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Abstract: There is a growing interest in safety warning of underground mining due to the huge threat
being faced by those working in underground mining. Data acquisition of sensors based on Internet
of Things (IoT) is currently the main method, but the data anomaly detection and analysis of multi-
sensors is a challenging task: firstly, the data that are collected by different sensors of underground
mining are heterogeneous; secondly, real-time is required for the data anomaly detection of safety
warning. Currently, there are many anomaly detection methods, such as traditional clustering
methods K-means and C-means. Meanwhile, Artificial Intelligence (AI) is widely used in data
analysis and prediction. However, K-means and C-means cannot directly process heterogeneous
data, and AI algorithms require equipment with high computing and storage capabilities. IoT
equipment of underground mining cannot perform complex calculation due to the limitation of
energy consumption. Therefore, many existing methods cannot be directly used for IoT applications
in underground mining. In this paper, a multi-sensors data anomaly detection method based on
edge computing is proposed. Firstly, an edge computing model is designed, and according to
the computing capabilities of different types of devices, anomaly detection tasks are migrated to
different edge devices, which solve the problem of insufficient computing capabilities of the devices.
Secondly, according to the requirements of different anomaly detection tasks, edge anomaly detection
algorithms for sensor nodes and sink nodes are designed respectively. Lastly, an experimental
platform is built for performance comparison analysis, and the experimental results show that
the proposed algorithm has better performance in anomaly detection accuracy, delay, and energy
consumption.

Keywords: data anomaly detection; IoT; underground mining; sensors

1. Introduction

At present, the underground mining method has been adopted in many mines, espe-
cially metal mines. However, during the underground construction process, toxic gases,
water gushing-out, and mine collapse pose huge threats to the safety of construction work-
ers [1,2]. Therefore, risk monitoring and the early warning of underground construction
process is of great significance. Internet of Things (IoT) technology can use sensors to
collect data, transmitting data through Wireless Sensor Networks (WSNs), and process
the data at the terminal. Therefore, IoT technology is widely used in underground mining
construction safety monitoring and early warning [3].

The purpose of the underground mining construction safety monitoring that is based
on IoT is to detect anomalies in the data that are collected by the sensors, through which
safety assessment can be carried out. For an abnormal data, through algorithmic analysis,
the type and source of the abnormality can be determined. In underground mining, many
reasons, such as sensor failures, environmental changes, and wireless data interference,
can cause data abnormalities. Therefore, comprehensive analysis is required. There are
different types of sensors, such as CO2, gas, and so on, by which the data are generated
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and transmitted to the cloud server through the sink nodes and the forwarding device.
In the cloud, after data analysis, the construction environment can be grasped in a timely,
effective, and comprehensive manner, thereby effectively preventing the occurrence of
mine accidents.

There are many research results for the abnormal detection of sensor data. In under-
ground mines, the main research work is to detect data anomalies based on the characteris-
tics of the complex environment underground, and periodic alarms can be used instead
of static alarm threshold settings. In addition, the lack of a large amount of empirical
data is the relevant research difficulty of underground data anomaly detection, which
makes the effective application of artificial intelligence and other methods impossible.
Muduli et al. [4] proposed an optimized fuzzy logic-based fire monitoring system for a
wireless underground sensor network, which strengthens the reliability of making decision
in preventing mine fire. The binary particle swarm optimization (BPSO) algorithm was
used to optimize the proposed fuzzy system that eliminates redundant rules, but preserves
event detection accuracy of the monitoring system. The simulation results demonstrate
that the proposed system outperforms the existing monitoring systems for underground
coal mines. Mishra et al. [5] fully analyzed the importance of methane monitoring for
coal mine safety, and maked an attempt to develop a model for predicting methane con-
centration in underground coal mines based on seven different geo-mining factors while
using multi-layered artificial neural networks. This study‘s objective was to quantify the
relative influences of these factors on methane dispersion in underground coal mines and
identify the significant factors through sensitivity analysis. The outcome of this study was
useful in designing a mine ventilation system for effective coal mine methane management
and enhancing mines safety. Zhang et al. [6] obtained 28 representative risk factors and
16 coupled types of risk factors through the analysis of 332 gas explosion accidents in
coal mines in China. An eight-level hierarchical model of risk coupling of a gas explosion
accident was established through the application of the combined ISM-NK model, and the
coupled degrees of different types of risk coupling were assessed. A quantitative analysis
of the NK model shows that the probability of gas explosion increases with the increasing
number of risk factors. When compared with subjective risk factors, objective risk factors
have a higher probability of causing gas explosion due to risk coupling. Vaziri et al. [7]
proposed a geological–geotechnical risk assessment model for the identification of high
risk-prone areas in underground coal mines while using an integrated GIS-geostatistics
system. This study chose Tabas, which was the first mechanized and largest underground
coal mine in Iran as a case study. The geostatistics module in ArcGIS was used for estimat-
ing the amount of coal seam gas content, CMRR, and initial in situ stress in unstamped
areas, as well as providing the prediction maps. Additionally, a rock engineering system-
–interaction matrix method was used for attribute weight assignment. The analysis results
of final risk map indicated that approximately 45 of under study area is prone to high to
very high geohazards risk.

However, many existing research results cannot be directly applied to underground
data anomaly detection. The main reasons are:

• The sensor data in underground mining have very obvious time series characteristics,
and the data collected by the sensor vary with time, depending on the construction
environment in underground mining.

• Most of the underground construction operation environment is in the tunnel, of which
the space is small, but the operation distance is long. Therefore, a large number of
sensors need to be deployed in different areas, and there is a correlation between the
sensor data at different locations.

Therefore, in underground mining, anomaly detection is required for multi-sensor
data. In addition, for any type of sensor data, most of the existing methods are to process
it on a cloud server, which brings some problems: firstly, a lot of invalid and redundant
data transmission will waste a limited network resources; secondly, some sensor data have
real-time requirements for anomaly detection, such as toxic gas sensor data. When the data
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are abnormal, it is necessary to detect the anomaly type as soon as possible and then make
an early warning in time. Therefore, the transmission of data to the cloud for processing
will cause delay, which reduces the real-time performance of data anomaly detection.

In order to solve the existing problems, increasing studies have begun to consider
migrating data processing tasks in the cloud to different terminal devices for processing.
This edge computing idea is very consistent with the needs of data anomaly detection in
underground mining. An edge computing-based multi-sensor data anomaly detection
scheme in underground mining is proposed, which transfers part of the task of data
anomaly detection to sink nodes and sensor nodes for execution. The main contributions
are as follows:

1. An anomaly detection task migration model is proposed to migrate data anomaly
detection tasks to different types of equipment for execution.

2. An anomaly detection method for sensor nodes is designed that is based on K-means
and C-means algorithms. An anomaly detection algorithm based on ambiguity is
proposed in order to perform anomaly detection and data clustering analysis on the
redundant data collected by the sensor.

3. An anomaly detection method of the sink node is designed for preprocessing the
multi-sensors’ data, and then use the sliding window to analyze the time series of the
multi-sensors’ data in order to obtain the anomaly detection results.

The rest of the work is organized, as follows: Section 2 discusses the related work of
this paper. Section 3 introduces the anomaly detection model of wireless sensor data in
underground mining, and it proposes an anomaly detection task migration model that
is based on edge computing. Section 4 proposes data anomaly detection schemes for the
sensor node and the sink node, respectively. Section 5 presents an experimental analysis.
Section 6 concludes the work of this paper.

2. Related Work

At present, the methods of anomaly detection are mainly divided into clustering
methods, statistical methods, AI methods, and so on [8–12]. The goal of most studies is to
improve accuracy, and less consideration is given to indicators, such as energy consumption
and delay.

2.1. Clustering-Based Methods

Clustering is an effective anomaly detection method, which includes many traditional
algorithms, such as K-means [13] and C-means [14]. There are a lot of algorithms improved
based on these classic algorithms. At present, cluster-based anomaly detection methods are
still one of the main research directions [15], especially when AI technology is increasingly
widely used; many clustering algorithms have begun to be applied in this field.

Habeeb et al. [16] proposed a real-time anomaly detection framework that is based
on big data technology. In addition, a streaming sliding window local outlier factor core-
set clustering algorithms (SSWLOFCC) was developed, and then implemented into the
framework. The experimental results verify its performance in terms of accuracy, memory
consumption, and execution time. Ilia Nouretdinov et al. [17] presented a clustering tech-
nique, called multi-level conformal clustering (MLCC), which was hierarchical in nature,
because it can be performed at multiple significance levels, which yields greater insight
into the data than performing it at just one level. There were several advantages of using
MLCC over more classical clustering techniques: once a significance level has been set,
MLCC was able to automatically select the number of clusters. Furthermore, thanks to the
conformal prediction framework, the resulting clustering model has a clear statistical mean-
ing without any assumptions regarding the distribution of the data. Ghezelbash et al. [18]
believed that, due to the complicated characteristics of regional geochemical data from
stream sediments as a result of the complexity of geological features, the detection of
multi-elemental geochemical footprints of mineral deposits of interest was a challenging
task. To address this, a hybrid genetic algorithm-based technique, namely the genetic
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K-means clustering (GKMC) algorithm, was proposed for the optimum delineation of
multi-elemental patterns (both anomaly and background) in stream sediment geochemical
data. Huang et al. [19] proposed a density peak (DP)-weighted fuzzy C-means (WFCM)
based clustering method, which was used to detect abnormal situations in the production
process. A real case from an IoT enabled machining workshop was carried out in order to
verify the accuracy and effectiveness of the proposed method in the anomaly detection of
manufacturing process. Bilal et al. [20] proposed a hybrid anomaly detection method for
misdirection and black hole attacks by employing customized clustering technique. Experi-
mental work was performed on network simulator (NS-2) and R studio, which showed it to
be suitable for hybrid anomaly detection, including misdirection and black hole attacks in
wireless environment. Nguyen et al. [21] proposed a road anomaly detection method while
using the Grubbs test on a sliding window to make it adaptive to the local characteristics of
the road. This method included a clustering algorithm and a mean shift-based algorithm
to aggregate reported anomalies on data to the server. Aggarwal et al. [22] proposed a
hybrid of proximity-based and clustering-based anomaly detection approaches to identify
anomalies in the air quality data. The Gaussian distribution property of the real-world data
set was further utilized to segregate out anomalies. The results showed that the proposed
method can be efficient in the extraction of anomalies and can increase the accuracy by
reducing the number of false alarms.

2.2. AI-Based Methods

Anomaly detection methods can be categorized into distance-based, cluster-based,
classification-based, and statistical anomaly detection methods. Additionally, AI is now
increasingly applied to anomaly detection. Machine learning is an important method,
in which deep learning and neural networks are widely used in various application scenar-
ios that require empirical analysis [23].

Quatrini et al. [24] proposed a two-step methodology for anomaly detection in in-
dustrial processes based on machine learning classification algorithms. Starting from the
real-time collection of process data, the first step identifies the ongoing process phase,
the second step classifies the input data as “Expected”, “Warning”, or “Critical”. This
methodology applies the decision forests algorithm, as a well-known anomaly detector
from industrial data, and decision jungle algorithm, which has never been tested before in
industrial applications. Park et al. [25] proposed a multi-labeled hierarchical classification
(MLHC) intrusion detection model that analyzes and detects external attacks that are
caused by message injection. This model quickly determines the occurrence of attacks
and classifies the attack using only existing classified attack data, which can classify both
the type and existence or absence of attacks with high accuracy and it can be used in
interior communication environments of high-speed vehicles with a high throughput.
Tsukada et al. [26] proposed ONLAD and its IP core, named ONLAD Core, which is highly
optimized in order to perform fast sequential learning to follow concept drift in less than
one millisecond. ONLAD Core realizes on-device learning for edge devices at low power
consumption, which realizes standalone execution where data transfers between edge and
server are not required. Tang et al. [27] proposed an anomaly detection neural network,
dual auto-encoder generative adversarial network (DAGAN), which was developed to
solve the problem of sample imbalance. With skip-connection and dual auto-encoder
architecture, the proposed method exhibited excellent image reconstruction ability and
training stability.

3. System Model
3.1. Application Model of IoT in Underground Mining

IoT has been increasingly used to monitor the safety of the construction environ-
ment in underground mining. The sensors are used to collect, aggregate, and transmit
data, and then perform data anomaly detection. At present, the data transmission in
underground mining is realized through WSNs. Sensors make the environmental data
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acquisition, and it is send to the sink device and then forwarded to the monitoring center
in the cloud.

Figure 1 shows a typical data transmission model of IoT in underground mining.
There are three types of equipment for the IoT in underground mining: cloud server, sink
node, and sensor node. A sensor node collects all kinds of environmental data according
to requirements. There are many different types of sensors, and the data of these sensors
are heterogeneous. The data that are collected by the sensors will be sent to the sink node
through the wireless link. A sink node can usually receive the data sent by multiple sensors,
and then forward these data to the cloud server through a wired link (because the sink
node in underground mining is deployed according to the tunnel structure. Therefore,
chained topology is a common structure [28]). The cloud server stores the received data,
and then analyzes and processes it as needed.

Legend

1 2 …

1

1 2 …

2

1 2 …

…

Cloud service
Sensor node

Sink node

Wired link

Wireless link

Figure 1. Data transmission model of Internet of Things (IoT) in underground mining.

The purpose of data anomaly detection in this article is to determine whether there is
an abnormality in the current construction environment based on the analysis of the data,
and to provide timely early warning. If data anomaly detection is performed in the remote
cloud server, then data transmission will cause a large delay, which results in untimely
early warning. Therefore, edge computing, which is migrating data anomaly detection
tasks to the edge, is a good choice [29]. However, the computing and storage capabilities
of underground IoT devices are limited, and complex calculations cannot be performed.
Therefore, the task of data anomaly detection needs to be divided into several parts and
migrated to different edge devices for execution.

In underground mining, there are two types of edge devices: sink node and sensor
node. A sensor node is equipment for data collection and data preprocessing, and a sink
node is equipment for data aggregation, fusion, and forwarding. In this article, according
to the data’s characteristics of the underground environment, the data anomaly detection
task will be reasonably migrated to the sensor node and the sink node.

3.2. Edge Computing Model of Anomaly Detection

In underground mining, the data are collected and sent by sensors, processed by the
sink node, and then forwarded. An edge computing model for anomaly detection task
migration is proposed to improve the real-time of anomaly detection.

The sensor’s data acquisition is periodic, so it has the characteristics of time series,
and it is necessary to analyze the data within a period of time. In addition, multiple sensors
of the same type are distributed in different locations because the underground tunnel is
long. The data in different locations have correlation, and it is necessary to comprehensively
judge the abnormal situation of the data.

Chandola et al. [30] divided data anomalies into three categories: Point Anomalies,
Contextual Anomalies, and Collective Anomalies. According to the actual needs of under-
ground construction, this article divides the anomalies into two categories:
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1. Data corruption.
It means that after the collected data are distorted due to equipment failure, battery
loss, etc., which cannot represent the true data value. For example, when a sensor’s
battery power is less than the standard value, the data that it collects will cause errors.
However, this error is not a true data anomaly.

2. Data anomaly.
It refers to the abnormality of the underground construction environment that is
shown by the real data value, such as the decrease of oxygen concentration, which
indicates that there may be problems with the ventilation system. According to the
definition of [30], the data anomalies in this article include three cases:

• Point Anomalies
If a sensor data value does not meet the range of the normal data value, it is
judged as Point Anomalies. For example, if a temperature value is found to
be greater than 40, then it is considered that the underground environment at
this temperature is abnormal. However, there are correlations between differ-
ent types of sensors in the mine, such as temperature and humidity sensors.
Therefore, the Point Anomalies of a single sensor cannot truly reflect the actual
environmental anomalies.

• Contextual Anomalies
In underground mining, if there are abnormalities in different correlated sensors,
then it can be considered that the environment is abnormal under the current
conditions. However, due to the deployment of automatic sprinkler, emergency
ventilation and other equipment, Contextual Anomalies can only indicate that
the environment in underground mining is abnormal at a certain moment, and it
is likely that the emergency equipment will start at the next moment, which
makes the environment start to become normal. In this case, it cannot be defined
as an environmental abnormality and an emergency warning is activated.

• Collective Anomalies
In a period of time, if multiple consecutive Contextual Anomalies occur, it can be
considered to be a collective anomalies.

Real-time performance cannot be guaranteed if anomaly detection tasks are executed
in the cloud. In the underground construction environment, the sink node will use the
equipment, such as buzzer, to give early warning for environmental anomalies. Therefore,
sending the data to the cloud and then returning to the sink node will cause a large delay.
For example, the sink node sends the collected data to the cloud. Because the cloud is
usually deployed on the ground or even a faraway server center, this will lead to a long
data transmission time. In addition, cloud servers usually use AI algorithms for data
anomaly detection, of which the execution time will be longer. If an abnormality is found,
then an early warning will be given or the emergency equipment under the mine will
be notified to start. The server that is deployed in the cloud can complete the task of
data anomaly detection, but it will take more time, which leads to missing the best time
for emergency rescue work in some cases. Therefore, the current approach is to deploy
equipment under the mine to detect data anomalies, and to provide early warning that
is based on the detection results in a timely manner. However, due to the limited CPU’s
computing power of the sink node, it cannot process the analysis of a large amount of data,
especially the safety prediction of the construction environment. Therefore, some anomaly
detection tasks have to be migrated to the cloud for processing. As shown in Figure 2, this
article divides the anomaly detection task into three parts:

1. Cluster analysis.
The sensor node performs cluster analysis. The sensor node analyzes whether the
data value is abnormal according to the received data. It is mainly to determine
whether the data are damaged due to factors, such as equipment failure. The sensor
will collect multiple data in a data acquisition period, and then perform anomaly
detection on these data. The sensors in underground mining are powered by batteries,
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and the computing power of the equipment is also limited. Therefore, there is no
guarantee that the data acquisition every time is true, and there may be some errors.
Moreover, it is impossible to guarantee whether the device will lose data due to
wireless interference during this period, because the acquisition period of some sensors
is long (for example, temperature sensors are usually collected every 5 min. or even
half an hour). Multiple collections are required for this reason. Multiple redundant
data need to be collected in order to reduce the data errors caused by equipment
problems. The damaged data need to be cleared in order to obtain more realistic data.

2. Abnormal judgment.
The abnormality judgment is executed by the sink node. Based on the data that are
sent by multiple sensors, comprehensive analysis of sensor data at different locations
is performed in order to determine whether the environment is abnormal. For exam-
ple, in underground mining, the temperature values collected at three locations are
different. If only one temperature value is abnormal, then it may be an error caused
by the complete damage of the sensor, so comprehensive analysis is required.

3. Anomaly prediction.
A single environmental indicator is judged by the sink node. The underground con-
struction environment requires multiple indicators for comprehensive judgment, such
as temperature, humidity, oxygen concentration, etc. The comprehensive judgment of
these sensors can analyze the overall situation of the environment and make predictive
judgments. The task of anomaly prediction is performed by the cloud, and it is not
the research content of this article.

Data 
corruption

Data 
anomalies

Cluster 
analysis

Abnormal 
judgment

Anomaly 
prediction

Anomaly detection task

Cloud

Sensors

Sink node

Figure 2. Edge computing model in underground mining.

4. Anomaly Detection Algorithms in Underground Mining

This article mainly discusses the task of detecting anomaly at the edge of sensors and
sink nodes. Firstly, we introduce the hardware and network structure in undergrad mining.

The sink node is used as the center to collect data from sensors, as shown in Figure 1.
The sensor nodes and a sink node form a star network. Multiple sink nodes form a chained
topology. In underground mining, the communication modules of the hardware devices of
the sensor nodes are low-power wireless devices, which are powered by batteries, such as
TI CC1101, TI CC2530, etc. Through the conversion of analog data to digital data, the data
that are collected by the sensor are sent to the sink none. The sink node is generally an
embedded device, such as MSP430 or ARM, which can receive wireless data from the
sensor through a wireless RF module, and at the same time can use its wired serial port,
such as USB, to send the converged and processed data.

The data anomaly detection in this article is to design algorithms for the sensor and
sink node, respectively. According to the model shown in Figure 2, the task migration
of edge computing for anomaly detection is performed according to different hardware
and functions.
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4.1. Anomaly Detection Algorithm of the Sensor Node

On the sensor node, the collected data are preprocessed and then sent to the sink node.
If the original data are sent to the sink node for anomaly detection, then it will increase
the burden on the sink node and cause excessive load. However, the computing power of
underground sensor equipment is limited, so the anomaly detection task of data cluster
analysis is assigned to the sensor node.

Assuming that there are I(I ∈ N+) sensors belonging to one sink node in underground
mining. For sensor i(0 6 i 6 I − 1), the data transmission period is pi (the unit is the time
to collect a data packet). In theory, every time that pi passes, the sensor will collect a piece
of data and send it to the sink node. However, this article adopts a multi-data collection
scheme in order to ensure the accuracy of the data collected each time. That is, collect
multiple data packets in one period and then perform cluster analysis on them, and select
the result that is closest to the real environmental data and then send it to sink node.

In order to perform cluster analysis for multiple data, the sensor node uses a data
buffer queue to store the data, and then after analysis, it is sent to the sink node. Figure 3
shows the sensor data cache queue. Periodically collected data will enter the queue,
and then is sent to the sink node according to the sending rate. The right part of Figure 3
shows the queue input and output in two different situations. The red solid line is the
queue output curve, and the blue dashed line is the queue input curve. According to the
network calculus theory [31], if the slope of the service curve is greater than the arrival
curve, then the queue will work normally. Otherwise, the data in the queue will remain.
Overflow will occur when the remaining amount is greater than the queue length. For any
sensor i, the length of the data queue is Li, and the number of data packets collected in
each cycle is Ci, then we have Ci 6 Li and Ci 6 Pi. The data acquisition frequency is Qi,
then we have Ci ∗Qi 6 Pi. Assuming that the unit execution time of cluster analysis is Ti,
according to the curve shown in Figure 3, we have 1/pi 6 1/(Ti ∗ Ci + Ci ∗Qi), that is,

Ti ∗ Ci + Ci ∗Qi 6 Pi

⇒ Ci 6
Pi

Qi + Ti
6 Pi

Data 
Acquisition

Input

Output

0

0

Arriving curve

Servicing curve

Length of 

queue

Overflow

Figure 3. Sensor data buffer queue.
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To better analyze the data anomaly, the detection result has a positive relationship
with the amount of data Ci. Therefore, set Ci = Pi

Qi+Ti
. Obviously, we can set the queue

length Li =
pi

Qi+Ti
.

Because of errors, the data values that are collected by the sensor are different each
time. Therefore, to accurately collect environmental data, a method to perform cluster
analysis on Ci data periodically collected by sensor i is proposed. There are commonly
clustering methods, such as K-means, C-means, etc. The K-means algorithm needs to
determine the value of K, which is difficult to determine in engineering, and it uses the
Euclidean distance for judgment, so that the final result cannot meet the engineering
application. For example, in this article, the difference between different sensor data does
not indicate their true error. The difference between temperature values 35 and 38 is 3
and the difference between humidity values 35 and 38 is also 3. Obviously, the meaning
of the difference of two types is different. The complexity of the C-means algorithm is
relatively high. The edge computing model of this paper requires the computing power
of terminal equipment to be considered. Therefore, this paper combines two methods for
algorithm design. For the sensor i, in a super frame period T, it sends a total of T

Pi
data,

so the data set Si can be divided into T
Pi

subsets, which is Si =

s0
i , s1

i , . . . , sj
i , . . .︸ ︷︷ ︸

T/Pi

, where

sj
i =

d0
i,j, d1

i,j, . . . , dm
i,j, . . .︸ ︷︷ ︸

Ci

 denotes the set of data that were collected at the j-th time of

the i-th sensor, and dm
i,j denotes the m-th data collected at the j-th time of the i-th sensor.

According to the characteristics of the sensor data in underground mining, there will be no
obvious fluctuations in the changes of the sensor data in a data collection period. Therefore,
in a set of sensor data, there are only two possibilities for abnormal data: larger data value
or smaller data value. Subsequently, this article sets the clustering target K to 3, and then
divides the entire data set into three categories. The central element of each category ismin

d∈sj
i

d , d̃i,j, max
d∈sj

i

d

, where:

d̃i,j
=

Ci
∑

m=0
dm

i,j

Ci
(1)

For each sample data dm
i,j, it is necessary to calculate the degree of membership between

it and the central element k of different clusters. uk
x denotes the degree of membership

between the data x and the central element k. We have:

uk
x =

1
λ ∗ |x− k| (2)

where, λ(0 6 λ 6 1) is a parameter that indicates the bound on the data values of different
types of sensors. The black solid line represents the direct error value between the sample
data (1, 2, 3, 4, 5, 7, 9, 11, 13, 15) that is obtained according to the Euclidean distance and
center data 5, as shown in Figure 4. It can be seen that, with 5 as the dividing line, it
presents a very obvious trend of phenomenon changes. In actual engineering projects,
the distance of the data value may not be so obvious, and it can be dynamically adjusted
according to the engineering requirements, so the use of the value λ can solve this problem
well. The blue triangle curve and orange square curve shown in Figure 4, respectively,
represent the changes in the membership degree of the sample data and the center data
under different values (λ = 0.5 and λ = 0.1).
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Figure 4. Fuzzy membership function.

The sample data can be clustered after calculating the distance between the sample
data and the center data. The target of data clustering in this paper are divided into three,
and for any n (n = 0, 1, 2), STn denotes cluster n. Suppose that kn denotes the central
element of cluster n. For the sample data set sj

i of the j-th data collection of i-th sensor,
the process of the clustering algorithm us proposed, as follows:

1. Initialize the sample data, and then sort the data set sj
i in ascending order according to

its value. See Equation (1), let k0 = d0
i,j, k1 = d̃i,j, k2 = dCi−1

i,j .

2. For any dm
i,j, calculate the membership degree (um

i,j(kn)) between it and the central
element of each cluster n, and select the smallest one to join the cluster. That is, ∀i, j, m,
dm

i,j → STn, s.t. min2
w=0 um

i,j(kw) = um
i,j(kn).

3. Calculate the average value (avg1) of cluster 1, determine whether avg1 == k1 is
satisfied, if not, set k1 = avg1, and then re-execute step 2. Otherwise, continue to the
next step.

4. Select each element in cluster 0 and cluster 2. If the Equation (3) holds, then it is an
abnormal data. That is ∀d ∈ ST0 or d ∈ ST2

ud(k1) 6 ξ (3)

ξ(0 6 ξ 6 1) is the bound parameter of the clustering algorithm, which is set according
to the actual situation of the project.

The pseudo code of the algorithm is shown in Algorithm 1 ("←" in all pseudocodes in
this article is assignment operation).

The time complexity of Algorithm 1 is ω ∗ Ci = ω ∗ Pi
Qi+Ti

= ω ∗ Li. This algorithm is
a pseudo-polynomial time algorithm. The proposed algorithm is a polynomial time algo-
rithm when the value of w is small (in fact, the value is also a small integer in engineering).

Figure 5 is an example of the clustering algorithm of the sensor node. There are a
total of 10 data [1, 2, 3, 4, 5, 7, 9, 11, 13, 15], and the parameters of the algorithm are set
λ = 0.5, λ = 0.01,. Finally, the abnormal data were deleted [1, 15].
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Algorithm 1 Anomaly data clustering algorithm of the sensor node
Function ADCA(s, λ, ξ, ω){
// s is the data array of the buffer queue.
// λ is the convergence parameter of the membership function (see in Equation (2)).
// ξ is the bound parameter for anomaly detection(see in Equation (3)).
// ω is the time parameter of edge computing

1: Sort s in ascending value;
2: float k[3]← {0}; // init a array of central data
3: k[0]← s[0];
4: k[1]← sum(s)/len(s);
5: k[2]← s[len(s)− 1];
6: float sc[3][]; // init three array as cluster set.
7: while (count ++ 6 ω) do
8: for (int i← 0 to len(s)− 1) do // I-loop
9: float y[3], sig← 0;

10: for (int j← 0 to 2) do // J-loop
11: y[j]← pow(λ ∗ abs(s[i]− k[i]),−1);
12: if (y[j] > y[sig]) then
13: sig← j;
14: end if
15: end for// end of J-loop
16: sc[3][]← x[i]; // Append x[i] to sc[sig]
17: end for// end of I-loop
18: if (k[1]! = sum(sc[1])/len(sc[1])) then
19: k[1]← sum(sc[1])/len(sc[1]);
20: sc[][]←NULL;
21: else
22: break;
23: end if
24: end while
25: for (each d ∈ sc[0][] and sc[2][]) do //D-loop
26: if (pow(λ ∗ abs(d− k[1],−1) 6 ξ)) then
27: delete d from s;
28: end if
29: end for// end of D-loop
30: return average(s);

}

Table 1 shows the detailed data calculation results. First, select 3 center data of 10 raw
data as 1, 7, 15, respectively. Then according to Equation (1), the results of the first clustering
(1, 2, 3, 4), (5, 7, 9, 11), (13, 15) are obtained. Because the average value of cluster 1 is 8.4
at this time, which is not equal to 7, the second clustering operation is continued and
the clustering ends. Through the comparison of each element of cluster 0 and cluster 1,
the abnormal data set [1, 15] is finally obtained.

After the abnormal data are deleted, the remaining data calculate the average value
and send it to the sink node as the data result of the final data in one acquisition period.



Electronics 2021, 10, 302 12 of 19

1

2

3

4

5

7

9

11

13

15

1

7

15

2

3

4

5

9

11

13

8.4

1

15

1

7

15

2

3

4

5

9

11

13

1

7

15

7

8.4

1

15

8.4

2

3

4

1

13 15

1 15

Figure 5. A case of cluster algorithm of the sensor node.

Table 1. A case of calculation process of clustering algorithm of the sensor node.

Degree of Membership
Central Data/Raw Data 1 2 3 4 5 7 9 11 13 15

First cluster
1 1.0 0.67 0.5 0.4 0.33 0.25 0.2 0.17 0.14 0.125
7 0.25 0.29 0.33 0.4 0.5 1.0 0.5 0.33 0.25 0.2

15 0.125 0.14 0.14 0.15 0.16 0.2 0.25 0.33 0.5 1.0

Second cluster
1 1.0 0.67 0.5 0.4 0.33 0.25 0.2 0.17 0.14 0.125

8.4 0.2 0.25 0.29 0.33 0.4 0.67 0.67 0.4 0.29 0.2
15 0.125 0.14 0.14 0.15 0.16 0.2 0.25 0.33 0.5 1.0

Anomaly detection 8.4 0 0.02 0.03 0.06 0.03 0

4.2. Anomaly Detection Algorithm of the Sink Node

The sink node receives the data sent from different sensors, and it performs anomaly
detection on the same type of sensor data. In order to improve the accuracy of anomaly
detection, it is necessary to perform data analysis on multiple sensors of the same type to
prevent a single point of failure caused by a sensor failure. At the same time, because data
analysis needs to consider data changes over a period of time, data analysis at the sink
node has the characteristics of time series.

Suppose that, for a sink node, a total of M data sent by the same type of sensor are
received from time 0 to T. Assuming that the data acquisition period of this type of sensor
is p, a total of N = bT/Pc pieces of data are received at time T . All of the data form a
matrix of M× N. That is,


d0

0 d1
0 . . . dN−1

0
d0

1 d1
1 . . . dN−1

1
. . . . . . . . . . . .

d0
M−1 d1

M−1 . . . dN−1
M−1

 (4)

The sink node uses a sliding window for data processing in order to analyze multiple
sensor data over a period of time. According to the data flow matrix, the size of the sliding
window is set to N, as shown in Figure 6.
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Figure 6. Sliding Window of the sink node.

For a certain type of sensor, at every interval p (p is the data acquisition period of the
sensor), the sink node will receive new data. At this time, the sliding window needs to be
updated in order to ensure that the data on the right of sliding window(see in Figure 6) is
the latest data. At each moment, the data block in the sliding window actually contains the
data values of M different sensors.

It is necessary to preprocess the M data in each data block to analyze the data of the
sliding window in Figure 6. For the data at the same time, different sensors may have
errors in their data values due to differences in their locations and hardware. However, it
is also possible that a sensor device failure may cause its data value to have a large error
directly with other normal devices. Therefore, the sink node uses the abnormal detection
method of the sensor node for preprocessing, eliminates abnormal data, and calculates the
average value of the remaining normal data.

After the above processing, only one data value remains in a data block. Therefore,
for N data, the target data set is represented as D = {di|i = 0, 1, 2, N − 1}, where dN−1 is
the latest data. Each value of the data set D will be different, due to the difference between
the acquisition time and the equipment, but the data value will not fluctuate too much
within a period of time (usually N will not be set too large). The existing method is to
calculate the variance of the data set D, and then analyze the fluctuation of the overall data
through the variance [32].

σ =

√√√√√N−1
∑

i=0
(di − µ)2

N
(5)

where µ =
∑N−1

i=0 di
N .

However, this method is flawed in some cases. For example, two different types of
sensors have different valid ranges of their data values. Therefore, it is difficult to accurately
evaluate whether only the variance is judged. Therefore, it is necessary to judge by the
change trend of the data value, as shown in Figure 7.

It can be seen from Figure 7a that, if the data for a period of time increases or decreases
linearly, it can be regarded as abnormal. However, in many cases, the curve of the data is
an irregular fluctuation, as shown in Figure 7b. Therefore, it is difficult to judge the trend
of such irregularly fluctuating data. Neural network (such as BP neural network) is an
effective method, but, due to the limited hardware performance of the sink node, complex
algorithms cannot be executed. For this reason, this paper proposes an approximate trend
estimation algorithm, which analyzes the difference between adjacent data.
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Figure 7. Data change trend of sensors in underground mining.

The difference between the data at any adjacent time indicates the changing trend of
the data. For two data di and dj(j = i + 1) at adjacent moments, if dj − di > 0, the data
shows an upward trend, otherwise the data shows a downward trend. As for the overall
data, the sum of difference of adjacent data can obtain a trend estimation of data change.
For data set D, we have,

χ =
N−2

∑
i=0

(di+1 − di) (6)

The result of χ represents the overall change trend of the data. The value of χ can be
judged according to the actual needs of underground engineering. An abnormal warning
will be given if it exceeds the set threshold.

The flow of anomaly detection algorithm of the sink node is as follows:

1. The sink node pushes the received sensor data into the sliding window w according
to the sensor’s type.

2. Traverse the sliding window w, preprocess M data of each data block, delete the
abnormal data in the M data according to the sensor node abnormal detection method
(see Algorithm 1), and obtain the final average value.

3. Re-traverse the sliding window to determine whether the latest data value meets the
normal threshold interval. If it does not meet the normal threshold interval, then it is
determined to be abnormal and the algorithm ends, otherwise it proceeds to step 4.

4. Calculate the variance from the N data before the current moment (according to the
Equation (5)), and then determine whether the calculation result meets the threshold.
If it does not meet the threshold, then it is judged to be abnormal and the algorithm
ends, otherwise it goes to step 5.

5. Calculate the trend of change for N data according to Equation (6). If the final result
exceeds the threshold, it is judged to be abnormal, otherwise it is judged that the data
are normal and the algorithm ends.

Algorithm 2 shows the pseudo code of the algorithm.
The time complexity of Algorithm 2 is max(ω ∗ L, N), when L > ω ∗ L; the algorithm

has polynomial time complexity.
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Algorithm 2 Anomaly data detection algorithm of the sink node
Function ADDA(w[][], N, M, Lb, Ub, λ, ξ, ω, e, χ){
// w is the data array of the sliding window.
// Lb and Ub are the lower and upper bound of normal data.
// e is the bound of Equation (5).
// χ is the bound of Equation (6).

1: Init all elements;
2: float d[N], avg← 0;
3: for (int i← 0 to N − 1) do //start of N1-loop
4: d[i]←ADCA(w[i], a, b, c);
5: avg← avg + d[i];
6: end for// end of N1-loop
7: if (d[N − 1] > Ub or d[N − 1] < Lb) then
8: return 0; // anomaly data
9: end if

10: avg← avg/N;
11: float E← 0, X ← 0;
12: for (int i← 0 to N − 1) do // start of N2-loop
13: E← E + (d[i]− avg)2;
14: X ← X + (d[i + 1]− d[i]);
15: end for// start of N2-loop
16: if (sqrt(E/N) > e) or X > χ then
17: return 0; // anomaly data
18: end if
19: return 1;

}

5. Experiment Analysis
5.1. Experiment Settings

The experiment in this article mainly analyzes three performances: anomaly detection
accuracy, delay, and energy consumption. Among them, the energy consumption and
delay are related to the specific hardware configuration. Therefore, this article uses the
embedded hardware equipment of the underground IoT to conduct the experiment in
order to improve the reliability of the experiment. Table 2 shows the specific experimental
parameters.

Based on the preset data set, each sensor periodically sends data. This article analyzes
the real data set of the underground construction environment, and then cleans the data
for copyright disputes. Each sensor sends 200 test data, which contains 20–30% of labeled
samples for anomalies randomly. Although the acquisition period of different sensors
is different in underground mining, the experiment in this article sets all of the sensor
periods to 20 s. Each experiment takes about 35 min. to complete all sensor data collection.
In this section, the performance of the proposed algorithm is analyzed. The anomaly
detection in this paper is improved based on the K-means algorithm, which is mainly
based on clustering to filter abnormal data. Therefore, the K-means algorithm and C-means
algorithm are used for comparative analysis. To ensure the effect of the test, this article
repeats the test on the same experiment. Each group of experiments is repeated 10 times,
and the data of each group of experiments are recorded 10 times. The experimental data
are analyzed through the boxplot tool.
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Table 2. This is a table caption. Tables should be placed in the main text near to the first time they are cited.

Parameter Item Parameter Description

Hardware TI CC2530 F256 10 CC2530 (1 sink node and 6 sensors)
Wireless protocol TI Z-Stack A star network ,the sink node serves as the central node
Performances Accuracy, delay and energy consumption
Program language C, Python3 C for embedded development and Python3 for data analysis

Program parameters

Length of sliding windows 5, 10 respectively
Number of sensors M 3, 6 respectively
Data acquisition period p 20 s
Number of data 200
Labeled samples for anomalies 20–30%
Duration of each experiment 35 min
Number of experiments 10
Length of buffer queue of sensor L 5, 10 respectively
Upper bound Ub 30
Lower bound Lb −20

5.2. Accuracy Analysis

This paper uses the false alarm rate to analyze the data in order to analyze the
detection accuracy. The false alarm rate refers to the ratio of the number of false detections
to the total number of abnormal alarms. Assuming that, in an experiment, a total of X
abnormalities are reported, and there are Y detection errors among them, the false alarm
rate r is expressed as:

r =
Y
X

(7)

This paper tests the false alarm rate under different sliding window lengths and
different sensor numbers. Figure 8 shows the experimental results.
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Figure 8. False alarm rate experiment result under different sliding window lengths and different sensor numbers.

Figure 8a is the analysis result of the false alarm rate of abnormal data of three sensors,
respectively, testing the false alarm rate under two sliding windows of five and 10 different
lengths. Obviously, with the length of the sliding window increases, the overall false alarm
rate decreases. It means that the length of the sliding window is of great significance to the
accuracy of the system. The longer the sliding window, the more data can be referenced,
and the higher the overall accuracy. Figure 8b is the data analysis result of six sensors.
Obviously, the larger the amount of sensor data, the higher the overall accuracy. When
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comparing three different algorithms, the algorithm of Edge-computing Data Anomaly
Detection (EDAD) that is proposed in this paper is better than the other two algorithms in
accuracy, especially when the number of sensors increases. In contrast, the accuracy of the
C-means algorithm is better than that of the K-means algorithm, although the gap is not
obvious.

5.3. Delay Analysis

This paper carried out a delay test in order to test the real-time performance of the
system under the guarantee of the accuracy. Mark 200 data packets and test the time
interval for each data packet in order to complete all anomaly detection from the sensor
end to the sink node, in milliseconds. Because of the TI Z-Stack protocol stack used in this
article, the data sending time and the processing time of the protocol layer will increase the
overall time-consuming, but we analyze the delay performance of the algorithm EDAD by
comparing the two algorithms. Figure 9 shows the results of the delay experiment.
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Figure 9. Delay experiment result under different sliding window lengths and different sensor numbers.

Figure 9a,b test the delay changes under different sliding window lengths. Contrary
to the false alarm rate, as the number of sensors and the length of the sliding window
increase, the delay gradually increases. Because it takes more time to process more data.
By comparison, it can be seen that the proposed EDAD algorithm has a smaller delay than
the K-means and C-means algorithms. Although, in the case of a large amount of data
(increasing the length of the sliding window or increasing the number of sensors), its delay
has also increased significantly, but, under the set experimental conditions, the delay can
be controlled at a hundred milliseconds, which is sufficient for the requirements of the
engineering application in underground mining.

5.4. Energy Consumption Analysis

CC2530 is working by battery power to analyze the energy performance of different
algorithms. The battery power consumption is measured after different algorithms are
executed. It should be explained that the energy consumption of the battery is caused by
many reasons, such as radio frequency transmission. Therefore, the measurement in this
article does not necessarily substitute for the specific energy consumption value, but the
energy consumption performance of three algorithms can be compared and analyzed
under the same conditions. Figure 10 show the experimental results of energy consumption
analysis.
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Figure 10. Energy consumption experiment result under different sliding window lengths and different sensor numbers.

As the window length increases and the number of sensors increases, the times of
data calculation also increases, so the device consumes more power, as shown in Figure 10.
Additionally, it can be seen from the figure that the energy consumption of the three
algorithms is not much different. This is because the experiment time is short (200 data
is about 1 h), and the measurement may also cause errors due to the instrument. There is
a certain gap in the actual energy consumption value. Nevertheless, it can be seen that
the algorithm that is proposed in this paper consumes less energy than the other two
algorithms.

6. Conclusions

This paper studies the current theories and algorithms of multi-sensor data anomaly
detection and analyzes the existing methods. Aiming at the shortcomings of current work,
especially in the special application scenarios of the IoT in underground mining, a multi-
sensor data anomaly detection method that is based on edge computing is proposed. In this
method, the anomaly detection tasks are migrated to the sensor node and the sink node
to execute separately, and the different algorithms of the sensor node and sink node are
designed. The performance of detection accuracy, delay, and energy consumption are
analyzed, and, when comparing the K-means and C-means algorithms, the performance
of proposed algorithm is analyzed. The experimental results show that the proposed
algorithm has better performance in the underground application environment.
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