is the advancement of
ubiquitous computing and human computer interaction, one of the most widely-discussed
research topics has become Human Activity Recognition (HAR) [1]. Presently, the number
of research studies conducted on HAR is rapidly increasing because sensors are more
widely available, costs and power consumption have decreased, and because of data and
technological advances in machine learning algorithms. Artificial Intelligence (AI), and the
Internet of Things (IoT) can now be live-streamed [2,3]. The progress in HAR has facili-
tated practical applications in various real-world fields, including the healthcare industry,
the detection of crime and violence, sports science, and tactical military applications. It is
clear that the wide range of situations to which HAR is applicable provides proof that the
field has strong potential to improve our quality of life [4]. Mathematical models, based on
human activity data, allow the recognition of a variety of human activities, for example,
running, sitting, sleeping, standing, and walking. HAR systems can be classified into two
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major groups, namely video-based systems and sensor-based systems. In video-based
HAR systems, cameras are used for recording images or videos for the recognition of the
behaviors of people, whereas on-body and ambient sensors are utilized by the sensor-based
HAR systems for capturing the details of people’s motions and to record their activity
data. Due to the issue of privacy raised by the installation of cameras in participants’
personal spaces, the applications for the monitoring of daily activities are dominated by
the sensor-based systems. Moreover, another advantage of sensors is their pervasiveness.
As a result of the expansive presence of smart devices with various sensors, it is possible
to embed the sensors in portable devices, such as goggles, phones, and watches, as well
as non-portable objects, like, cars, furniture, and walls. These days, sensors are widely-
embedded in our environment, recording information about human motion, unnoticed and
without interruption.

Numerous challenges in HAR exist, for example, biometric user identification can
utilize HAR recognition methods for capturing the individual behavioral patterns of people,
such as motion capture signatures [5,6], as biometrics is a science in which the potential
for the identification of an individual, based on their personal characteristics for the
prevention of accessing a device without authorization, is studied [7]. Presently, the basis
of biometric identification primarily involves the physiological properties of a person.
However, strong concerns regarding privacy and HAR are posed by these physiological
characteristics, which could be viewed as a feasible alternative, functioning merely as a
mechanism for behavioral biometrics [8,9].

To address the issues mentioned above, there have been proposals for several machine-
learning techniques, with the principle one being learning to recognize an individual
through their behavioral patterns for various activities during interaction with wearable
devices. In this study, 12 Activities of Daily Living (ADL) were included. In general,
for capturing the data of users in real time while performing their various activities,
two types of wearable sensors (accelerometer and gyroscope) are employed. This study also
utilized two open datasets for HAR in which data are pre-processed and implemented by
two separate deep learning techniques, namely, Convolution Neural Network (CNN) and
Long Short-Term Memory (LSTM), in order to use activity patterns to identify various users.

This work’s main contribution is to propose a framework for a novel multi-class
wearable user identification system, based on HAR, utilizing an ensemble classifier for a
deep learning model. In contrast to previous studies, the research mainly aims at identifying
the activity and user identification with the hierarchical ensemble of classifiers to improve
comprehensive performance.

The structure of this paper is as follows: Section 2 presents a concise description
of related studies. Section 3 contributes the proposed detailed description of the multi-
class wearable user identification framework. Section 4 presents and discusses a detailed
investigation of the experimental results. Section 5 summarizes the research findings and
provides research suggestions for future studies.

2. Related Research

This study is primarily concerned with HAR and deep learning. Therefore, recent ad-
vances in these two areas are briefly reviewed first.

2.1. Human Activity Recognition via Machine Learning and Deep Learning

The time series classification tasks are the main challenges in using HAR, which is
when the person’s movements are predicted by the use of sensory data. This normally
involves accurately engineering features from the raw data by employing deep domain
expertise and signal processing methods with the aim of fitting one of the models of
machine learning. In recent studies, the capacity of deep learning models, including CNN
and LSTM neural networks, to automatically extract meaningful attributes from the given
raw sensor data and achieve the most advanced results, has been shown.
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Research to study activity in the field of HAR has been conducted since the 1990s [10,11].
The collection and detection of real-life activities, performed by a group or single person for
an understanding of the environmental context surrounding humans, is the focus of HAR.
Nowadays, due to its potential to assist with revolutionizing the ways that people can inter-
act with computers, HAR is regarded as a promising area in the field of human-computer
interaction [12,13].

There are five main tasks performed by HAR, as shown in Figure 1a, namely recog-
nition of basic activities [14], recognition of daily activities [15], recognition of unusual
events [16], identification of biometric subjects [17], and prediction of energy expendi-
tures [18]. As illustrated in Figure 1b, various sensors are employed for the performance
of these tasks, such as video cameras, circumstantial sensors that measure temperature,
relative humidity, light, pressure, and wearable sensors. In general, built-in smartphone
sensors, or sensors embedded in wearable devices, are the main types of wearable sensors.

(a) Tasks of HAR (b) Classification of HAR

Figure 1. Human Activity Recognition (HAR): (a) Tasks of HAR and (b) classification of HAR.

Rich and unique sets of information, unable to be obtained through the use of other
kinds of sensors, can be provided by cameras. However, continuous monitoring of a
subject’s activities is required by camera-based methods, which means that huge amounts
of computational resources and storage space are needed. Moreover, being continuously
observed by cameras may make some people feel uncomfortable [19]. One example
of this type of indoor camera-based system for monitoring human activity is described
in [20], which allows for continuous monitoring and intelligent processing of the video.
An additional function of utilizing camera sensors is to provide human activity recognition
systems with the “ground truth”, i.e. checking the results of machine learning for accuracy
against the real world.

It is possible to track and record the interaction of a user with the environment by
using environmental sensors. One example of this is in the experimental context of [21],
in which the objects employed in the test environment were fitted with wireless Bluetooth
acceleration and gyroscope sensors that record the use of these objects. In addition, arrays
of wired microphones were placed within the room for the recording of ambient sound.
Moreover, reed switches were installed on drawers, doors, and shelves to detect usage
and provide ground truth. In contrast, the disadvantage of circumstantial sensors is their
limited use for specific situations and building designs, which results in the HAR system
not being general. Thus, even a well-designed and built HAR system may not be easily
implemented in a different ambient environment. Finally, the cost of deploying these
sensors is relatively expensive.
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The sensors that can be worn on a user’s body can identify the physical states and
characteristics of that person’s activities and include Inertial Measurement Unit (IMU)
sensors (accelerometers and gyroscopes) and GPS, as well as magnetic field sensors, all of
which are commonly-employed in applications for activity recognition. In some previous
research, one or more accelerometers were attached to various positions of the subjects’
bodies for recognition of human activity. A wearable sensor network designed for detection
of human activity was presented by Dong and Biawas [22]. In a similar study, wearable tri-
axial accelerometers were used for activity detection by Curone et al. [23].

Since recent breakthroughs in deep learning have been achieved in numerous areas of
machine learning applications and due to the inherently multi-class nature of deep learning
models, the review of the literature began by briefly summarizing deep learning for human
activity recognition. In 2011, 56 papers using deep learning models were surveyed by
Wang et al. [24].

These papers included deep neural networks, convolutional and recurrent neural
networks, autoencoders, and restricted Boltzmann machines, and were used for conducting
sensor-based HAR. The results indicated that no single model was found that surpasses
all others in all situations, and the model selection based on the scheme of the application
was recommended. Four papers were identified [25–28] as being modern deep learning for
HAR, based on comparing the Opportunity [29], Skoda [30], and the UCI HAR, which are
the three HAR benchmark datasets (University of California, Irvine), in addition to smart-
phone datasets [31] which all comprise of data obtained from the participants wearing
several IMUs.

2.2. Biometric User Identification Using HAR

The possibility of using the sensors and accessories of smartphones to record a num-
ber of behavioral qualities, for example, gait recognition, touch dynamics, and keystroke
dynamics has been demonstrated by recent research. These qualities are referred to as
behavioral biometrics and can be utilized for the implicit and continuous verification
and identification of users through smartphones. These systems for identification, devel-
oped through the use of the behavioral biometric characteristics identified above, are cate-
gorized as continuous or active authentication systems.

There are two categories of biometric identification systems, as follows:

1. Those based on features that are static, including physical characteristics, such as the
face, fingerprints, iris of the eye, etc. This type of biological signal is usually collected
by researchers in a spatial frequency domain;

2. Those that include dynamic features, such as behavioral characteristics, including Elec-
trocardiographic (ECG) signals, keystrokes, voice, etc. This type of biological signal is
normally collected by researchers in a time-frequency domain [32].

In recent research, many studies have applied HAR as the solution to the challenges
encountered in biometric identification. The gait authentication, using a wearable ac-
celerometer, was proposed by Ailisto et al. [33], and individual steps were identified
by analysis of acceleration data which were normalized and aligned with the template.
Following this, the application of cross-correlation was conducted for the measurement
of similarity, which indicated a 6.4% EER (Energy Efficiency Ratio). J48 and neural net-
work classifiers were used for the classification of multiple sensor data gathered from
the act of going upstairs and downstairs, jogging, and walking of 36 participants in the
work of Kwapisz [34]. The generation of 43 attributes for each axis and attribute-type
included the average value of acceleration, absolute difference and resultant acceleration,
standard deviation, binned distribution, and time between peaks. Identification of the
person walking was achieved with an 82.1%–92.9% positive authentication rate. A time
frequency spectrogram model, called SVM, and a cyclo-stationary model were used by
Juefei-Xu et al. [35] for collecting data from 36 participants. The highest results indicated
verification rates of 99.4% and 96.8% for normal and fast-walking, respectively, based on the
data from both the accelerometer and the gyroscope. A Probability Distribution Function
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(PDF) of the derived attributes was proposed by Robertas et al. [17], and offline data from
the USC HAR dataset was used for testing. The result for the grand mean accuracy was
72.02% however, if only walking-related activities, such as forward, right, and left walking,
were considered, 94.44% was determined as the mean accuracy.

3. Proposed Methodology
3.1. Proposed Framework

The proposed framework for the biometric user identification with activity data,
extracted from wearable sensors, is discussed in this section. Figure 2 presents the over-
all identification process. The framework has four main stages, namely data collection,
data pre-processing, model training by deep learning, and user identification. These stages
require a classification system. The following are the details of each stage of the biometric
user identification process proposed in the present study.

Figure 2. The proposed framework of biometric user identification using activity data.

3.1.1. Datasets

The data collection utilized two opened human activity datasets commonly used in
human activity research fields, as follows:

• The UCI Human Activity Recognition Dataset (UCI HAR) [31] is the first dataset
recorded using embedded tri-axial sensors of accelerometer and gyroscope in a smart-
phone (Samsung Galaxy S II) on the waist of 30 subjects performing six daily activities;

• The USC Human Activity Dataset (USC HAD) [36] is the second dataset recorded
using MotionNode device-embedded tri-axial sensors of magnetometer, accelerometer,
and gyroscope. The research sampling rate was 100 Hz. The dataset comprises activity
data recorded with 14 subjects, including seven male and seven female subjects,
aged between 21–49, performing 12 activities.

In Figure 3, the activity data from UCI HAR and USC HAD dataset are sampled
and presented.
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(a) UCI HAR dataset.

(b) USC HAD (Human Activity Dataset) (1).

(c) USC HAD (2).

Figure 3. Samples of activity data from UCI HAR and USC HAD: (a) UCI HAR dataset, (b) USC
HAD (1), and (c) USC HAD (2).
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3.1.2. Data Pre-Processing

At the data pre-processing stage, the data recorded by the wearable sensors are cleaned
and normalized in order to obtain a dataset that is consistent and appropriate for training
an identification model. All of the incomplete and outlier data values are removed in this
process, as follows:

• Missing values of sensor data are fixed by the imputation technique with the linear
interpolation method;

• Noises are removed. The sensor data used in this work were pre-processed for noise
reduction with a median filter and a 3rd order low-pass Butterworth filter with a 20 Hz
cutoff frequency. This rate is sufficient for capturing human body motion since 99% of
its energy is contained below 15 Hz [31];

• Special characters are removed;
• A normalization process is used to transform each sensor data with mean and standard

derivation [37].

To perform a linear transformation of the raw sensory data, a Min-Max technique is
used in this study for the normalization process. Eventual input for the process of feature
extraction and model training is the dataset that is cleaned and normalized. According to
the process, the data is split in order to train the classifier. The second set is used as a test
set for evaluating the operation of the trained classifier.

3.1.3. Model Training by Deep Learning Technique

By directly using the accelerometer and gyroscope data, the classification step cannot
be completed. Firstly, it is needed to conduct feature extraction for pre-processing the
data. As a result, the various feature types are extracted from the raw data provided
by the sensors. Appropriate feature groups are built in order to improve the efficiency
of the machine learning model. Four deep learning models (CNN, LSTM, CNN-LSTM,
and ConvLSTM) were selected for the user classification in this study, that includes the
feature extraction process.

(1) CNN Model

CNN (Convolution Neural Network) is a network with a structure comprising several
layers. Its architecture has two principal components, the first of which is a fully-connected
network, while the other consists of numerous convolution and sampling layers. These lay-
ers play the role of feature extraction, while the fully-connected network is necessary in
order to learn the classification weights. The typical CNN comprises the following three
layers, and their respective explanations:

• Convolutional layer,
• Pooling layer, and
• Fully-connected layer.

In the convolutional layer, there are filters which aim to carry out the extraction of
local features, known as the feature map, by using the input data, otherwise known as the
sensory data. One filter is needed to calculate each single feature map. In order to create a
feature map, it is necessary to slide the filter over the input data to calculate the dot product.
The process is known as the convolution operation. In the feature map, each neuron
is linked directly to a small proportion of the input data, known as the receptive field,
which has a size equal to that of the filter. The weightings for each of the neurons in one
feature map are shared, since this reduces the number of parameters and allows for more
efficient calculation. This also makes it possible to detect and identify specific patterns,
no matter where they are located in the input. The feature map generated will be of a size
which is determined by the filter size and stride number.

The CNN architecture in this case makes use of a pair of consecutive blocks, each of
which comprises a convolutional layer with ReLU activation and a max-pooling layer.
Each of the convolutional kernels independently carries out a 1D convolution during the
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course of the time dimension for each sensor channel. This process can be observed in
Figure 4, and the summary of hyperparameters for CNN networks is shown in Table 1.

Figure 4. The architecture of CNN (Convolution Neural Network).

Table 1. The summary of hyperparameters for CNN networks proposed in this work.

Stage Hyperparameters Values

Architecture

Convolution-1
Kernel Size 3

Stride 1
Filters 64

Convolution-2
Kernel Size 3

Stride 1
Filters 64

Dropout-1 0.5
Maxpooling 2

Dense 100

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64

Number of Epoches 50

(2) LSTM Model

At present, one deep learning type which has attracted much interest is Long Short-
Term Memory (LSTM). This approach has shown excellent results when applied to com-
plex problems, including the translation of languages, text generation, and the automatic
captioning of images. LSTM networks are a kind of RNN (Recurrent Neural Network),
designed to be applied to address sequence problems. In the context of a standard feed-
forward MLP network, the introduction of an RNN can be considered similar to adding
further loops to the architecture. The LSTM computational units are the memory cells,
or memory blocks, which are often simply referred to as cells. Neuron is the well-known
term used for computational units and is so commonly-used in the context of MLPs that it
has now come to be used frequently to describe LSTM memory cells. These cells contain
both weights and gates, with the gates playing the key role in the work of the memory cell.
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The gates are weighted functions which control the flow of information inside the cells.
Three types of gates exist, as follows:

ft = σ(U f xt + W f ht−1 + b f ) (1)

it = σ(U f xt + W f ht−1 + b f ) (2)

gt = tanh(Ugxt + Wght−1 + bc) (3)

ot = σ(Uoxt + Woht−1 + bo) (4)

ct = ft
⊗

ct−1
⊕

it
⊗

gt (5)

ht = ot
⊗

tanh(ct) (6)

where:

• Forget gate ( ft): Selects the information which is to be eliminated from the cell;
• Input gate (it): Selects the input values which are to be used in updating the mem-

ory state;
• Input modulation gate (gt): Manipulates the preeminent input to the memory cell;
• Output gate (ot): Selects the output on the basis of the input and the cell memory;
• Internal state (ct): Manipulates the constitutional recurrence of cell;
• Hidden state (ht): Manipulates the data from the preceding data case inward the

context window.

LSTM cells are similar to neurons in that they are arranged in layers, as can be observed
in Figure 5, whereby the output from each of the cells is then passed onto the next cell
within the layer, and then onwards to the next network layer. When the final layer is
reached, the output is passed further to the dense and softmax layers in order to address
the problem of classification. Hyperparameters for LSTM networks are detailed in Table 2.

(a) The overall architecture of Long Short-Term Memory (LSTM).

(b) LSTM unit.

Figure 5. The LSTM architecture: (a) The overall architecture of LSTM and (b) LSTM Unit.



Electronics 2021, 10, 308 10 of 21

Table 2. The summary of hyperparameters for LSTM networks proposed in this work.

Stage Hyperparameters Values

Architecture
LSTM neuron 100

Dropout-1 0.5
Dense 100

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64

Number of Epoches 50

(3) CNN-LSTM Model

When faced with one-dimensional sequence data, for instance univariate time series
data, CNN is highly effective when required to extract and earn the features of those data.
Furthermore, it is possible to employ the CNN model in hybrid form, combined with a
backend of LSTM, in which CNN has the role of interpreting the input sub-sequences which
can then be passed in sequence to the LSTM model for further interpretation. The hybrid is
known as the CNN-LSTM model and its architecture makes use of CNN layers to extract
the features from the input data, whereupon the LSTM component provides the sequence
prediction aspect. The CNN-LSTM model is able to read the sub-sequences derived from
the main sequence in the form of blocks by, initially, extracting the principal features from
each of the blocks before LSTM interprets those features. Figure 6 and Table 3 present the
CNN-LSTM architecture and their hyperparameters, respectively.

Figure 6. The architecture of CNN-LSTM.

(4) ConvLSTM Model

One particular kind of LSTM model is ConvLSTM, in which each of the LSTM units
contains the convolutional input-reading component as shown in Figure 7. This ConvLSTM
model was created to read spatial-temporal data in two dimensions, but with adjustments,
it can also be employed in the context of forecasting for univariate time series. One addi-
tional function of this CNN-LSTM concept is that the CNN convolutions can be carried out
as a component of the LSTM. ConvLSTM replaces matrix multiplication with convolution
operation at each gate in the LSTM unit. By doing so, it captures underlying spatial features
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by convolution operations in multiple-dimensional data. The ConvLSTM differs from the
CNN-LSTM in the following ways:

• For CNN-LSTM, the convolution structure is applied as the first layer, and sequentially,
an LSTM layer is applied as the second layer;

• For the number of input dimensions, as LSTM input data is one-dimensional, it is not
suitable for spatial sequential data. ConvLSTM is designed for 3D data as its input.

The summary of hyperparameters for ConvLSTM networks in this work is presented
in Table 4.

Table 3. The summary of hyperparameters for CNN-LSTM networks proposed in this work.

Stage Hyperparameters Values

Architecture

Convolution-1
Kernel Size 3

Stride 1
Filters 64

Convolution-2
Kernel Size 3

Stride 1
Filters 64

Dropout-1 0.5
Maxpooling 2

LSTM neuron 100
Dropout-2 0.5

Dense 100

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64

Number of Epoches 50

Figure 7. The architecture of ConvLSTM.

Table 4. The summary of hyperparameters for ConvLSTM networks proposed in this work.

Stage Hyperparameters Values

Architecture
ConvLSTM

Kernel Size (1, 3)
Stride (1, 1)
Filters 64

Dropout-1 0.5
Dense 100

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64

Number of Epoches 50
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3.1.4. User Identification

In this study, in the stage of user identification, different deep learning classifiers are
implemented. An Activity Classifier (AC) is able to characterize the identity of the activities
from the given sensory data, as follows:

• A User Classifier (UC) is able to characterize the user from the human activities data;
• An Ensemble Classifier (EC) obtained as the combination of the one AC to detect the

activity and UC classifiers to identify the user from sensory data.

The vital architecture of the ensemble classifier is depicted in Figure 8. The ensemble
classifier EC consists of two layers, as follows:

• First layer: The activity classification is operated through the AC;
• Second layer: The UC is used to perform the user identification.

Figure 8. The architecture of the ensemble classifier Ensemble Classifier (EC).

4. Experiments and Results

To evaluate the achievement of the proposed approach for the biometric user identifi-
cation based on HAR, a set of performed experiments is described in this section.

4.1. Data Analysis

Two datasets that are commonly-used in HAR are utilized to assess the performance
of the proposed method, as follows:

1. First Dataset—The UCI Human Activity Recognition Dataset (UCI HAR), recorded
with an embedded accelerometer and gyroscope in a smartphone (Samsung Galaxy
S II) on the waists of 30 subjects. The recorded data are tri-axial linear accelera-
tion and tri-axial angular velocity at a constant rate, with a sampling rate of 50 Hz.
The subjects were instructed according to the protocol of six selected activities, namely,
Standing (St), Sitting (Si), Lying (Sl), Walking Forward (WF), Walking Upstairs (WU),
and Walking Downstairs (WD);

2. Second Dataset—The USC Human Activity Dataset (USC HAD), recorded with a
MotionNode device-embedded tri-axial accelerometer and gyroscope sensors at a
sampling rate of 100 Hz. The dataset has activity data recorded with 14 subjects
performing 12 activities and five trials each. The activities are ones with the most ele-
mental movements, as follows: Walking Forward (WF), Walking Left (WL), Walking
Right (WF), Walking Upstairs (WU), Walking Downstairs (WD), Running Forward
(WF), Jumping Up (JU), Sitting (Si), Standing (St), Sleeping (Sl), Elevating Up (EU),
and Elevating Down (ED).
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Table 5 shows a summary of these two datasets. Activities and their descriptions of
both datasets are shown in Table 6. An abbreviation of each activity is defined, as shown in
Table 7. The table also presents the proportion of activity samples in each dataset.

Table 5. Activities and their summary.

Data No. of Sensor Type No. of Sampling Training
Source Activities Subjects Rate Window Length

UCI HAR 6 3D-Acc, 3D-Gyro 30 50 Hz 128
USC HAD 12 3D-Acc, 3D-Gyro 14 100 Hz 128

Table 6. Activities and their descriptions.

Dataset Activity Abbreviation Description

UCI HAR [31]

Walking Forward WF Subject walks forward in a straight line
Walking Upstairs WU Subject goes up multiple flights
Walking
Downstairs WD Subject goes down multiple flights

Sitting Si Subject sits on a chair either working or resting.
Standing St Subject stands and talks to someone
Laying Sl Subject sleeps or lies down on a bed

USC HAD [36]

Walking Forward WF Subject walks forward in a straight line
Walking Left WL Subject walks counter-clockwise in a full circle
Walking Right WR Subject walks clockwise in a full circle
Walking Upstairs WU Subject goes up multiple flights
Walking
Downstairs WD Subject goes down multiple flights

Running Forward RF Subject runs forward in a straight line

Jumping Up JU Subject stays at the same position and continuously
jumps up and down

Sitting Si Subject sits on a chair either working or resting.
Standing St Subject stands and talks to someone
Sleeping Sl Subject sleeps or lies down on a bed
Elevator Up EU Subject rides in an ascending elevator
Elevator Down ED Subject rides in a descending elevator

Table 7. The sample number of each activity on each dataset.

Dataset Activity Abbreviation No. of Sample Percent of
Samples Each Human Activity

UCI HAR [31]

Walking WF 1722 16.72%
Walking Upstairs WU 1544 14.99%

Walking Downstairs WD 1406 13.65%
Sitting Si 1777 17.25%

Standing St 1906 18.51%
Laying Sl 1944 18.88%

USC HAD [36]

Walking Forward WF 8476 13.57%
Walking Left WL 5872 9.39%

Walking Right WR 5991 9.59%
Walking Upstairs WU 4709 7.54%

Walking Downstairs WD 4382 7.01%
Running Forward RF 3921 6.28%

Jumping Up JU 2383 3.81%
Sitting Si 5810 9.29%

Standing St 5240 8.39%
Sleeping Sl 8331 13.33%

Elevator Up EU 3687 5.90%
Elevator Down ED 3674 5.88%
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4.2. Hardware and Software Setup

In this study, research experiments were conducted on a machine using an Intel i5-
8400 CPU, 16 GB of RAM, and Nvidia RTX2070 GPU. The experiments work in a Python
programming language environment and Keras API, as detailed below:

• TensorFlow (version 2.2.0);
• Python (version 3.6.8);
• Keras (version 2.3.1).

4.3. Experimental Setup

The objective topic of the evaluation is to assess the effectiveness of the proposed clas-
sifiers (AC, UC, and EC) by observing the identity of a wearable user carrying a wearable
device, while performing activities. According to the described objectives, the following
experiments are conducted:

• Activity classifier (AC), with both UCI HAR and USC HAD datasets, is used to
perform activity identification in each dataset;

• The UC is used to perform user identification of each activity;
• The EC is used to present user identification, regardless of activity.

All experiments are used to evaluate four deep learning techniques, as described in
Section 3, namely, CNN, LSTM, CNN-LSTM, and ConvLSTM deep learning model.

4.4. Evaluation Metrics

To determine the performance of the proposed approach, four evaluation metrics are
calculated for the classification results, as follows:

• Accuracy (A) is a description of systematic errors. This metric is the ratio of the sum
of true positives (TP) and true negatives (TN) to the total number of records;

• Precision (P) is the proportion of the example belonging to the class of a specific
category. It is the ratio of the number of relevant retrieved records (TP) to the total
number of irrelevant retrieved records;

• Recall (R) is the proportion of examples allowed to the class of a specific category. It is
calculated as the ratio of the number of retrieved relevant records (TP) to the total
number of relevant records;

• F1-score (F1) is an evaluation of the test’s accuracy calculated as a weighted average
of the precision and recall.

For this multi-classification complication, the calculation steps of the evaluation
metrics are shown in the Evaluation Measurement Algorithm 1 below.

4.5. Results and Discussion

The major metrics (i.e., the accuracy, precision, recall, and F1-score) are utilized in
order to assess the achievement of the classifiers. The classifier AC objective distinguishes
the activity among six possible activities (WF, WU, WD, Si, St, and Sl) from the UCI HAR
dataset, and 12 activities (WF, WL, WR, WU, WD, RF, JU, Si, St, Sl, EU, and ED) from the
USC HAD dataset. The activities are categorized into two types, as follows:

1. Static Activities: In this environment; sitting, standing, and sleeping activities are
considered, where people are stable with respect to the sensor setup in the situation;

2. Dynamic Activities: In this environment, walking, jumping up, and running forward
are considered, where people are moving continually with respect to the sensor.
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Algorithm 1: Evaluation Measurement
Step 1: For each class, calculate the No. of samples of forecasting this class as this class (TP), forecasting other

classes as this class (FP), forecasting this class as other classes (TN), and forecasting other classed as other

class (FN)

Step 2: Calculate Pk , Rk , F1k under each class by the statistic techniques of the first step. The computation

formula is as follows:

Ak =
TP+TN

TP+TN+FP+FN

Pk =
TP

TP+FP

Rk =
TP

TP+FN

F1k =
2×Pk×Rk

Pk+Rk

Step 3: Average the results under all the classes obtained in the second step as follows:

A = 1
N ∑N

k=1 Ak

P = 1
N ∑N

k=1 Pk

R = 1
N ∑N

k=1 Rk

F1 = 1
N ∑N

k=1 F1k

where N is the number of category.

In Table 8, these activities are divided into dynamic and static activities.

Table 8. Two categories of activities from the UCI HAR and USC HAD dataset.

Activity UCI HAR USC HAD

Dynamic Activiy WF, WU, WD WF, WL, WR, WU, WD, RF, JU
Static Activity Si, St, Sl Si, St, Sl, EU, ED

To achieve our research goal, two different classifiers (AC and UC) are implemented
as a pre-processing step of the hierarchical ensemble classifier proposed as the main
architecture and illustrated in Figure 8. The ensemble classifier EC consists of two layers.
In the first layer, the activity identification is performed by the AC classifier. Then the UC
classifier is used to perform biometric user identification.

In the pre-processing step of finding the AC classifier, the percentage of accuracy is
about 91.235% by ConvLSTM using the UCI HAR dataset. For the USC HAD dataset,
the percentage of accuracy is about 87.773% by CNN-LSTM. The related metrics are
presented in Table 9.

Table 9. An experimental result of activity identification of the user classifier Activity Classifier (AC).

Model
%Accuracy (±Std) of Activity Data

UCI HAR USC HAD

CNN 90.322 (1.133) 85.656 (0.596)
LSTM 90.278 (1.072) 83.112 (0.932)
CNN-LSTM 90.356 (8.841) 87.773 (0.307)
ConvLSTM 91.235 (0.906) 85.571 (0.813)

From Table 9, the results of activity identification report good classification results
with a high average accuracy. In particular, it is interesting to observe that both activity
dataset (UCI HAR and USC HAD) are well classified by the CNN-LSTM deep learning
model. However, these experimental results are not state-of-the-art results [38,39].

If an activity of a user has been settled, user classifier separation for each activity can
be applied for user identification with both datasets. After that, the data from one reaction
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are applied for training and testing only. In this case, the data are split into 70% and 30%
for training and testing purposes, respectively.

The mean percentage of accuracy is 92.444% for dynamic activities by the CNN-LSTM
deep learning model, using the UCI HAR dataset. The worst result provided by all static
activities (sitting, standing, and sleeping) has the highest mean percentage of accuracy,
62.785%, by the LSTM model. Nonetheless, the highest mean accuracy of 92.444% is
acceptable, if only the top three walking-related activities (walking forward, walking
upstairs, and walking downstairs) are considered. The related results are shown in Table 10
and Figure 9.

Figure 9. Percentages of testing accuracy values of UCI HAR dataset by each deep learning model
(a) CNN, (b) LSTM, (c) CNN-LSTM, and (d) ConvLSTM.

Table 10. An experimental result of user identification of the User Classifier (UC) using the UCI
HAR dataset.

Activity Model
%Accuracy (±Std) of the User Classifier UC

Average
WF WU WD

Dynamic Activity

CNN 79.139 (2.142) 70.471 (1.259) 50.065 (2.349) 66.558
LSTM 17.364 (3.599) 26.961 (3.688) 12.284 (3.772) 18.870

CNN-LSTM 94.569 (3.256) 92.980 (0.889) 89.784 (1.673) 92.444
ConvLSTM 93.357 (0.684) 88.706 (1.478) 74.310 (2.357) 85.458

Si St Sl

Static Activity

CNN 42.283 (2.867) 50.843 (2.411) 63.660 (2.138) 52.262
LSTM 15.451 (3.218) 18.553 (6.853) 36.791 (6.041) 23.618

CNN-LSTM 55.741 (2.283) 62.178 (2.015) 70.436 (2.011) 62.785
ConvLSTM 51.635 (2.131) 57.631 (2.078) 68.551 (2.722) 59.272

For the USC HAD dataset, the ConvLSTM model provides the highest average accu-
racy, 87.178%, for the dynamic activity and the CNN-LSTM model provides the highest
average accuracy, 78.698%, for static activity. However, if one considers only the top
three activities of walking (walking forward, walking left, and walking right), the highest
mean accuracy is 95.858% by CNN-LSTM. Other evaluated metrics of the UC is present in
Table 11 and Figure 10.
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Figure 10. Percentages of testing accuracy values of USC HAD dataset by each deep learning model
(a) CNN, (b) LSTM, (c) CNN-LSTM, and (d) ConvLSTM.

Table 11. An experimental result of user identification of the UC using the USC HAD dataset.

Activity Model
% Accuracy (±Std) of the Ensemble Classifier UC

Average
WF WL WR WU WD RF JU

Dynamic Activity

CNN 93.349 93.380 94.479 80.116 74.934 82.187 57.192 82.234(0.716) (0.652) (0.575) (1.527) (1.256) (3.781) (3.892)

LSTM 95.232 94.530 95.313 82.754 75.840 69.521 46.823 80.002(0.631) (0.470) (0.546) (1.265) (2.478) (1.756) (2.459)

CNN-LSTM 95.168 95.929 96.476 89.292 85.294 68.014 62.541 84.568(0.591) (1.394) (0.504) (0.910) (2.676) (2.673) (2.798)

ConvLSTM 95.289 95.196 96.269 89.685 86.925 85.410 60.737 87.178(0.480) (0.402) (0.546) (1.266) (1.548) (1.285) (3.409)

Si St Sl EU ED

Static Activity

CNN 87.914 75.827 70.127 70.394 66.480 74.148(1.113) (1.607) (2.916) (2.196) (1.712)

LSTM 73.410 64.988 49.589 53.270 55.507 45.353(3.998) (3.669) (4.389) (6.888) (4.501)

CNN-LSTM 90.537 84.341 72.978 74.511 71.121 78.698(2.900) (1.427) (2.101) (1.922) (2.254)

ConvLSTM 89.687 81.717 74.545 75.489 71.805 78.648(1.077) (1.186) (1.505) (1.285) (1.735)

4.6. Additional Experiment

To solve the problem of user identification, we set up an additional experiment to
evaluate the performance of ensemble classifiers for UCI HAR and USC HAD datasets,
selected only with walking-related activity data. Based on the previous experiment’s
results, we selected the CNN-LSTM deep learning model for the AC and UC as illustrated
in Figure 11.
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(a) The ensemble classifier EC for UCI HAR.

(b) The ensemble classifier EC for USC HAD.

Figure 11. The architecture of the ensemble classifier EC for (a) UCI HAR and (b) USC HAD.

The results show that the proposed ensemble method provides a high percentage of
accuracy values, as shown in Table 12. By using walking-related activity data (walking for-
ward, walking upstairs, and walking downstairs) from the UCI HAR dataset, the proposed
ensemble method gives an accuracy of 91.776%. With a similar result, the proposed ensem-
ble method gives an accuracy of 92.432% by using the USC HAD dataset, selecting only
walking-related activity data (walking forward, walking left, walking right, walking up-
stairs, and walking downstairs).

Table 12. An experimental result of user identification using walking-related activity data.

Accuracy Precision Recall F1-Score

UCI HAR 91.776 91.10 89.20 90.10
USC HAD 92.432 92.50 90.10 91.30
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4.7. Comparison with Previous Works

The proposed ensemble classifier, based on the deep learning model is compared
with existing models trained by the same dataset (USC HAD). Previous studies [17] use
statistical and heuristic gait attributes on the application, called the random projection
method. The proposed method of previous work was tested with three walking-related
activities (walking forward, walking left, and walking right) from the USC HAD dataset.
The comparative results are summarized in Table 13. The proposed ensemble classifier
outperforms the random projection method.

Table 13. Performance of comparison results.

Method Walking-Related Activities %Accuracy

Random projection method [17] WF, WL, WR 94.443
Our proposed ensemble classifier WF, WL, WR 95.858

5. Conclusions

Biometric technology provides advanced and highly difficult to duplicate security
techniques by which a person’s individual identity can be confirmed. In this article,
an ensemble method for biometric user identification, with a basis on the recognition
of human activity by employing wearable sensors, was presented. As a result of the
continuous utilization of accelerometers and gyroscopes by users of wearable devices,
there is a remarkable potential for the improvement of identification of users in the analysis
of human activity.

The ensemble method that is proposed was developed using experiments involv-
ing four specific deep learning models, selected to enhance user identification efficiency.
Two basic models, namely, the Convolutional Neural Network (CNN) and the Long-Short
Term Memory (LSTM) neural network, from the four models of deep learning (CNN, LSTM,
CNN-LSTM, and ConvLSTM) were adopted. Offline data from the UCI HAR and USC
HAD datasets were used in the testing of the proposed method. With regard to the results
concerned with user identification, the findings for the two models indicated high accuracy
levels for all users, at 91.78% and 92.43%, respectively. Moreover, the finding model for
USC HAD demonstrated acceptable levels with the highest accuracy of walking-related
activities for all users at 95.86%, when compared with the previous research work.

The implementing of biometric user identification based on mobile platforms and the
conducting of real-time experiments with subjects, will be included in future research work.
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