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Abstract: This article studies the development and implementation of different electronic devices for
measuring signals during stress situations, specifically in academic contexts in a student group of the
Engineering Department at the University of Pamplona (Colombia). For the research’s development,
devices for measuring physiological signals were used through a Galvanic Skin Response (GSR), the
electrical response of the heart by using an electrocardiogram (ECG), the electrical activity produced
by the upper trapezius muscle (EMG), and the development of an electronic nose system (E-nose) as
a pilot study for the detection and identification of the Volatile Organic Compounds profiles emitted
by the skin. The data gathering was taken during an online test (during the COVID-19 Pandemic), in
which the aim was to measure the student’s stress state and then during the relaxation state after the
exam period. Two algorithms were used for the data process, such as Linear Discriminant Analysis
and Support Vector Machine through the Python software for the classification and differentiation of
the assessment, achieving 100% of classification through GSR, 90% with the E-nose system proposed,
90% with the EMG system, and 88% success by using ECG, respectively.

Keywords: stress; academic contexts; GSR; ECG; EMG; E-nose; pattern recognition; SVM

1. Introduction

Stress is considered as a physiological reaction in which different defense mechanisms
interact during the confrontation of a situation or imminent threat that stimulates a fight
or escape response of the body [1]. Lazarus and Folkman [2] define it as “A particular
reaction between a person and his surroundings considered as threatening or that overpass
the available resources and jeopardize his wellness”. The academic stress comes out
toward typical problems in the educational context, this can be a necessary and natural
reaction for fulfilling the demands required and in which factors such as the academic
overcharge, group projects, competitivity, lack of economic resources, and the deficient
time organization take part [3]. Stress levels can increase in significant proportions in some
students, especially during the exam period [4].

Additionally, academic stress is associated with different negative results on the
person, including deficiencies in academic performance, the daily homework, as well as
detriment in physical and mental health when the person is often involved in stressful
situations [5,6]. Several types of research have been focused on the health changes related
to academic stress, discovering results that suggest that the physical response to stress
plays an important role in health and these must be considered in the design of Promotional
Health Programs [7,8]. Mental health professionals think stress may help people to solve
some problems, however, it makes people irritable, upset, and, in serious cases, stress keeps
a close relation with diseases such as diabetes, depression, sleep disorders, heart illnesses,
and gastric problems [9–11].

The quick spread of COVID-19 forced the closure of schools and universities all over
the world, driving to a virtual form in the teaching method, continuing the educational
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process from home. In Colombia, according to United Nations Educational, Scientific
and Cultural Organization (UNESCO), near 2 million students continue their formative
process in virtual modality [12]. The mobility restriction imposed in quarantine, along
with the challenges generated by the transition from a face-to-face education system
to a virtual one, can be stressing factors in addition to the prolonged confinement, the
insufficient explanation by the teacher, and lack of materials and tools such as a computer,
internet, among others. Not to mention, every student is responsible for his educational
process [4,13,14].

The early detection of mental stress can prevent health problems, helping patients to
become skilled in the management and confrontation of situations or events perceived as
stressful. Besides, it provides an important advance in the quality of life, giving an emo-
tional response assertively toward the daily situations with the assistance and supervision
of qualified staff [15,16].

Psychometrics questionnaires have been used traditionally as instruments for measur-
ing mental stress, these are useful for understanding the individual differences in stress
perception, as well as the stimulus frequency that can be perceived as stressing [17,18].
The use of the internet for providing psychometric questionnaires gives several advan-
tages for the evaluation and potential monitoring of the research survey respondents,
avoiding, in this way, physical contact. Besides, they can be applied confidently and
accurately in a digital format due to their equivalence with the traditional paper version
questionnaires [19].

However, psychometric instruments give subjective solutions that may delay the
treatment, since these can be evaluated wrongly due to the participant’s unwillingness for
resolving the questionnaire, so, it is important to have objective methods for quantifying
the stress level [20].

When the person perceives a stressful situation, the main physiological functions
of the body get stimulated, such as blood pressure and breathing, among others. These
functions are regulated by the autonomic nervous system (ANS). One of its branches, the
sympathetic nervous system (SNS), moves the body’s resources, preparing it for giving an
opportune response under stressful conditions [21].

The physiological parameters affected by the SNS have been used in a lot of studies
for stress detection, among which are: Salivary Cortisol [22], respiratory signs [23,24], skin
temperature and thermal image [25–27], variability of heart rate (HRV) [28–30], electrocar-
diogram (ECG) [15,31,32], electroencephalogram (EEG) [20,33,34], Galvanic Skin Response
(GSR) [35–37], pupil diameter [38,39], electromyogram (EMG) [40–42], and the Volatile
Organic Compounds (VOC’s) emitted by the skin [43–45]. The response focus of each
one of these physiological signals depends on the context since these signals can show
variations due to physical activity. For example, a participant can show a higher heart rate
when standing than when sitting. This signal also increases when the participant perceives
a mentally stressing situation, that is why it is important to define the context and the
situation in which the physiological measurement will be taken [21,46].

Perspiration is mainly associated with the human body’s thermoregulation; in the
emotional sweat, the mental efforts stimulate the production of acetylcholine, which is a
neurotransmitter that stimulates the secretion of abundant water in the endocrine glands.
Sweat gives information about several biomarkers biologically relevant that may serve
as indicators or disorders [47]. When sweat is induced by an emotional stimulus such
as stress, the behavior of sweat glands and the assessment of the sweat rate are useful to
estimate the mental stress level in human beings [48].

The cortisol in the biofluids and the VOC’s emitted by skin seem to be useful markers
for the detection of emotional stress. The VOC’s detection technologies have been used
widely in the medical field for the different disorders and diseases detection that show
changes in the sweat VOC’s pattern [43].

The forehead has been studied as a possible measuring location for registering changes
in the VOC’s associated with psychological stress. There have been VOC’s samples ana-
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lyzed with conventional techniques such as thermal desorption gas chromatography in
two layers and mass spectrometry, determining that VOC’s profiles change with stress [44].
One of the few studies done with the implementation of an electronic nose was conducted
by Cortes, in which the use of an electronic nose is described for the detection of stress
bio-markers such as adrenaline and cortisol [49].

Among the most used physiological signals in the research for the detection of stress
levels, there is heart activity, since it varies according to the intensity of the stimulus
perceived in response to the changes in the autonomic nervous system (ANS). For heart
activity measuring, the ECG is used through electrodes placed on the body [25].

For the extraction of the ECG signal features, the R peak is used, among which there
are the Heart Rate, RR Interbeat interval (IBI), and the heart rate variability (HRV). The
HRV is the variation in time between consecutive beats sequences (RR intervals). In healthy
people, it varies continuously, but when the ANS activity is altered, the HRV values
decrease [16,50].

Through a stressful situation, the electrical activity can be increased in specific muscles
in comparison to a no-stress situation [41]. Different researchers have suggested the EMG
trapezius muscle activity as a stress physiological marker, given that the stressing events
induce involuntary reactions in facial and trapezius muscles [51]. Other researchers indicate
that EMG signals give more relevant information in comparison to respiratory signs for
determining the stress level [52].

This article presents an investigation about the development of an Electronic Nose
(E-nose) for stress detection in university students, using emotional sweat as a base. The
change in the VOC’s profile is emitted by the skin, specifically on the forehead during the
perspiration process [44,48]. On the other hand, a Grove 1.2 GSR sensor (Seeed Technology
Co., Ltd., Shenzhen, China) was implemented from the “Speed studio” for the galvanic
skin response in measuring fingertips. The GSR sensor response is based on the electrical
activity in the skin that is also affected by emotional sweat [53]. Furthermore, an elec-
tromyography surface device with amplification and filtration stages was designed for
measuring the electrical response of the trapezius muscle, placing the electrodes according
to the positions set in the Surface ElectroMyoGraphy for the Non-Invasive Assessment
of Muscles (SENIAM) regulation, in which also the ADS1298ECG-FE (Texas Instruments,
Dallas, TX, USA) from the “Texas Instruments” company was implemented for measuring
and gathering the electrocardiographic signal to identify the heart rate variability (HRV).
For the GSR and EMG data gathering, a graphic interface was designed where gathered
data can be visualized and the pathway in which they were stored can be chosen. These
four methods: E-nose, GSR, EMG, and HRV, are proposed to acquire a larger quantity of
each participant’s information, and therefore, every response acquired in the electronic
devices is validated.

Furthermore, for the data processing, the free software Python 3.8 version was used,
which was implemented and developed some pattern recognition and artificial intelligence
algorithms [54]. As a validation technique, the SISCO inventory of academic stress was
implemented. This inventory has been subjected to different validation and reliability
measures, as well as the statistical and psychometric analyses that endorse its applicability
in the academic ambit [55–57].

2. Materials and Methods
2.1. Measurement Protocol and Volunteers Selection

For this research, 25 students from the engineering and architecture faculty of the
University of Pamplona participated as volunteers, 7 women and 18 men respectively, aged
between 18 and 30 years (see Table 1). Regarding the inclusion criteria, each student must
have good health, be over 18 years and they should have virtual classes to take the exam.
On the other hand, about exclusion criteria, the students must not be smokers, and they
should not use psychoactive substances nor suffer from any psychological disorder. At the
recruitment stage, they were instructed to abstain from consuming alcoholic or carbonated
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beverages, and medicines. Additionally, they were told not to use perfumes, sunblock,
lotion and they should sleeping adequately.

Table 1. Information about the participants.

No. Label Age Gender

1 A 22 Male
2 B 25 Male
3 C 19 Female
4 D 18 Male
5 E 25 Male
6 F 24 Female
7 G 23 Male
8 H 21 Male
9 I 20 Male
10 J 24 Male
11 K 27 Male
12 L 21 Female
13 M 26 Male
14 N 24 Male
15 O 23 Male
16 P 24 Male
17 Q 23 Male
18 R 23 Female
19 S 30 Female
20 T 24 Female
21 U 23 Male
22 V 23 Male
23 W 24 Male
24 X 20 Female
25 Y 22 Male

Finally, we obtained informed consent by hand from the participants for the data
acquisition and processing measures for the stress state during a virtual exam performance.
For the relaxation state, some measurements were taken during the academic semester
between March and June of 2020. The physiological measurements were acquired in the
student’s homes, following the necessary security actions like the use of overalls, masks,
and disposable gloves.

It is necessary to mention that experiment and evaluation of the electronic devices
developed in this research were proposed as a pilot study during the COVID-19 pandemic,
therefore, the number of samples was not established or estimated as a target since the
participation was limited to the availability of the students who were located in their
current places of residence or elsewhere in the Pamplona city, making the sample collection
much more efficient.

2.2. Galvanic Skin Response (GSR)

Skin conductance is one of the most used methods in psychophysiological research, it
is also called skin electrical activity, and refers to each of the skin electrical properties as a
response to the sweat secretion by sweat glands. Eccrine glands are mainly stimulated in
response to emotional events such as stress, these glands are distributed over all of the body
in low densities, with a larger concentration in the face, in palms of hands, soles of feet, and
armpits, with the palms of hands being the preferred location for the GSR measurement [53].
Due to the existence of electrolytes in sweat, the electric resistance decreases, and the skin
conductance increases—this response is directly associated with the sympathetic nervous
system (SNS) that responds during emotionally stressful stimulus [58].

For taking the measurements, electrodes attached to a device were used, locating them
on the index and middle finger on the participant’s non-dominant hand (see Figure 1).
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Throughout the tests, there was a five-minute time-lapse estimated for measuring, with
signals acquired over a long time in a relaxation state where the sensor is set, keeping
constant the shape of the wave without presenting novelties as long as the participant stays
calm. The measures were acquired at an around 10 samples per second sampling rate for
5 min, the participant was told to avoid touching the electrode fastener and not to make
movements with those fingers.
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Figure 1. Galvanic Skin Response (GSR) Sensor: (a) location of the electrodes; (b) electronic card and
electrodes.

2.3. Electronic Nose System (E-Nose)

An electronic nose system is based on the gas sensor’s implementation with different
sensibility levels, located in a measuring camera; commonly, the electronic system is com-
bined with pattern recognition algorithms and artificial intelligence to find a characteristic
profile that allows classifying VOCs. Usually, sensors based on metal oxide semiconductors
are among the most used due to the wide variety of compounds that it can detect and to its
wide commercial diversification [59].

2.3.1. Design

Figure 2 shows the measuring electronic circuit for the gas sensors. For the generated
signal in each sensor, an Arduino Astar 32U4 card (Pololu, Las Vegas, NV, USA) made
by “Pololu” company was connected to the circuit, it has 8 analog inputs with 10 bits
resolution. All used sensors share the same circuit configuration given by the manufacturer;
however, the power consumption of every sensor is different according to their electric
consumption since the sensor’s matrix feeds from a direct voltage source of 5 V with 2A
capacity. The sensor’s voltage response is measured in the load resistance RL = 1 kΩ.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 24 
 

 

 

Figure 2. Measurement circuit for gas sensors. 

Metal Oxide (MOX) gas sensors manufactured by Hanwei and Figaro companies 

were used, where each sensor’s information is shown in Table 2. The E-nose consists of a 

measuring chamber that comprises a sensor array that can detect the organic compounds 

which are controlled by pneumatic valves. The measuring chamber was made of stainless-

steel, which was connected to a vacuum pump with an independent power supply of 6 

Volts Direct Current (VDC) and 500 mAh feedback, controlled from the Arduino device 

with a Bipolar Junction Transistor (BJT) (Ref: TIP41) transistor configured as a switch. 

Table 2. Chemical-resistive sensors for the Electronic Nose (E-nose). 

Label Sensor Reference Specific Targets 

S1 MQ2 Propane, Methane, Alcohol, Hydrogen 

S2 MQ3 Alcohol, Benzine, CO, CH4 

S3 MQ4 Methane, Natural Gas 

S4 MQ5 Natural Gas, GLP 

S5 MQ9 CO, Flammable gas 

S6 MQ138 Toluene, Acetone, Ethanol, and Formaldehyde 

S7 TGS825 Hydrogen sulfide 

S8 TGS832 Chlorofluorocarbons 

Figure 3 shows the vacuum pump feedback circuit to connect it with the Arduino 

card for supplying the necessary current. The VOC’s were carried out to the measuring 

chamber through a piping circuit and using a vacuum pump. 

 

Figure 3. Trigger circuit for vacuum pump. 

The system controls the vacuum pump with the aim of limiting the Arduino output 

current to less than 15 mA, whereas the base resistance 𝑅𝐵 was calculated with Equation 

Figure 2. Measurement circuit for gas sensors.



Electronics 2021, 10, 301 6 of 23

Metal Oxide (MOX) gas sensors manufactured by Hanwei and Figaro companies
were used, where each sensor’s information is shown in Table 2. The E-nose consists of a
measuring chamber that comprises a sensor array that can detect the organic compounds
which are controlled by pneumatic valves. The measuring chamber was made of stainless-
steel, which was connected to a vacuum pump with an independent power supply of 6
Volts Direct Current (VDC) and 500 mAh feedback, controlled from the Arduino device
with a Bipolar Junction Transistor (BJT) (Ref: TIP41) transistor configured as a switch.

Table 2. Chemical-resistive sensors for the Electronic Nose (E-nose).

Label Sensor Reference Specific Targets

S1 MQ2 Propane, Methane, Alcohol, Hydrogen
S2 MQ3 Alcohol, Benzine, CO, CH4
S3 MQ4 Methane, Natural Gas
S4 MQ5 Natural Gas, GLP
S5 MQ9 CO, Flammable gas
S6 MQ138 Toluene, Acetone, Ethanol, and Formaldehyde
S7 TGS825 Hydrogen sulfide
S8 TGS832 Chlorofluorocarbons

Figure 3 shows the vacuum pump feedback circuit to connect it with the Arduino
card for supplying the necessary current. The VOC’s were carried out to the measuring
chamber through a piping circuit and using a vacuum pump.
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The system controls the vacuum pump with the aim of limiting the Arduino output
current to less than 15 mA, whereas the base resistance RB was calculated with Equation (1).
The above allows to extend the device’s useful life and guarantee the transistor to keep in
optimal working conditions.

IB =
3.3V − 0.7

RB
=

3.3V − 0.7
220Ω

= 0.011 A (1)

Moreover, the software was designed for data acquisition and visualization by the
E-nose, which runs in a PC that sends and receives Arduino card information by serial
communication.

2.3.2. Measurement Protocol

Figure 4 illustrates the E-nose scheme proposed for the response measuring and
visualization of every gas sensor selected for detection of VOC’s emitted by the skin, as
possible stress indicators [44].
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Figure 4. Measurement scheme of Volatile Organic Compounds (VOCs) emitted by the skin through
the E-nose.

For getting a better VOC’s concentration response, a metal funnel was located on
the participant’s forehead for 5 min, doing a pressure to avoid losing compounds on the
outside. After 3 min passed since the funnel was located on the participant, a vacuum
pump is activated for purging the measurement chamber, allowing the air passing of the
environment. In this way, the heat dispersed by sensors is extracted, which could affect
the measurement result. In this stage, valve 2 is closed and valve 1 is opened to purge the
piping circuit. After 2 min of purging, valve 1 is closed for allowing the VOC’s to pass
through the measuring camera. Furthermore, the analogic Arduino outputs gather and
send the information of every sensor via serial communication made by the PC, in which
the skin sensor’s behavior can be observed in real-time.

2.4. Electromyography System

The physiological variations on the muscle fiber membrane generate myoelectric
signals that can be measured. Therefore, the technique used for measuring and analyzing
these signals is known as electromyography. It is commonly performed through Ag-AgC1
electrodes that convert the muscle’s ionic current into an electric current [41]. Generally,
the amplitude voltage is within the range of ±5 mV and the frequency content ranges are
from 6 Hz to 600 Hz, with a frequency dominant range from 20 Hz to 150 Hz [60].

2.4.1. Design

For this research, an instrumentation amplifier (AD620A) (Analog Devices, Wilming-
ton, MA, USA) from the “Analog Devices” maker was used. This amplifier has a function
called Common-Mode Rejection Ratio (CMRR) of high state from 120 dB to 130 dB with
gain characteristics from 10 to 1000 and high impedance input: 10 GΩ, which can be
applied in data gathering devices [61]. Equation (2) describes the gain calculation (G):

G =
49.4 kΩ

RG
+ 1 (2)

where setting the RG = 100 Ω, an approximate gain equal to 495 was obtained. Further-
more, a filter stage was added for attenuating the noise induced by electromagnetic sources,
movement, and even the participant’s breathing [61]. Finally, the amplification stage was
performed with a variable gain for the measure’s taking.
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The acquisition measurement scheme can be observed in Figure 5. A Raspberry pi
3B+ card was used to control and acquire the EMG signals, coupling an ADS1015 module
(Texas Instruments, Dallas, TX, USA) made by the “Texas Instruments” company. It has an
Inter-Integrated Circuit (I2C) communication protocol, four analog inputs, and 3.3 kHz
sample rates.
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Figure 5. Surface electromyogram (EMG) measurement scheme.

For the EMG device, a filtering stage was used. It consists of two “Butterworth” type
filters of the second order, of−40 dB/decade. In consequence, when the set cutoff frequency
is overpassed 10 times, the filter output will be −40 dB concerning the input. Figure 6
shows the schematic circuit to eliminate the noise produced by the movement and the
participant’s breathing. A 30 Hz High-Pass Filter (HPF) in a voltage source configuration
controlled by voltage and a Low-Pass Filter with a 416 Hz set cutoff frequency were
implemented for the EMG system’s development.
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Figure 6. Electric circuit for the filtering stage.

The procedure for estimating each of the resistance values and filter circuit capacitors
is described below.

Initially, a 416 Hz cutoff LPF frequency is established and an adequate value (prefer-
able commercial) is chosen for C1 between 100 pF and 0.1 uF, so that C1 = 10 nF, the value
of C2 = 2 × C1 value is set; finally, the value between R1 and R2 is given by Equation (3),
where Wc is the cutoff frequency in radians/second. In this stage, the values between R3
and R4 must make the double of R1 [62]:

R =
0.707

Wc × C
= 27 kΩ (3)
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Owing to the movement or sudden vibrations in the EMG system, participants’ breath-
ing can induce a Direct Current (DC) compound in the EMG gathered signal [61]; for
suppressing it, the 30 Hz cutoff HPF frequency was set, calculating the filter parameters
in this way: a C3 = C4 = 1 uF value is chosen. In this case, the R7 value is given by the
Equation (4), where R6 = R7 ÷ 2 and the commercial closest resistance was 3.3 kΩ. Finally,
for minimizing the deflected DC, the condition R5 = R7 is set [62].

R7 =
1.414

Wc × C
= 6.8 kΩ (4)

2.4.2. Measurement Protocol

The electrode setting for EMG surface measuring was made by following the guide-
lines in the SENIAM regulation for the EMG measuring in upper trapezius muscle [63], as is
shown in Figure 7. The electrodes were obtained from the “LifeCare” company, composed
of an Ag/AgCI electrode with solid gel for improving conduction, snap connection where
these electrodes are hypoallergenic.
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Figure 7. Electrodes location for EMG testing.

The data acquired was taken through a graphic interface over the “Raspbian” en-
vironment with Python language using the Tkinter library (see Figure 5). In total, two
measures in each session were acquired, from stress and relaxation time for 15 s with a
1000 samples per second sample rate. Likewise, a sample was acquired during the execu-
tion of a voluntary movement (i.e., in the shoulder) in every student, for then establishing a
measurements group and data sorting. It is important to clarify that the EMG system tests
were not performed on female students since they expressed it would be uncomfortable
and risky during the COVID-19 pandemic. Thus, the above could take on uncertainty
about the acquired measures by the other systems [64,65].

2.5. Heart Rate Variability

For the physiological signals’ gathering, two channels were used, locating the clamp
electrode, as is shown in Figure 8. For the signal ECG gathering, the ADS1298ECG-FE
module (Texas Instruments, Dallas, TX, USA) from “Texas Instruments” company was set.
This module has 8 analog input channels, and it allows measuring the ECG signal in 12
derivations with a 24 bits resolution.
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Figure 8. Electrode location for ECG signal.

For the R points’ location and setting in the ECG gathered signals, an algorithm
was designed in Python, leaning on the derivative (see Equation (5)) of the ECG signal,
which allows finding the precise localization of each R peak, giving robustness when
compounding the HRV signal. Once all R peaks are detected and the knowledge of sample
rate with which ECG was acquired, the time between every R peak can be determined;
moreover, the concatenation between R peaks represents the HRV signal.

y[n] = x[n]− x[n− 1] (5)

2.6. Processing Methods

The following methods were used for data analysis.

2.6.1. Linear Discriminant Analysis (LDA)

The linear discriminant analysis (LDA) is a data analysis method, it was proposed
for binary class problems in 1936 by Fisher [66]. Its goal is to find the data projection that
minimizes the variance and maximizes the distance between each class of each measure-
ment that compounds the dataset, guaranteeing in that way the maximum separability
between classes, projecting the original matrix data in an inferior dimensional space similar
to the PCA (Principal Compounds Analysis). This technique can be used in reduction
dimensionality problems such as the previous step for the pattern’s sorting and automatic
learning [67]. The algorithm calculates the separability between different classes (this is
known as between-class variance), next, it determines the distance between the mean and
each class sample, known as within-class variance or within-class matrix. Finally, the
algorithm constructs an inferior dimensional space that maximizes the variation within the
class [68].

2.6.2. K Nearest Neighbors (KNN)

The K nearest neighbors (KNN) is an automatic learning method, based on a distance
function that determines the similarity or difference between two distances. Commonly, the
Euclidean distance is used (see Equation (6)), each distance x is represented by an attribute
vector 〈 a1(x), a2(x), . . . , an(x)〉, where ai (x) describes the i-th x attribute value [69]:

d(x, y) =

√
n

∑
i=1

(ai(x)− ai(y))
2 (6)
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The performance of the algorithm depends mainly on the distance metric used for the
identification of the nearest neighbors and the number of set neighbors, it shows better
results when it is applied on large datasets and with reduced dimensions [70].

2.6.3. SVM

Support Vector Machine (SVM) was developed in 1995 by Cortes and Vapnik for
binary sorting [71], it is focused on the class separation and ideals separation hyperplane
that maximizes the margin between the closest points within the classes [72]. When a linear
separator cannot be found, the dataset becomes separable linearly (this projection is made
through kernel techniques). Like other supervised learning algorithms, the SVM is trained
with a labeled dataset that gives a learning base for the future data sorting, assigning them
to a group or another one that is separated [73].

2.7. SISCO Inventory

The SISCO inventory is a psychometric instrument that allows measuring the stress
level in university students. It can be self-taken, and it can be responded to in an indi-
vidual or group setting. It is structured in 37 items that allow: Identifying if the survey
respondent is an adequate candidate or not by answering the inventory (he can be the right
candidate if during the semester he has had worriment or nervousness, if not, he cannot be
a candidate), determining the academic stress level intensity, and identifying the environ-
mental demands that are considered stressing stimulus by the survey respondent [74]. Its
application was made virtually by qualified staff from the University of Pamplona from
the Psychology program. Furthermore, every participant gave their permission for the
use of the questionnaires through an informed consent which was shown to them before
starting the academic stress inventory application, SISCO.

3. Results
3.1. GSR Responses

Immediately after the location of the electrodes on the fingers, the signal registered by
the sensor response was started, and the sensor response was measured in volts. Figure 9
shows the response acquired during the relaxation state. Therefore, the initial measured
value of the skin electric characteristic of each person is different for its physical features,
however, it was observed that during the test, the resultant wave-shape behavior always
tends to be logarithmic when the participant is in a relaxation state.
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Figure 9. Galvanic Skin Response (GSR) signal from a participant in a relaxed state.

Figure 10 shows the GSR signal plot acquired from the same participant during the
measuring, corresponding to the stress state where non-random amplitude variations were
observed, and an important difference in comparison to the wave shape obtained in the
relaxation state measurement that allows discriminating visually between both states.
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Figure 10. GSR signal from a participant in a stressed state.

In an empirical way, it was set at a 5 min minimum period for the GSR signal measuring,
since the measurements taken during shorter periods can generate wrong interpretations.

GSR Data Processing

After the acquisition of GSR signals, these were organized in an array where every
signal was located in the rows and every signal´s data in the columns. This dataset was
normalized using the “StandardScaler” function from the “ScikitLearn” library in Python
programming language. This function can obtain the mean and scale the variance in a
unitary way. In this stage, the LDA algorithm from the same library was applied, where the
resulting LDA algorithm factors were used as training and validation by using the cross-
validation method “k-folds”, with k = 5 for the Support Vector Machine (SVM) algorithm
with the parameters correspondent to the linear kernel.

Figure 11 illustrates the graphic representation of the SVM algorithm response, and
the distance to the hyperplane according to the samples analyzed. Through this method, a
100% success rate of classification with the GSR signal was obtained.
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3.2. E-Nose Responses

From each measure taken by the E-nose, 8 signals corresponding to each gas sensor
that comprises the sensor array were stored. Each sensor response was measured in volts:
the lineal base was eliminated in every signal and they were stored concatenating the
8 signals in a single vector; in that order, every sensor was labeled. Thus, the vectors
corresponding to every participant’s measurements were stored in a matrix, and afterward,
they were standardized using the “StandardScaler” instruction. It is important to mention
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that standardizing is a common requirement for many automatic learning algorithms.
The “ScikitLearn” library was applied to the standardized dataset. Figure 12a depicts
the response in Two-Dimensional (2D), where the orange color represents the samples
corresponding to the measurement in a stress state, and in blue, the samples acquired in a
relaxation state.
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Figure 12. The graphical response of the E-nose classification algorithms. (a) Response in Two-Dimensional (2D) of samples
corresponding to the measurement in a stress state, and in a re-laxation state; (b) Graphic of each sample according to the
hyperplane distance.

The two first compounds resulting from the dimensionality reduction made by the
PCA over the dataset and which represents the 80% variance of data were used for training
and validation, applying the cross-validation method “k-folds”, with k = 5 from the
k nearest neighbors algorithm (KNN). Furthermore, they were established as an input
argument: n-neighbors = 5, metric = ’minkowski’, and p = 2, where n-neighbors corresponds
to the number of neighbors that are going to use the algorithm for data aggrupation. By
using the Euclidean distance, 88.9% precision was attained in the measures sorting. On the
other hand, another additional result was obtained with the PCA which was used for the
input of SVM algorithm training and testing by the cross-validation method “k-folds”, with
k = 5. The linear kernel was set and 90% was obtained in the measurements classification,
in Figure 12b is shown the graphic of each sample according to the hyperplane distance.

3.3. EMG Responses

Figure 13 depicts an upper trapezius muscles EMG signal when a voluntary shoulder
movement is done. In Figure 13a, the amplified signal is shown without filtering, and in
Figure 13b, the filtered signal, the DC compound has been suppressed and the measure´s
variable is given in DC volts, where the signal was acquired during 10 s with a 1000
samples/s sampling rate.

The measurements acquired during a voluntary movement were also used in the
feature extraction for the sorting training algorithm. By including the voluntary movement
characteristics, we can validate that during the stress and relaxation state, the EMG device
was not altered voluntarily. The extracted features for these three labels were: mean
absolute value (MAV), waveform length (WL), zero crossings (ZC), slope sign changes
(SSC), the variance of EMG (VAR), log detector (LD), difference absolute mean value
(DAMV), difference absolute standard deviation value (DASDV), difference variance value
(DVARV), and average amplitude change (AAC), described in detail in Reference [75]. All
these features were concatenated in a vector for each sample, all taken measures’ features
were stored in a matrix and they were normalized with the “StandardScaler” function.
Afterward, the LDA algorithm was implemented for the processing of the dataset.
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Figure 14 illustrates the algorithm response where the resulting factors were crossed
with the SVM algorithm with lineal kernel and using the cross-validation method “k-folds”,
with k = 5, achieving a 90% success rate of classification over the EMG features set.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 24 
 

 

 

Figure 13. EMG signal: (a) Unfiltered signal, (b) filtered signal. 

The measurements acquired during a voluntary movement were also used in the fea-

ture extraction for the sorting training algorithm. By including the voluntary movement 

characteristics, we can validate that during the stress and relaxation state, the EMG device 

was not altered voluntarily. The extracted features for these three labels were: mean ab-

solute value (MAV), waveform length (WL), zero crossings (ZC), slope sign changes 

(SSC), the variance of EMG (VAR), log detector (LD), difference absolute mean value 

(DAMV), difference absolute standard deviation value (DASDV), difference variance 

value (DVARV), and average amplitude change (AAC), described in detail in Reference 

[75]. All these features were concatenated in a vector for each sample, all taken measures’ 

features were stored in a matrix and they were normalized with the “StandardScaler” 

function. Afterward, the LDA algorithm was implemented for the processing of the da-

taset. 

Figure 14 illustrates the algorithm response where the resulting factors were crossed 

with the SVM algorithm with lineal kernel and using the cross-validation method “k-

folds”, with k = 5, achieving a 90% success rate of classification over the EMG features set. 

 

Figure 14. The graphical response of the linear discriminant analysis (LDA) algorithm on the EMG 

feature set. 

Regarding EMG signal, the scatter plot (see Figure 14) shows that the classes that 

make up the dataset of the acquired measures (i.e., relaxation, voluntary movement, and 

stress) are significantly separable, this indicates that the characteristics extracted from 

each signal in the time domain provide relevant information for pattern recognition of 

EMG signals. Besides, different investigations have used this type of time-domain charac-

Figure 14. The graphical response of the linear discriminant analysis (LDA) algorithm on the EMG
feature set.

Regarding EMG signal, the scatter plot (see Figure 14) shows that the classes that
make up the dataset of the acquired measures (i.e., relaxation, voluntary movement, and
stress) are significantly separable, this indicates that the characteristics extracted from each
signal in the time domain provide relevant information for pattern recognition of EMG
signals. Besides, different investigations have used this type of time-domain characteristics
for the identification and classification of muscle movements in different scenarios of daily
life [15,76,77]. For applying the LDA and SVM, the dataset was normalized previously
with the “StandardScaler” function.

3.4. HRV Responses

The ECG module contains a programmable gain amplifier and a sample rate of
500 samples/s, allowing the ECG signal acquisition in an optimal resolution, as is shown
clearly in Figure 15. Besides, in the data gathering and visualization software, digital filters
with a variable cutoff frequency are included, with control and monitoring in real-time of
the resulting signal varying the filter parameters.
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Figure 15. ECG signal acquired.

Figure 16 shows the resulting signals in each stage of the developed algorithm, where
Figure 16a is the ECG signal, previously filtered, Figure 16b is the derivative of the ECG
signal, Figure 16c is the ECG signal’s sample with the R peaks detected by the algorithm
marked with an asterisk, and Figure 16d is the HRV signal sample extracted from the ECG
signal, where amplitude represents the time between R peaks and the horizontal shaft
shows the extracted R points.
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(c) ECG signal’s sample (d) HRV signal sample extracted.

After acquiring all ECG measurements during two minutes with a sample rate of
500 samples/s, the algorithm developed in Python was implemented for the HRV signal
extraction. Figure 17a shows the ECG acquired signal in relaxation state with all R points
identified; in Figure 17b, the HRV signal extracted from 17a is shown, where the amplitude
represents the time between R intervals, and it is measured in seconds. On the other hand,
Figure 17c illustrates the ECG acquired signal from the same participant in the measure
taken in the stress state, and Figure 17d shows the HRV signal extracted from 17c.
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signal from (c).

The vectors that contain the HRV signal were comprised by the RR intervals of the
ECG signal in the time domain, which were stored in a matrix in which the HRV signals
are in the rows and every amplitude signal is in the columns. For using the SVM algorithm,
the LDA factors were used as training and validation by using the cross-validation method
“k-folds”, with k = 5 for the Support Vector Machines (SVM) algorithm. Finally, 88% of
classification was obtained, and the algorithm’s response is shown in Figure 18.
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3.5. SISCO Method Analysis

Through SISCO inventory, it is possible to distinguish three stress levels, these levels
are determined through the intensity with which a situation is considered as stressful from
the student’s perspective. According to the score obtained after the test performance, these
levels can be sorted as follows: 0 to 33 indicates a mild stress level, 34 to 66 represents
a moderate stress level, and scores between 67 to 100 are considered a deep academic
stress level.

Consequently, according to the global psychometric data obtained in the psychological
analysis, in the group of student survey respondents, 4% show mild stress levels, 64% are
at a moderate stress level, and the remaining 32% show intense stress levels, as represented
in Figure 19.
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Figure 19. Level of stress in the study population.

The following information was obtained among the most representative data: mean
equal to 55.44, which keeps within the range equivalent to moderate stress, a 54 grades
median, and a 45 points mode. Thus, the standard deviation was equalized to 12.8, and the
variance coefficient was 23.

Through the questionnaire, a 10-item “Likert-scale” was applied to identify the envi-
ronmental demands which are perceived as stressful stimulus. In this section, the results
are shown in the relevant order: Teacher´s exams, homework overload, and fear of getting
the answers wrong, which were the most representative stressful factors in the students’
academic performance.

Besides, in the 18-item section from the SISCO inventory, the symptoms or reactions
toward the stressful stimulus are indicated, among which are sleep disorders, anxiety,
concentration problems, and headaches. These were the symptoms shown with more
frequency among the students. The confrontation strategies were assessed in an 8-item
section, among which stood out: Defending their ideas without damaging others, a plan
elaboration, homework execution, and information searching about the situation. The
professional assistance searching was one of the strategies with which the participating
students least related to.

On the other hand, Table 3 illustrates the results of the SISCO inventory and the GSR
signals which depicted that there was a correlation between the different stress levels (i.e.,
Deep, Moderate, and Mild), where the maximum and minimum values from the GSR signal
were extracted to determine the sensitivity of the device. It should be clarified, once the
analysis was performed with four devices used in this study, the GSR device was chosen
for the correlation of the data since it revealed a better classification and correlation of the
results. Therefore, it can be seen that there is a correlation both in the SISCO data and the
signal measured by the electronic device. It can be seen that the results of the three different
stress levels obtained by SISCO can be almost completely matched with the sensitivities
calculated from the GSR signals. To perform the comparison of the results, the sensitivity
of each of the electrode signals was determined. Therefore, the range taken for this study
was 100%, which was related to the highest value obtained in the sensitivities, which was
0.5. Thus, the range of 0–0.165 was established, which corresponds to the mild level of
stress, from 0.17–0.33 to moderate stress, and finally, for a deep level of stress, which was
0.335–0.5.

Therefore, among the SISCO tests and the response of the GSR signals, it was possible
to obtain a 92% success rate since only two signals (C and X) were not matched correctly.
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Table 3. Comparison among SISCO inventory and Galvanic Skin Response (GSR) signal.

Student
SISCO GSR

Score Stress Level Sensitivity Stress Level

A 46 Moderate 0.23560 Moderate
B 70 Deep 0.36670 Deep
C 66 Deep 0.32986 Moderate
D 46 Moderate 0.21543 Moderate
E 44 Moderate 0.22256 Moderate
F 63 Moderate 0.32087 Moderate
G 35 Moderate 0.28092 Moderate
H 74 Deep 0.45831 Deep
I 51 Moderate 0.27593 Moderate
J 66 Deep 0.34669 Deep
K 45 Moderate 0.25159 Moderate
L 71 Deep 0.37501 Deep
M 31 Mild 0.12581 Mild
N 63 Moderate 0.23650 Moderate
O 44 Moderate 0.19235 Moderate
P 61 Moderate 0.21188 Moderate
Q 73 Deep 0.34540 Deep
R 72 Deep 0.36484 Deep
S 54 Moderate 0.30226 Moderate
T 52 Moderate 0.26412 Moderate
U 41 Moderate 0.29144 Moderate
V 49 Moderate 0.26504 Moderate
W 68 Deep 0.49330 Deep
X 57 Moderate 0.33670 Deep
Y 45 Moderate 0.24072 Moderate

4. Discussion

Significant variations were found in the measurements taken during an exam perfor-
mance in comparison to the other measurements taken in relaxation state through the EMG
signal features. The above was because the EMG measurement response changes from
one person to another due to their physical characteristics such as body fat percentage, the
age, the kind of sports activities done by the students, or the lack of activities that include
physical effort. Therefore, it is necessary to count on an efficient normalization method
that allows reducing the variability in the EMG signal features, and in this way, responses
could be improved through the classification algorithms.

Besides, it can be mentioned that different factors may occur in the GSR signal re-
sponse, such as a participant’s deep breathing execution while the signal is being taken,
which can induce an amplitude decrease during the measuring time. For that reason, every
student was told to abstain from doing deep breathing during the 5 min measuring time.
However, in these cases, the sample was dismissed and was taken again.

In the same way, it was demonstrated that a slight decrease in the HRV response
amplitude was acquired in the stress state measures in comparison to relaxation states
per student. The above is in line with the hypothesis in which the stressing events induce
an increase in the heart rate [16]. However, for future research, it would be important
to consider the use of adhesive electrodes that allow a better conductivity, since some
students have shown ECG signals with very low intensity or amplitude, which is why it
was necessary to modify the algorithm for keeping the R peaks right and recognizing the
ECG signal.

Concerning the E-nose response, the commercial sensors selected were capable of
detecting the Volatile Organic Compounds emitted by skin, since it was possible to make a
differentiation in various categories. We can highlight that these kind of sensors are also
sensible to VOC’s presence in breath [78]. That is why it is important to handle the E-nose
system carefully for avoiding the VOC’s emitted by breathing becoming absorbed in the
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measuring time, inducing possible confounding factors in the acquired data. The low cost
of commercial gas sensors based on metal oxide semiconductors are a good option for their
use in multisensorial systems with biomedical applications, in addition to their diversified
use in industrial applications [79,80].

It is worth considering that the psychosocial and physical aspects of daily life, such as
family, economic, and behavior problems, as well as events that happen in our environ-
ment and that we cannot control, for example, in the job, such as an overload of work or
being fired, can generate alterations in the student´s mental state. Moreover, other factors
such as personal problems with teachers, low academic performance, the loss of a loved
one, domestic violence, as well as psychoactive substances consumption, medicines, and
unbalanced feeding, can alter the body’s response toward different environmental stimu-
lus [81,82]. Experiences like these increase the importance of knowing the current profile
and situations that the participant volunteers have been through in this research since it is
possible to minimize wrong judgments that can hamper the research advancements and
the evaluation of new technologies.

It is important to clarify that the LDA pattern recognition method was used with
two main factors (F1 and F2) to apply the SVM algorithm. Therefore, the success rate in
data classification was good because the best information was obtained from the dataset
before applying SVM. This study was conducted to detect the level of stress during the
COVID-19 pandemic as a pilot study carried out on engineering students at the University
of Pamplona, where it was not easy to acquire the samples due to the risks caused by
COVID-19 at the time of acquiring the samples, and the lack of cooperation on the part
of the students. However, some students agreed to perform the different tests with the
electronic devices during the virtual exam. It is noteworthy that one of the key points for
the success in the acquisition and classification of the samples was because of the fact that
the students had two quite noticeable options, one was to think about being able to pass the
exam and the other to lose it. Thus, these two scenarios generated in them quite noticeable
stress in either of the two situations during the exam.

Consequently, the present study generated interesting results through the detection of
stress in academic contexts. Therefore, we can say that this study is the first to be carried
out on this subject.

Indeed, there are many articles on the topic of stress using electronic devices and
where good results have been obtained in the classification of the measures. For instance,
one study investigated the efficacy of the data fusion from off-the-shelf sensors to accurately
determine stress in humans, in this case, the SVM reached 100% [83]. In another work, SVM
was applied for mental stress detection in University Students. The algorithm obtained
100% specificity to classify the dataset [84].

It is necessary to highlight that no work was found in relation to the combination of
LDA + SVM for stress classification.

In this study, we want to highlight the Quintero-Posada and Chon article as they
have done a study with different alternative techniques, like spectral analysis, which have
emerged as potential tools for the analysis of the electrodermal activity (EDA). These new
methods and tools may help us to generate new applications in the future by using the
signals information obtained from the electronic devices to monitor the mood or stress of a
person for short- and long-duration data records [85].

5. Conclusions

Through the methodology proposed by using electronic devices, it was possible to get
a high precision in the acquired data corresponding to every state (stress and relaxation
state), because these were used in a real situation in which the student was taking a virtual
exam. According to the SISCO inventory results of the academic stress, the exams are
considered a stressing agent with the most relevance in the academic population.

With the GSR device, a better response could be obtained for detecting stress. There-
fore, a 100% success rate was obtained in data classification, and moreover, we can mention
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that this device is still one of the most efficient methods for stress detection. This system
also allowed recognizing, visually from the gathered wave-shape, the participant’s state
(stressed or relaxed). However, it is important to keep on classifying the GSR response
wave-shape in different situations and environments, since some researchers suggest that
the state of mind can alter the GSR signal amplitude [82]. Consequently, it would be
important that in future research, each person’s characteristics can be defined before its use.

With the VOC’s detection technology from the E-nose, 90% classification was obtained;
besides, this could be incremented with the application of more advanced pattern recog-
nition techniques. However, though good results were obtained, and it has been the first
research conducted for measuring stress in a pandemic situation, it would be worthwhile
to compare the proposed system functioning with classical gas analysis techniques such
as gas chromatography and mass spectrometry (GC-MS), for being able to validate the
proposed protocol adequately.

In this research, only the HRV signal response was assessed with the single-channel
device designed, so, for future investigations, a two-channel device could be implemented
that allows acquiring the EMG response of the two shoulders to obtain more information
that could increase to a 90% success rate and continue exploring a better measurement
protocol, since the resulting signal amplitude could be affected for the electrode responses.

Finally, from the HRV signal response, 88% of data classification was achieved, con-
firming that ECG systems are still a good option in psychophysiological research that
expects to measure the person’s physiological behavior.

We want to mention that the most significant aim of the study was to try to detect
the academic stress during the COVID-19 pandemic by using different kinds of electronic
devices, as we wanted to see how the virtual exams could generate stress in the university
students and which of those devices could be more efficient to detect it. Thus, it is very
important to comment that there were a lot of issues with regards to the sample collections
because the students were quite scared, and they did not have much time to collaborate
with this study because they had exams. However, at the end of this study, the students
agreed and they were willing to participate in the different experiments to obtain results.

Nonetheless, despite the limited number of samples acquired due to the pandemic
period and to the difficulty of being in direct contact with the student, we still obtained
promising results for further investigations. Therefore, from this first research performed
with each electronic device exposed in this article, we hope that we can take larger mea-
surements set after the pandemic, considering more deeply the participants’ characteristics
and states before performing the test with the sensorial devices and psychological analysis.
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