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Abstract: Vocal melody extraction is an important and challenging task in music information re-
trieval. One main difficulty is that, most of the time, various instruments and singing voices are
mixed according to harmonic structure, making it hard to identify the fundamental frequency (F0)
of a singing voice. Therefore, reducing the interference of accompaniment is beneficial to pitch
estimation of the singing voice. In this paper, we first adopted a high-resolution network (HRNet) to
separate vocals from polyphonic music, then designed an encoder-decoder network to estimate the
vocal F0 values. Experiment results demonstrate that the effectiveness of the HRNet-based singing
voice separation method in reducing the interference of accompaniment on the extraction of vocal
melody, and the proposed vocal melody extraction (VME) system outperforms other state-of-the-art
algorithms in most cases.

Keywords: vocal melody extraction; singing voice separation; high-resolution network; encoder-
decoder network

1. Introduction

Melody extraction is a process of automatically estimating the F0 values that represent
the pitch of the leading voice or instrument in a polyphonic music piece. This is an
important task in music information retrieval (MIR), with many potential applications such
as query by humming, cover song identification, and music transcription [1]. However,
this task is very challenging because of two main factors: first, it is common in polyphonic
music that multiple instruments and singing voices are played together and thoroughly
mixed up according to the harmonic structure, making it very difficult to separate and
recognize F0 values for an individual instrument. Second, even though F0 values can be
correctly identified, to determine whether they belong to the leading melody still needs
arduous efforts.

Existing melody extraction algorithms can be roughly divided into three frameworks,
i.e., pitch-salience based [2], source separation based [3,4] and data-driven based meth-
ods [5–7]. Source separation based methods have more potential to overcome the above
difficulties and substantially foster the advances of melody extraction.

Source separation based vocal melody extraction (VME) methods benefit from the
quality of the separated vocal signal [8]. As is known, the task of singing voice separation
(SVS) is still a challenging task in MIR. Improving its performance will be beneficial for
VME. In recent years, following the idea of regarding the spectrogram of an audio signal as
an image, some end-to-end deep neural networks originally designed for computer vision
have been successfully introduced into singing voice separation. Two examples are the
UNet architecture [9] designed for medical imaging and the stacked hourglass network
(SHNet) [10] developed for human pose estimation. Both of them achieved promising
results on the SVS task [11,12].
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In fact, position information is important for the SVS, since the time-frequency position
of each pixel in the output spectrogram corresponds to its position in the input spectro-
gram. Powerful high-resolution representation are helpful for such position-sensitive
tasks, including human pose estimation task and semantic segmentation task in computer
vision [13]. A high-resolution network (HRNet) was designed for human pose estima-
tion in natural images in [14]. It maintains high-resolution representation throughout the
whole process, while previous methods all recovered high resolution from low or medium
resolution, such as UNet and SHNet. The output of the HRNet is spatially more precise.
Therefore, this motivated us to adopt the HRNet for the SVS, taking a spectrogram of a
mixture signal as the input and outputting a soft mask of the vocal signal.

After obtaining the separated vocal signal, we built an encoder-decoder network
comprising of encoder-decoder layers and a fully connected (FC) layer to learn the mapping
between the vocal spectrogram and its corresponding F0 values. Recently, encoder-decoder
architecture has demonstrated its powerful performance for VME. Lu et al. [15] adopted
an encoder-decoder network with dilated convolutions and Hsieh et al. [6] constructed
an encoder-decoder network with pooling indices. Simulating the process of semantic
segmentation, they took the combined frequency and periodicity representation as inputs
and outputted a two-dimensional salience image where frequency bins with maximum
values per frame were selected. Unlike them, we designed the encoder-decoder layers to
learn the essential features that characterize vocal F0 values from the input spectrograms.
Then the FC layer taking the learned features as input to classify each frame to the category
it belongs to.

In summary, the contributions of this paper are as follows: first, we adopted an
HRNet for the SVS to reduce the interference of accompaniment. Second, we designed
an encoder-decoder network taking the separated vocals to estimate vocal F0 values.
Finally, by comparing the evaluation results on three public test datasets, we show that
the proposed two-stage vocal melody extraction system outperforms four state-of-the-art
systems in most cases.

2. Related Work
2.1. High-Resolution Representation Learning

In image vision tasks, there are two kinds of representation. One is low-resolution
representation mainly for image classification, the other is high-resolution representation
for position-sensitive tasks, such as semantic segmentation and object detection, etc. [16].

As for the high-resolution representation, there are two strategies: high-resolution
recovering and high-resolution maintaining [16]. The former generally reduces the resolu-
tion of representation firstly and then gradually recovers the resolution of representation.
The latter connects the multi-resolution branches in parallel and fuses the multi-resolution
representation, which can maintain high-resolution representation throughout the whole
process. The architectures of U-Net and SH-Net, which both capture high-resolution
representation via the first strategy, have been introduced for the SVS task and achieved
impressive performance [11,12]. Figure 1 gives two examples illustrating two representa-
tion respectively.

Figure 1. An example of high-resolution representation recovering (left) and an example of high-
resolution representation maintaining (right).
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2.2. Singing Voice Separation

With the development of deep learning, several deep neural networks have been used
for the SVS task. Compared with conventional matrix factorization based methods [17],
these deep learning methods have significantly improved the performance in terms of both
objective evaluation metrics and subjective auditory tests. Chandna et al. [18] proposed an
encoder-decoder framework for audio source separation. Next, the deep neural networks
designed for computer vision, e.g., U-Net and SH-Net, were introduced to the SVS task and
achieved impressive performance [11,12]. The U-Net architecture added skip connections
between the convolutional layers with the same resolution in the encoder layers and
decoder layers, which was able to improve the precision of the location of feature maps
in the decoder layers. The SH-Net stacked multiple hourglass modules and consolidated
information across all scales of the input, which was able to capture the various spatial
relationships associated with the target. Next, the Stoller et al. [19] proposed the Wave-U-
Net model which took the original waveform as the input and separated it into isolated
source waveforms simultaneously. Besides, a recurrent neural network architecture with
bidirectional long short-term memory (biLSTM) layers has also been established, which
can take into account the context information [20]. Most recently, SPLEETER [21] as a SVS
tool was released, which used a large-scale dataset to train the U-Net architecture proposed
in [11] and achieved state-of-the-art performance.

2.3. Source Separation-Based Vocal Melody Extraction

Durrieu et al. [3] represented the leading vocals by using a specific source/filter model,
and the accompaniment by using the sum of an arbitrary number of sources with distinct
spectral shapes. Then a maximum likelihood framework was adopted to estimate the
model parameters and obtain the F0 sequence. Tachibana et al. [4] enhanced the melodic
components by successively using Harmonic/Percussive Sound Separation (HPSS) twice.
The basic idea of HPSS is that melodic components exhibit temporal variability/stability
compared with sustained chord notes/percussive components. Fan et al. [8] first used
a deep neural network (DNN) to separate the vocal components and accompaniment
components, then applied an adaptive dynamic programming method to extract the
vocal values.

Most recently, Nakano et al. [22] and Jansson et al. [23] almost at the same time
proposed to train the SVS task and the VME task jointly. Both methods obtained promising
results. In [22], a joint U-Net model stacking SVS and VME was proposed. However,
limited by the size of datasets containing both pure vocal tracks and their corresponding
F0 annotations, the authors used a large internal dataset where reference F0 values were
annotated by the VME method Deep Salience [5]. According to the performance of Deep
Salience reported in [22], the F0 values estimated by Deep Salience still contain errors,
which limits the performance of this method to a certain extent. In [23], the authors
designed a differentiable layer that converts an F0 saliency spectrogram into harmonic
masks indicating the locations of harmonic partials of a singing voice. However, this system
is not robust to the backing vocals, since in the SVS task the backing vocals belong to vocals
but in the VME task, the pitches of backing vocals do not belong to the vocal melody.

To avoid the limitations above, we propose a two-stage vocal melody extraction
method. The first stage used an HRNet for the SVS and the second stage built an encoder-
decoder network for VME. In this way, each task can be trained using their datasets with
precise annotations, and the training process is not affected by backing vocals.

3. Method
3.1. The Architecture of the Used HRNet

The architecture of the used HRNet is illustrated in Figure 2. It takes a magnitude
spectrogram as the input and feeds the input into two 3 × 3 convolutional layers with a
stride of 1. Unlike [14], we do not decrease the resolution here, for we want to preserve the
high resolution of the input throughout the whole process.
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Figure 2. The architecture of the used high-resolution network (HRNet) for singing voice separation.

Subsequently, four stages constitute the main body. In the first stage, there are 4
residual units, each of which, the same as the ResNet-50 [24], is established by a bottleneck
with a width (the number of channels) of 16. A 3 × 3 convolutional layer with a stride
of 1 follows to transfer high-resolution representation into the second stage. The second,
third, and fourth stages contain 1, 4, and 3 modules described below, respectively. Figure 3
provides the third stage where 4 modules are stacked in series.

Figure 3. The third stage of the used HRNet connecting 4 modules in series.

In each module, there are two parts: parallel multi-resolution convolutions (as shown
in Figure 4-left) and multi-resolution fusion (as shown in Figure 4-right). In the first
part, the branches with different resolutions are connected in parallel. In each branch,
there are 4 basic blocks. Each basic block comprises of two 3 × 3 convolutional layers,
a batch normalization (BN) layer, and rectified linear units (ReLU). In the second part of
each module, the branches with different resolutions are fused to exchange information.
Specifically, the low-to-high process which increases the resolution is done by simply
using bilinear upsampling, and the high-to-low process which decreases the resolution is
done by using several strided convolutions (3 × 3 convolutional layers with a stride of
2). The number of strided convolutions required is determined by the resolution of the
input feature maps and that of the target feature maps. If the resolution decreases from a to
b (a > b | a, b ∈ [1, 1/2, 1/4, 1/8]), N (N = log2(a/b)) strided convolutions are required.
Finally, the target feature maps of each branch are calculated by summation of the results
of the up/downsampling process. Figure 5 illustrates the details of low-to-high process
and high-to-low process in multi-resolution fusion.

Figure 4. One module in the third stage: the left represents the parallel multi-resolution convolutions
and the right displays the multi-resolution fusion.
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Moreover, at the end of each stage, except the fourth stage, a 3 × 3 convolutional
layer with a stride of 2 is used to decrease the resolution to start a new branch. On the
whole, from top to bottom, the resolution of four branches is decreased by half (1, 1/2, 1/4,
and 1/8) each time and the number of channels is accordingly doubled (16, 32, 64, and 128).

Figure 5. An example illustrating the low-to-high process and the high-to-low process for multi-
resolution fusions. Resolution increase from 1/2 to 1 and that from 1/4 to 1 both simply use bilinear
upsampling. Resolution decrease from 1 to 1/2 needs one strided convolution and that from 1 to 1/4
needs two consecutive strided convolutions.

After four stages, four feature maps with a resolution of 1, 1/2, 1/4, and 1/8 are
generated, respectively. To obtain the soft mask for the target signal, the feature maps with
the resolution of 1/2, 1/4, and 1/8 are rescaled to the feature maps with a resolution of 1
by using bilinear upsampling without changing the number of their channels, as shown
in Figure 6. Finally, we concatenate these four high-resolution feature maps and use two
1 × 1 convolutional layers with a stride of 1 to produce the target mask.

Figure 6. The output representation.

3.2. Training Details of SVS

The input of the HRNet were magnitude spectrograms calculated from mixture audio
by Short-Time Fourier Transform (STFT) with a window size of 1024 and a hop size of 512.
The mixture audio was downsampled into 16 kHz to speed up processing. For training
the network with mini-batches, the input spectrograms were divided into fixed-length
segments of 64 frames, nearly 2 s long.

The HRNet was supervised by the magnitude spectrograms of vocals corresponding
to the input mixture audio. It outputted the soft masks for the vocals. Then we multi-
plied the output soft masks with the input mixture spectrograms to obtain the estimated
vocal spectrograms.

Following [11], the loss function was calculated by the L1 norm of the difference
between the estimated vocal spectrogram and the target vocal spectrogram, defined as

L(X, Y) = ‖ f (X)� X−Y‖1, (1)

where X indicates the input mixture spectrogram, f (X) represents the output mask from
the HRNet taking the X as the input, Y means the target vocal spectrogram, and � is
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element-wise multiplication of two matrices. The L1 norm of a matrix is calculated by the
sum of the absolute values of all elements.

The ADAM optimizer was used to minimize the loss function. The learning rate was
set to 0.0001 and batch size 5. During inference, given a mixture audio signal, we first used
the trained HRNet to obtain the estimated vocal spectrograms and then combined them
with the phase of the corresponding input mixture to reconstruct the vocal signals.

3.3. Encoder-Decoder Network

In this section, an encoder-decoder network is designed to estimate F0 values. As shown
in Figure 7, it takes a magnitude spectrogram as the input and begins with two 3 × 3 con-
volutional layers with a stride of 1 and a width of 128.

Three encoder blocks are then built. Each one contains a max-pooling layer with a
stride of 4, a 7 × 7 convolutional layer with a stride of 1 and a width of 64, and a 5 × 5
convolutional layer with a stride of 1 and a width of 64 in order. The max-pooling layer in
each block is only conducted on the frequency axis, hence all feature maps preserve the
input size on the time axis. Also, each convolutional layer is followed by a BN layer, leaky
ReLU with leakiness 0.01, and a dropout layer with 50%.

Figure 7. The architecture of the proposed encoder-decoder network for vocal melody extraction.

Next, two decoder blocks are constructed. Each one consists of a 7× 7 deconvolutional
layer with a stride of 4 without changing channel number, and a 5 × 5 convolutional layer
with a stride of 1. We also add skip connections at the convolutional layers with the same
resolution in the encoder and decoder to strengthen the representation of decoder blocks.
Each convolutional/deconvolutional layer is followed by a BN layer and leaky ReLU with
leakiness 0.01.

The feature maps outputted from the last decoder block are then flattened on the
frequency axis. At this point, each frame is represented by a 1024-dimensional feature
vector. Finally, these feature vectors are fed into the FC layer with a softmax function to
estimate F0 values frame by frame.

3.4. Training Details of VME

The input of the encoder-decoder network was the magnitude spectrogram of an audio
signal calculated by STFT with a window size of 1024 and a hop size of 80. The sampling
rate was set to 8 kHz and the input spectrograms were divided into fixed-length segments
of 20 frames, nearly 0.2 s long. Following [7], the pitch frequency range we considered in
this paper was from 73.41 Hz (MIDI Number 38) to 987.77 Hz (MIDI Number 83) with
a resolution of 1/8 semitone, hence the total pitch class number was 362, including an
unvoiced class.

The ADAM optimizer was used to minimize the loss function calculated from cross
entropy. The initial learning rate was set to 0.0015 and batch size 16. After each epoch of
training, the learning rate was reset to 98% of its previous one.

During inference, given an audio signal, the trained encoder-decoder network out-
putted the posterior distribution of each class against a total of 362 classes frame by frame.
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The frequency bin with the maximum value per frame was selected and directly converted
into frequency as follows:

f =

{
2(bin−1)/96 ∗ 73.41 bin ∈ [1, 361]

0 bin = 0
(2)

where bin means the selected frequency bin with maximal activation of each frame.

4. Experiments

In this section, we first describe the used datasets and evaluation metrics, then analyze
the experiment results.

4.1. Datasets

The following datasets were used for our experiments,
(1) MUSDB18 [25]: 150 full-length music tracks (about 10 h) of different genres, along

with their isolated drums, bass, vocals, and other stems. It is composed of a training subset
(100 songs) and a test subset (50 songs). To train the HRNet for the SVS, we constructed a
dataset of 400 songs (around 29 h) by randomly mixing the vocals and accompaniment in
the MUSDB18 training subset.

(2) iKala [26]: 252 Chinese clips of 30 s performed by six professional singers. Among
them, 225 songs were used to train the encoder-decoder network for VME and 27 songs
were used for validation.

(3) RWC Popular Music [27]: 80 Japanese popular songs and 20 American popular songs
with vocal F0 annotations. Among them, 85 songs were used to train the encoder-decoder
network for VME and 15 songs were used for validation.

(4) MedleyDB [28]: 122 songs of a variety of musical genres with F0 annotations. In our
experiments, 59 songs dominated by vocals were used for VME. We divided them into two
parts, 49 songs for training and 10 songs for validation.

(5) ADC2004 (https://labrosa.ee.columbia.edu/projects/melody/): 20 clips of 20 s
that contain pop, jazz, and opera songs. The 12 songs dominated by vocals were used
for evaluation.

(6) MIREX05 (https://labrosa.ee.columbia.edu/projects/melody/): 13 excerpts of
around 30 s with F0 annotations. The 9 songs dominated by vocals were used for evaluation.

(7) MIR1k [29]: 1000 Chinese songs clips of about 10 s with vocal F0 annotations. All
of the clips were used for evaluation.

4.2. Evaluation Metrics

By convention, five metrics were calculated by using the mir_eval toolbox [30], i.e., voic-
ing recall rate (VR), voicing false alarm rate (VFA), raw pitch accuracy (RPA), raw chroma
accuracy (RCA), and overall accuracy (OA). These metrics are calculated as below:

VR =
voiced f rames where voicing are estimated correctly

voiced f rames
, (3)

VFA =
unvoiced f rames where unvoicing are estimated mistakenly

unvoiced f rames
, (4)

RPA =
voiced f rames where pitches are estimated correctly

voiced f rames
, (5)

RCA =
voiced f rames where chromas are estimated correctly

voiced f rames
, (6)

OA =
f rames where pitches and voicing are estimated correctly

total f rames
(7)

https://labrosa.ee.columbia.edu/projects/melody/
https://labrosa.ee.columbia.edu/projects/melody/
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The OA is generally thought to be more important [6]. In the experiments, we con-
sidered an estimated pitch value to be correct when it falls within 50 cents around the
ground truth.

4.3. The Effect of the HRNet-Based SVS on the VME Task

The first experiment we conducted was to assess the effectiveness of the HRNet-
based SVS on VME. For comparison, three state-of-the-art SVS methods, i.e., SHNet [12],
UNet [11], and WaveUnet [19] were also evaluated. We used the online source codes and
the trained models of WaveUNet and SHNet. As for UNet, since there is no publicly
available source code online, we reimplemented their architecture and trained it on the
training dataset we used.

The above SVS methods were followed by our proposed encoder-decoder network,
forming four melody extraction systems respectively named as HR-ED, SH-ED, U-ED,
and WaveU-ED. Comparison results are listed in Tables 1–3. Each value in the tables is
represented in the form of a± b, where a is the mean of the metric over each test dataset,
and b is the standard deviation. As can be seen, the method HR-ED outperformed other
methods on most metrics for each test dataset. It indicates that HRNet-based SVS can more
effectively reduce the interference of accompaniment for the extraction of the vocal melody.

Specifically, compared with the best results of existing methods on ADC2004 (see
Table 1), our method achieved a gain of 0.4% at VR, −1.8% at VFA, 0.7% at RPA, and 0.1%
at RCA, and 2.0% at OA, respectively. Except the VFA, where the HR-ED was inferior
to the SH-ED, the HR-ED performed best. Comparisons on the MIREX05 (see Table 2)
show that the HR-ED achieved a gain of 0.6% at VR, −0.5% at VFA, 0.7% at RPA, 0.6% at
RCA, and 1.2% at OA. It also performed best with only one exception that for the VFA,
it was slightly inferior to SH-ED (4.9% vs. 4.4%). On the MIR1k dataset, our method
achieved a gain of 5.3% at VR, −2.1% at VFA, 7.4% at RPA, 5.8% at RCA, and 8.4% at
OA, respectively, as shown in Table 3 (Please note that the SHNet was not included in
this evaluation, for it used the MIR1k as the training dataset.). It is obvious that the
HR-ED significantly outperformed other methods in most cases, except the metric VFA.
The reason why the VFA is lower may be that the vocals separated by the HRNet still
retained relatively more instrument sounds. But the HRNet achieved the highest OA on
each dataset, demonstrating that among these SVS methods, it achieved the highest vocal
quality for the VME task.

Table 1. Comparison of different singing voice separation methods for vocal melody extraction
(VME) on ADC2004 dataset.

Algorithms VR VFA RPA RCA OA

WaveU-ED 88.8 ± 9.4 16.4 ± 17.0 86.2 ± 9.3 88.0 ± 8.9 85.0 ± 9.0
SH-ED 77.6 ± 16.7 7.2 ± 10.1 73.8 ± 16.1 76.9 ± 13.9 75.4 ± 15.7
U-ED 87.1 ± 10.2 9.3 ± 9.9 83.6 ± 10.6 85.2 ± 9.4 84.4 ± 8.9

HR-ED 89.2 ± 10.6 9.4 ± 11.0 86.9 ± 10.5 88.1 ± 9.4 87.0 ± 8.5

Table 2. Comparison of different singing voice separation methods for VME on MIREX05 dataset.

Algorithms VR VFA RPA RCA OA

WaveU-ED 92.2 ± 6.3 6.8 ± 3.3 86.1 ± 8.1 86.6 ± 7.6 88.8 ± 5.1
SH-ED 88.3 ± 8.0 4.4 ± 2.4 83.3 ± 9.3 84.2 ± 8.6 87.7 ± 5.7
U-ED 89.0 ± 8.1 5.6 ± 2.8 82.8 ± 9.2 83.7 ± 8.7 87.2 ± 5.5

HR-ED 92.8 ± 4.8 4.9 ± 5.1 86.8 ± 6.5 87.2 ± 6.2 90.0 ± 5.1
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Table 3. Comparison of different singing voice separation methods for VME on MIR1k dataset.

Algorithms VR VFA RPA RCA OA

WaveU-ED 75.7 ± 15.2 5.1 ± 8.0 67.9 ± 18.6 72.2 ± 15.6 76.0 ± 13.8
U-ED 82.2 ± 8.6 11.2 ± 9.8 73.7 ± 11.4 77.4 ± 9.2 78.2 ± 9.0

HR-ED 87.5 ± 8.6 7.2 ± 9.8 81.1 ± 11.4 83.2 ± 9.2 84.6 ± 9.0

Furthermore, we counted the distribution of each metric over each track in each test
dataset, as shown in Figure 8. It is observed that the median VR, RPA, RCA, and OA
values of HR-ED are also higher than those of other SVS methods for each dataset. These
results further verified the better performance of the HRNet on reducing the interference
of accompaniment.
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Figure 8. Statistical comparison of different singing voice separation methods for VME on three public datasets.

4.4. Comparison with the State-of-the-Art

The second experiment was to evaluate the performance of the proposed VME system.
Two strategies of our method were evaluated: (1) EDNet, which directly took the original
mixture audio as the input to predict F0 values; (2) HR-ED, which took the vocals separated
by HRNet as the input to predict F0 values. For comparison, we also evaluated four other
state-of-the-art melody extraction methods, i.e., DSM [5], SEG [15], SED [6], and JDC [7].

Tables 4–6 list the comparison results on three public datasets, respectively. As we
can see from these tables, HR-ED achieved higher VFA, RCA, RPA, and OA than EDNet
on each dataset. For EDNet, compared with the existing methods, it obtained the highest
RPA values (86.9% on ADC2004, 83.5% on MIREX05, and 75.4% on MIR1k) and RCA
values (87.0% on ADC2004, 84.0% on MIREX05, and 79.8% on MIR1k). These results
demonstrate the EDNet is powerful in predicting F0 values from a frame containing
melody. We can also observe that it was defeated at VFA by other state-of-the-art systems
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on each dataset (26.2% on ADC2004, 19.8% on MIREX05, and 29.8% on MIR1k). These
results demonstrate the performance of the EDNet in discriminating vocal and non-vocal
segments is relatively poor.

As expected, by combining the EDNet-based VME method with the HRNet-based
SVS method, the HR-ED decreased the VFA from 26.2% to 9.4% on the ADC2004 dataset,
from 19.8% to 4.9% on the MIREX05 dataset, and from 29.8% to 7.2% on the MIR1k dataset.
Meanwhile, its RPA, RCA, and OA values on each dataset were also significantly improved
and outperformed the state-of-the-art algorithms.

Also, we counted the distribution of each metric over each track in each test dataset,
as shown in Figure 9. It can be seen that the median RPA, RCA, OA on each dataset
are higher than the other four state-of-the-art systems, which verified again the positive
effects of the HRNet-based SVS method on reducing interference of accompaniment and the
powerful performance of the proposed two-stage method for the extraction of vocal melody.

Table 4. Comparison of vocal melody extraction systems on ADC2004 datasets.

Algorithms VR VFA RPA RCA OA

DSM 83.0 ± 13.5 36.9 ± 27.2 74.7 ± 15.6 78.1 ± 14.1 72.0 ± 14.3
SEG 73.9 ± 8.8 2.4 ± 2.8 67.0 ± 11.0 69.3 ± 10.6 70.9 ± 11.5
SED 91.1 ± 8.8 19.2 ± 17.0 84.6 ± 9.5 86.2 ± 9.0 83.7 ± 8.0
JDC 88.8 ± 7.3 11.3 ± 11.7 83.2 ± 10.4 85.2 ± 8.5 83.0 ± 9.1

EDNet 89.4 ± 9.4 26.2 ± 20.4 85.3 ± 10.0 87.0 ± 9.1 82.6 ± 9.4
HR-ED 89.2 ± 10.6 9.4 ± 11.0 86.9 ± 10.5 88.1 ± 9.4 87.0 ± 8.5

Table 5. Comparison of vocal melody extraction systems on MIREX05 datasets.

Algorithms VR VFA RPA RCA OA

DSM 79.1 ± 11.6 24.5 ± 11.5 71.9 ± 11.4 73.5 ± 10.7 73.6 ± 5.8
SEG 87.3 ± 4.9 7.9 ± 4.7 80.8 ± 6.2 82.5 ± 6.5 84.9 ± 5.4
SED 84.8 ± 7.1 13.2 ± 10.2 75.4 ± 9.7 76.6 ± 9.2 79.5 ± 8.1
JDC 88.2 ± 6.9 4.2 ± 2.2 82.6 ± 8.5 83.2 ± 8.2 87.6 ± 5.0

EDNet 90.2 ± 4.98 19.8 ± 9.1 83.5 ± 6.7 84.0 ± 6.4 82.3 ± 5.6
HR-ED 92.8 ± 4.8 4.9 ± 5.1 86.8 ± 6.5 87.2 ± 6.2 90.0 ± 5.1

Table 6. Comparison of vocal melody extraction systems on MIR1k datasets.

Algorithms VR VFA RPA RCA OA

DSM 70.0 ± 15.5 41.4 ± 20.2 53.8 ± 20.3 59.2 ± 18.0 55.2 ± 16.9
JDC 81.8 ± 12.6 14.3 ± 15.0 72.9 ± 15.1 75.5 ± 13.2 77.0 ± 12.0

EDNet 87.3 ± 8.0 29.8 ± 18.6 75.4 ± 14.3 79.8 ± 10.4 73.5 ± 12.4
HR-ED 87.5 ± 8.6 7.2 ± 9.8 81.1 ± 11.4 83.2 ± 9.2 84.6 ± 9.0
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Figure 9. Statistical comparison of vocal melody extraction methods on three public datasets.

4.5. Case Study of the Proposed VME System

To get a more intuitive impression, two cases using the proposed two-stage VME
method are provided in Figure 10 (a good example, “pop4.wav” from ADC2004 dataset)
and Figure 11 (a bad example, “amy_1_05.wav” from MIR1k dataset). In each figure, (a)
shows the magnitude spectrogram of the mixture audio and (b) shows that of the separated
vocals. The F0 values (in blue) estimated from (a) and (b), along with their corresponding
ground truth (in red), are shown in (c) and (d). Meanwhile, we further provide their
evaluation results in Table 7.

We can observe in Figure 10 that the accompaniment was significantly removed from
the mixture and the harmonics of vocals were remained clear. According to Figure 10c,d,
its benefits are obvious. Many false-negative melodic frames (in a frame there was no
vocal melody but an F0 value was still estimated mistakenly) in Figure 10c, e.g., around
7.6 s∼8.3 s, were estimated correctly in Figure 10d. Many other error F0 values caused by
interference by the accompaniment were also corrected. Thus, the OA achieved by taking
the separated vocals as inputs increased by 7.4%, as shown in Table 7.

We acknowledge that there are several shortcomings in the proposed VME system.
Figure 11 gives an example. According to the ground truth in Figure 11c, it is obvious that
there is a human voice in the segment from 3 s to 3.4 s and its corresponding F0 sequence
was estimated correctly from the spectrogram of mixture audio. However, the F0 sequence
estimated from the separated vocals were missing, as shown in Figure 11d. By analyzing
spectrograms and listening the audio, we observe that the reason is that this segment was
mistakenly removed during the stage of singing voice separation. One possible solution
is that after the stage of SVS, we add the separated vocals to their original mixture audio,
enhancing the vocals instead of removing the accompaniment, and then estimate F0 values
from the vocal-enhanced audio.
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Figure 10. Good example: “pop4.wav” from ADC2004 dataset.

Figure 11. Bad example: “amy_1_05.wav” from MIR1k dataset.

Table 7. Evaluation results of two cases.

Algorithms VR VFA RPA RCA OA

pop4.wav from mixture 91.2 19.4 85.6 86.8 84.5
from vocal 96.4 14.1 93.5 93.9 91.9

amy_1_05.wav from mixture 87.4 28.6 78.4 84.9 76.5
from vocal 74.5 0.00 72.5 73.4 79.8
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5. Conclusions

In this paper, we proposed a two-stage vocal melody extraction method, which first
adopted an HRNet to separate vocals from mixture audio, then utilized an encoder-decoder
network taking the separated vocals as inputs to predict the vocal F0 values. Experiment
results showed that the HRNet-based singing voice separation method performed better
than three other methods on separating vocals, resulting in the proposed two-stage vocal
melody extraction system to be superior to other vocal melody extraction algorithms in
most cases.

In the future, we are going to investigate the solution of vocal enhancement to further
improve the performance of our system. Moreover, we will continue to investigate the
complementary relationship between the SVS task and VME task. Considering the small
size of the public datasets containing both pure vocal tracks and their corresponding F0
annotations, unsupervised training that relies on the mutual support of these two tasks
will be attempted.
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