
electronics

Article

Reversible Data Hiding for AMBTC Compressed Images Based
on Matrix and Hamming Coding

Chia-Chen Lin 1,*, Juan Lin 2 and Chin-Chen Chang 3,4

����������
�������

Citation: Lin, C.-C.; Lin, J.; Chang,

C.-C. Reversible Data Hiding for

AMBTC Compressed Images Based

on Matrix and Hamming Coding.

Electronics 2021, 10, 281. https://

doi.org/10.3390/electronics10030281

Academic Editor: Cheonshik Kim

Received: 21 December 2020

Accepted: 17 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Information Engineering, National of Chin-Yi University of Technology,
Taichung 41170, Taiwan

2 Engineering Research Center for ICH Digitalization and Multi-Source Information Fusion, Fujian University,
Fuzhou 350300, China; lj2020229@gmail.com

3 Department of Information Engineering and Computer Science, Feng Chia University,
Taichung 40724, Taiwan; ccc@o365.fcu.edu.tw

4 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
* Correspondence: ally.cclin@ncut.tedu.tw

Abstract: In this paper, we propose a two-layer data hiding method by using the Hamming code to
enhance the hiding capacity without causing significantly increasing computation complexity for
AMBTC-compressed images. To achieve our objective, for the first layer, four disjoint sets using
different combinations of the mean value (AVG) and the standard deviation (VAR) are derived
according to the combination of secret bits and the corresponding bitmap, following Lin et al.’s
method. For the second layer, these four disjoint sets are extended to eight by adding or subtracting 1,
according to a matrix embedding with (7, 4) Hamming code. To maintain reversibility, we must return
the irreversible block to its previous state, which is the state after the first layer of data is embedded.
Then, to losslessly recover the AMBTC-compressed images after extracting the secret bits, we use
continuity feature, the parity of pixels value, and the unique number of changed pixels in the same
row to restore AVG and VAR. Finally, in comparison with state-of-the-art AMBTC-based schemes, it is
confirmed that our proposed method provided two times the hiding capacity comparing with other
six representative AMBTC-based schemes while maintaining acceptable file size of steog-images.

Keywords: AMBTC; matrix embedding with Hamming code; reversible data hiding

1. Introduction

Due to the openness of the Internet, transmitted messages are now at greater risk of
being tampered with or compromised [1]. Therefore, mechanisms must be developed to
protect transmitted messages, especially sensitive information such as medical and military
data. Data hiding conceals secret information in a cover carrier so that the hidden data is
not easily detected by malicious attackers [2]. Digital images often serve as cover media
because they are easy to obtain and contain multiple redundant pixel values or features for
carrying confidential data. Once the embedding operation is done, the hidden image is
called a ‘steog-image’ [3].

Data hiding techniques for images can generally be classified into three domains:
spatial, transformation, and compression. A spatial domain-based data hiding scheme is
one that embeds confidential messages into a cover image by simply modifying its pixel
values. A representative scheme is least significant bit (LSB) substitution [4]. Following
LSB substitution, many schemes based on histogram shifting have been proposed [5,6].
The frequency domain-based information hiding method transforms a cover image into
frequency coefficients by means of a discrete wavelet transform (DWT) [7], discrete trans-
form (DCT) [8], etc. Secret data is embedded into coefficients, then the inverse operation
is conducted to obtain the steog-image. In general, transform domain-based data hiding
schemes are stronger at resisting malicious attacks than spatial domain-based schemes, but

Electronics 2021, 10, 281. https://doi.org/10.3390/electronics10030281 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10030281
https://doi.org/10.3390/electronics10030281
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10030281
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/3/281?type=check_update&version=1

Electronics 2021, 10, 281 2 of 20

at the cost of computational complexity. To extend the applications of data hiding, compres-
sion domain schemes are proposed. Conventional compression techniques are explored,
such as vector quantization (VQ) [9], side match vector quantization (SMVQ) [10], block
truncation coding (BTC) [11], and Joint Photographic Experts Group (JPEG) [12]. Among
them, Lema and Mitchell’s absolute moment block truncation coding (AMBTC) [13] has
attracted scholarly attention in the past decade because its computation is more efficient
than other BTC variants while maintaining similar quality of the reconstructed image.

BTC or AMBTC family-based data hiding schemes can be further classified into four
categories according to what kind of technologies they co-work with [14]: (1) histogram
shifting (HS) based [15–18]; (2) block classification based [14,19–22]; (3) prediction error
expansion (PEE) based [23–29]; or (4) Type 1 based [28–32] data hiding methods:

(1) The HS-based method, as given by Li et al. [15], proposed a reversible data hid-
ing (RDH) scheme for BTC-compressed images by using bitmap flipping and HS
strategies for two-level quantizers. Subsequently, some methods based on HS were
proposed [16–18]. Due to the lack of additional information in the stego bit stream,
low image distortion is achieved when data is embedded; however, the data capacity
is low.

(2) The block classification-based method, as first developed by Chuang and Chang [19]
in 2006. For a given cover image, it is encoded by BTC and then blocks are classified as
smooth or complex ones by using predefined thresholds. The secret bits are embedded
into the bitmaps of the selected BTC-compressed blocks. Later, scholars developed
variant methods [20–22] based on Chung and Chang’s idea.

(3) Sun’s PEE-based method [24], in which a joint neighbor coding (JNC) technique is
used to encode BTC-compressed data according to the secret bits. All high average
values and low mean values of BTC-compressed blocks are collected as the high
mean table and low mean table, respectively. Two secret bits are embedded into
each value of either high mean table or low mean table. In general, Sun’s method
obtains a capacity four times greater than the number of blocks in the cover image
at the cost of extra data to be included in the stego BTC compression stream. It also
requires a special BTC-decoding algorithm to derive the reconstructed image. In 2017,
Hong et al. [25] modified the prediction and classification rules of Sun et al. and
proposed an improved method with a lower bit rate. However, their method also
needs two-bit indicators to represent four types of prediction errors. Using a fixed-size
indicator may not be effective in representing coding conditions because it leads to an
increased bit rate. To overcome these shortcomings of negative prediction errors, in
2018, Chang et al. also adopted the ideas of Sun et al. and used JNC to embed secret
information by an exclusive OR operator [27]. At the same year, Hong et al. used
a reversible integer transform method to represent their two-level quantizers based
on their mean and difference values [28]. In addition, the prediction error is further
classified as a symmetrical coding case by using the adaptive classification method.
Experimental results confirm Hong et al.’s method provides the lowest bit rate than
previous methods.

(4) Type 1-based methods hide confidential data by modifying the AMBTC codes. For
example, in 2014, Pan et al. [32] designed a reference matrix and used different
combinations of two quantizer. Then, four cases are designed for data hiding based
on different combinations of two quantifiers, the high mean value (H) and low mean
value (L) in each block. In the next year, Lin et al. designed another data hiding
method by modified high and low means of AMBTC blocks [31]. In Lin et al.’s method,
four disjoint sets are created as embeddable blocks, in which the unique number of
pixels in each block is more than 2 to embed secret data via different combinations
of the mean value (AVG) and the standard deviation (VAR). Experimental results
confirm that Lin et al.’s method offers high hiding capacity based on their unique
data hiding strategy. As for Zhang et al.’s [33] and Huynh et al.’s [34], both schemes
took the similar strategies to hide secret data by modifying the AMBTC codes.

Electronics 2021, 10, 281 3 of 20

After reviewing BTC or AMBTC-family based data hiding schemes, we found that
the lowest hiding capacity is around 64,516 bits and the highest hiding capacity is around
262,144 bits. Therefore, we concluded that it is a challenge to find auxiliary tools to increase
the hiding capacity of BTC or AMBTC-family based RDH schemes while maintaining
the low computation complexity offered by BTC or AMBTC coding. To break through
the limitation of BTC or BTC-family based RDH schemes, literature review is conducted
and then we found Chang et al.’s research team proposed a high-payload steganographic
scheme for compressed images with Hamming code [35] in 2008. After that, different
high-steganographic schemes based on Hamming code were proposed [36,37], but it is
noted they are irreversible. Although there is no Hamming code-based RDH method has
been proposed. However, (7, 4) Hamming code has a unique feature—hiding three secret
bits in a seven-bit stream at the cost of just a single bit modification. In other words, it takes
the least cost to conceal three-bit secrets in a seven-bit steam. To apply this advantage of
(7, 4) Hamming code to AMBTC-compressed images while providing reversibility feature,
in this paper, we propose a two-layer RDH scheme using (7, 4) Hamming code. Later,
experimental results will confirm that the hiding capacity offered by our proposed method
is significantly higher than that of Chang et al.’s [35], Lin et al.’s [31], Pan et al.’s [32], and
Hong et al.’s [28] methods.

The remainder of this paper is organized as follows. In Section 2, the AMBTC method
is introduced, two quantizers Hs and Ls of blocks can be restored by the corresponding
AVGs, VARs, and bitmaps; (7, 4) Hamming code and Lin et al.’s method are reviewed,
respectively. Section 3 illustrates the proposed method in the embedding and extracting
phases. In Section 4, we conduct some experiments and comparisons with other AMBTC-
compressed image methods. The last section makes concluding points and discusses
directions for future work.

2. Related Work

Since our two-layer data hiding scheme is based on Lin et al.’s RDH method [31], we
begin by describing their fundamental technique, AMBTC, in Section 2.1. Next, the data
embedding and extraction phases of Lin et al.’s method are briefly discussed in Section 2.2.
The core technique used to enhance the hiding capacity of Lin et al.’s scheme—(7, 4)
Hamming code—will be explained at the end of this section.

2.1. Absolute Moment Block Truncation Coding

In 1984, Lema and Mitchell proposed a variant of BTC for reconstructing images with
better image quality by preserving the local characteristics inside the divided blocks of
the image [13]. During data encoding, an image is first decomposed into several non-
overlapping m × m-sized blocks. In general, m could be 4 or 8. For each block, its AVG
and VAR are computed by Equation (1)

AVGij =
1
N ∑N

k=1(xk)ij , VARij =
1
N ∑N

k=1

∣∣∣∣(xk)ij − AVGij (1)

where (i, j) is the coordinate of a given block, xk represents the grayscale of each pixel
ranging from 0 to 255, N = m × m is the total pixels in an image, AVGij represents the
pixels’ mean value in a block, and VARij denotes the standard deviation for pixels in a
block. Both values are transmitted along with a bitmap, which contains “1” in those places
when (xk)ij≥ AVGij and “0” otherwise. On the receiver side, a reconstructed block can be
obtained with two-level quantizer Lij and Hij that preserves the sample mean and standard
deviation according to Equation (2)

Lij = AVGij−
N ×VARij

2(N − q)
and Lij = AVGij+

N ×VARij

2q
, (2)

Electronics 2021, 10, 281 4 of 20

where q is the number of pixels greater than or equal to AVGij, Lij represents the low mean
value, and Hij represents the high mean value in a (i, j) block.

An example is provided here to demonstrate the reconstruction of an AMBTC-
compressed image based on AVG, VAR and the corresponding bitmap. The corresponding
encoding and decoding results of the AMBTC compression method are demonstrated in
Figure 1. In the conventional AMBTC encoding phase, an image is generally divided into
non-overlapping blocks of 4 × 4 pixels. Since the encoding results will co-work with (7, 4)
Hamming coding in our proposed scheme, and the block size is changed to 4 × 7 pixels.
For purposes of illustration, the example in Figure 1 is sized as 4 ×7 pixels. Apart from
this size difference, the operations of the encoding and decoding phases are the same as in
conventional AMBTC.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 21

with two-level quantizer Lij and Hij that preserves the sample mean and standard devia-
tion according to Equation (2) 𝐿 = 𝐴𝑉𝐺 -

×() and 𝐿 = 𝐴𝑉𝐺 +
×

, (2)

where q is the number of pixels greater than or equal to AVGij, Lij represents the low mean
value, and Hij represents the high mean value in a (i, j) block.

An example is provided here to demonstrate the reconstruction of an AMBTC-com-
pressed image based on AVG, VAR and the corresponding bitmap. The corresponding
encoding and decoding results of the AMBTC compression method are demonstrated in
Figure 1. In the conventional AMBTC encoding phase, an image is generally divided into
non-overlapping blocks of 4 × 4 pixels. Since the encoding results will co-work with (7, 4)
Hamming coding in our proposed scheme, and the block size is changed to 4 × 7 pixels.
For purposes of illustration, the example in Figure 1 is sized as 4 × 7 pixels. Apart from
this size difference, the operations of the encoding and decoding phases are the same as
in conventional AMBTC.

Figure 1. Example of AMBTC compression with 4 × 7 block.

From the pixels in Figure 1a, finally the mean value AVG = 162, VAR = 1 are obtained.
Any pixel values smaller than 162 are averaged and the results are rounded to the nearest
integer to obtain 𝑥 = 159 . Similarly, 𝑥 = 162 is obtained. Subsequently, if pixels are
smaller than 162 their corresponding bits are set as ‘0’ in the bitmap; otherwise, ‘1’. Finally,
the corresponding AMBTC bitmap is derived, as shown in Figure 1b, and for a given orig-
inal block shown in Figure 1a, its AMBTC-compressed trio is derived as (𝑥 = 159, 𝑥 =162, bitmap=1110101 1110101 1110101 1110101). To generate the constructed image block,
two-level quantizers AVG = 161 and VAR = 1 are used to derive L = 159 and H = 162 by
Equation (2). Finally, ‘0’ and ‘1’ in the bitmap are replaced with L = 159 and H = 162, re-
spectively, and the final reconstructed image is obtained, as shown in Figure 1c.

2.2. Lin et al.’s RDH Method
In 2015, Lin et al.’s RDH method [31] simply used the AVG and VAR generated by

AMBTC to design their data hiding strategies instead of the two quantizers H and L. In
their scheme, new two-level quantizers are defined in advance as AVG + VAR and AVG −
VAR. Then, disjoint four disjoint cases are created by combining the bitmap and newly
defined two-level quantizers. Finally, four hiding strategies for mapping to those four dis-
joint cases are demonstrated in Table 1.

162 162 162 161 162 157 163

162 162 162 161 162 157 163

162 162 162 161 162 157 163

162 162 162 161 162 157 163

1 1 1 0 1 0 1

1 1 1 0 1 0 1

1 1 1 0 1 0 1

1 1 1 0 1 0 1

162 162 162 159 162 159 162

162 162 162 159 162 159 162

162 162 162 159 162 159 162

162 162 162 159 162 159 162

(a) Original image block (b) AMBTC bitmap (c) Reconstructed image block

)162,159(10 == xx

Figure 1. Example of AMBTC compression with 4 × 7 block.

From the pixels in Figure 1a, finally the mean value AVG = 162, VAR = 1 are obtained.
Any pixel values smaller than 162 are averaged and the results are rounded to the nearest
integer to obtain x0 = 159. Similarly, x1 = 162 is obtained. Subsequently, if pixels
are smaller than 162 their corresponding bits are set as ‘0’ in the bitmap; otherwise, ‘1’.
Finally, the corresponding AMBTC bitmap is derived, as shown in Figure 1b, and for
a given original block shown in Figure 1a, its AMBTC-compressed trio is derived as
(x0 = 159, x1 = 162, bitmap = 1110101 1110101 1110101 1110101). To generate the
constructed image block, two-level quantizers AVG = 161 and VAR = 1 are used to derive
L = 159 and H = 162 by Equation (2). Finally, ‘0’ and ‘1’ in the bitmap are replaced with
L = 159 and H = 162, respectively, and the final reconstructed image is obtained, as shown
in Figure 1c.

2.2. Lin et al.’s RDH Method

In 2015, Lin et al.’s RDH method [31] simply used the AVG and VAR generated by
AMBTC to design their data hiding strategies instead of the two quantizers H and L. In their
scheme, new two-level quantizers are defined in advance as AVG + VAR and AVG − VAR.
Then, disjoint four disjoint cases are created by combining the bitmap and newly defined
two-level quantizers. Finally, four hiding strategies for mapping to those four disjoint cases
are demonstrated in Table 1.

Table 1. Lin et al.’s four hiding strategies

Cases Case 00 Case 01 Case 10 Case 11

Sb1 0 0 1 1

Bitmap 0 1 0 1

Modified pixel value AVG − VAR AVG + VAR AVG – VAR − 1 AVG + VAR + 1

With four disjoint data hiding cases and four hiding strategies, receivers can easily
embed secret bits into embeddable blocks for more than two different pixels. Although

Electronics 2021, 10, 281 5 of 20

Lin et al.’s hiding strategies slightly hamper the image quality of the steog-image, they
remained disjoint pixel values in embeddable blocks after data embedding, and it is
called as holding the same parity in this paper. Such property successfully guarantees
the reversibility of Lin et al.’s RDH method and makes sure the hidden secret bits can be
extracted according to Table 1 and Equation (2). Based on Lin et al.’s property which is
holding the same parity after the data embedding, we explore the possibility of further
enhancing the hiding capacity without reducing steog-image quality.

2.3. (7, 4) Hamming Code

Hamming codes [38] are a kind of linear error-correcting code, first invented by
Richard Hamming in 1950. In this paper, (7, 4) Hamming code is applied to add three
parities to four bits of secret data for data hiding with the advantage of detecting and
correcting 1-error bit. In (7, 4) Hamming code, four data bits d = (d1, d2, d3, d4) are encoded
into seven bits C (also called ‘codeword’) by adding three parity bits via the generator
matrix G of the Hamming code.

C =
(

G× dT
)T

, (3)

Next, codeword C is sent to the receiver. On the receiving side, the received seven-bit
codeword R can be checked for errors by Equation (4) using the parity check matrix H0 by
a module of 2. It is noted that sy1, sy2 and sy3 are bits.

sydrome (sy1, sy2, sy3) =
(

H0 × RT
)T

(4)

where, Equation (5) is below:

H0 =

 0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

 (5)

The computed result is called a ‘syndrome’. If the syndrome (sy1, sy2, sy3) is ‘000′, then
R = C. If a single error bit occurs, the syndrome (sy1, sy2, sy3) will not equal ‘000′. Assume
that codeword C = (1000110), the received codeword R’ has one error (e.g., R’ = (1100110),
the calculated syndrome is ‘010′, which is identical to the second column of H0, and R is
corrected by

R = R′ ⊕ e2 = (1100110)⊕ (010000) = (1000110) (6)

where ei is the ith unit vector of length seven (e2 indicates a zero vector of length seven
with a “1” located at the second position, e2 = (0100000). By ignoring the last three parity
bits, we can obtain the correct original data bits, i.e., d = (1000).

3. Improvement of Lin et al.’s Method

In Lin et al.’s RDH method, their data hiding strategies elegantly achieve two ob-
jectives: the property of holding the same parity is always maintained even after data
embedding, and secret data can be concealed without causing complex computation. Un-
fortunately, the hiding capacity provided by their scheme is only 1 bpp. Based on holding
the same parity property offered by Lin et al.’s method, we pursue a higher hiding capacity
with (7, 4) Hamming code and propose a two-layer RDH for AMBTC-compressed images.

Our two-layer RDH scheme is divided into two parts: (1) a data embedding phase
and (2) a data extraction and recovery phase. In the data embedding phase, Lin et al.’s four
disjoint data hiding strategies are conducted in the first layer. Then, a new data hiding
strategy based on (7, 4) Hamming code is conducted in the second layer, which follows the
concept of (7, 4) Hamming code by modifying single bit to conceal three secret bits and
extends Lin et al.’s four disjoint cases into eight by adding or subtracting 1 according to
a matrix embedding with (7, 4) Hamming code. In the two-layer data hiding strategies,
secret bit streams are divided into two parts—secret bits-1 and secret bits-2. During the

Electronics 2021, 10, 281 6 of 20

data embedding phase, underflow or overflow may occur in the first and/or second
layers. To avoid such problems, the following condition is defined in Equation (7). If only
Equation (7) holds after data hiding, then the current block is determined to be embeddable;
otherwise, it is un-embeddable.

AVG + VAR + 2 ≤ 255, AVG−VAR− 2 ≥ 0. (7)

In order to extract secret bits and completely recover an AMBTC-compressed image,
in the first layer, if the unique number of pixels is less than 3 in a block, those blocks are
determined as un-embeddable. In the second layer, either the number of embedded pixels
is less than 6, or the number of different embedded pixels is 6, but the current processing
block cannot be recovered as a lossless AMBTC-compressed block, the current processing
block also is identified as un-embeddable one. The extraction phase also is divided into
two: (1) when the number of different pixels is greater than or equal to 6, we use continuity
feature (which means a set of different pixel values are continuous), the parity of modified
pixel values, and the unique feature offered by our second-layer data hiding strategy (i.e.,
only one pixel value will be changed in a given row) to ensure that the hidden secrets Sb1
and Sb2 can be successfully extracted and the original two-level quantizers AVG and VAR
can be stored; and (2) when the number of different pixels is 3 or 4, the parity of pixel
values can also be used to extract hidden secrets Sb1 and restore the original two-level
quantizers AVG and VAR. The proposed data embedding phase, along with examples of
data embedding and irreversibility, are introduced in Section 3.1. Data extraction and
recovery are explained in Section 3.2.

3.1. Data Embedding Phase

In the data embedding phase, the 512 × 512-sized grayscale image is first divided
into k × 7 non-overlapping blocks. After AMBTC encoding, the trios (Bm_k × 7)ij, VARij
and AVGij are generated for a given block (i, j), where k is 4, (Bm_k ×7)ij indicates a block’s
bitmap, and (i, j) presents the block’s coordinates. Assume (Sb1_k × 7)ij is secret bits Sb1 and
(Sb2_k × 3)ij is secret bits Sb2. Usually, k is set as 4 since (7, 4) Hamming code is adopted
in the proposed method. As for the size of Sb1 is 4 × 7 = 28 bits and the size of Sb2 is
4 × 3 = 12 bits, this is because the hiding capacity for a given block with Lin et al.’s method
in the first layer is the same as the block size and three secret bits can be concealed into
seven bits as long as one single bit modification is required by adopting (7, 4) Hamming
code in the second layer, respectively.

First, hide secret bits Sb1 (Sb1_k × 7)ij into bitmap (Bm_k × 7)ij according to the four
disjoint cases defined in Lin et al.’s data hiding strategies [31]. Then, hide Sb2 (Sb2_k × 3)ij
into bitmap (Bm_k × 7)ij using matrix embedding with (7, 4) Hamming code which is
proposed in this paper. Finally, check the number of modified pixels to decide whether the
stego block is reversible or not after two-layer data hiding. If the number of different pixels
is less than 6, or the number of different embedded pixels is 6, but the current processing
block cannot be recovered as a lossless AMBTC-compressed block, then we return the
modified pixels to the previous state before performing embedding with (7, 4) Hamming
code. The flowchart of the two-layer data embedding phase is depicted in Figure 2. The
details of the procedure are as follows:

Electronics 2021, 10, 281 7 of 20Electronics 2021, 10, x FOR PEER REVIEW 7 of 21

Figure 2. Flowchart for embedding phase. Note: Rule 1 indicates Lin et al.’s data hiding strategy, it is also the hiding
strategies adopted in the first layer; Rule 2 is the hiding strategies designed in the second layer.

Input: 4 × 7 block (B_k × 7)ij, its two-level quantizers VARij and AVGij, and two sets Sb1 and
Sb2 of secret bits (Sb1_k × 7)ij and Sb2 (Sb2_k × 3)ij, respectively.
Output: Steog-image
Step 1: Combine secret bits Sb1 (Sb1_k × 7)ij and bitmap (Bm_k × 7)ij for the current processing
(i, j) block to derive the modified pixel values according to data hiding rules listed in Table
1.
Step 2: Check the hidden pixels in a block. If the number of different hidden pixels is 1 or
2, the current block is un-embeddable and all modifications conducted in Step 1 must be
undone. Otherwise, it is embeddable and we go to Step 3.
Step 3: If VAR of this block is greater than or equal to 2, we go to Step 4. Otherwise, no
secret bits will be embedded.
Step 4: The secret bits Sb2 (Sb2_k × 3)ij are embedded into bitmap (Bm_k × 7)ij by using Equation
(8) [38], 𝑠𝑦𝑛𝑑𝑟𝑜𝑚𝑒 = 𝑚 𝐻 𝑥

y = Emd(x, m) = x⊗ F(syndrome),
(8)

where m = Sb2_k × 3, x = Bm_k × 7, F(syndrome) = ek as mentioned in Section 2.3, then go to Step
5. As for Emd, which is bit assignment function and it can be used to generate the stego
image y according to Mao defined in their work [39].
Step 5: Due to the second layer of data hiding with (7, 4) Hamming code, the bitmap needs
to be changed. The corresponding position of each k row in block (B_k × 7)ij needs to be
changed. The four hiding strategies designed for the second layer are presented in Table
2.

Figure 2. Flowchart for embedding phase. Note: Rule 1 indicates Lin et al.’s data hiding strategy, it is also the hiding
strategies adopted in the first layer; Rule 2 is the hiding strategies designed in the second layer.

Input: 4 × 7 block (B_k × 7)ij, its two-level quantizers VARij and AVGij, and two sets
Sb1 and Sb2 of secret bits (Sb1_k × 7)ij and Sb2 (Sb2_k × 3)ij, respectively.

Output: Steog-image
Step 1: Combine secret bits Sb1 (Sb1_k × 7)ij and bitmap (Bm_k × 7)ij for the current

processing (i, j) block to derive the modified pixel values according to data hiding rules
listed in Table 1.

Step 2: Check the hidden pixels in a block. If the number of different hidden pixels is
1 or 2, the current block is un-embeddable and all modifications conducted in Step 1 must
be undone. Otherwise, it is embeddable and we go to Step 3.

Step 3: If VAR of this block is greater than or equal to 2, we go to Step 4. Otherwise, no
secret bits will be embedded.

Step 4: The secret bits Sb2 (Sb2_k × 3)ij are embedded into bitmap (Bm_k × 7)ij by using
Equation (8) [38],

syndrome = m⊕ H0xy = Emd(x, m) = x
⊗

F(syndrome), (8)

where m = Sb2_k × 3, x = Bm_k × 7, F(syndrome) = ek as mentioned in Section 2.3, then go to
Step 5. As for Emd, which is bit assignment function and it can be used to generate the
stego image y according to Mao defined in their work [39].

Step 5: Due to the second layer of data hiding with (7, 4) Hamming code, the bitmap
needs to be changed. The corresponding position of each k row in block (B_k × 7)ij needs
to be changed. The four hiding strategies designed for the second layer are presented in
Table 2.

Table 2. Four hiding strategies for the second layer

Cases Case 00 Case 01 Case 10 Case 11

Bitmap 0 1 0 1

Pixel value AVG − VAR AVG + VAR AVG − VAR − 1 AVG + VAR + 1

Modified pixel value AVG – VAR + 1 AVG + VAR − 1 AVG – VAR − 2 AVG + VAR + 2

Electronics 2021, 10, 281 8 of 20

Step 6: If the number of modified pixel values S is equal to 5 for the current processing
block, or if the number of modified pixel values S is equal to 6, but the block is determined
as irreversible; which indicates that either continuity feature, the parity of modified pixel
values is not holding or more than one pixel value has been changed after second-layer
data embedding. All modifications made in Step 5 are cancelled and returned to the
previous state.

Step 7: Proceed to the next block until all blocks have been completed. Finally, output
the steog-image.

Example of Data Embedding Phase

An example is provided here to demonstrate the two-layer data hiding strategies
shown in Figure 3. Assume the first secret stream Sb1 is {0001101; 0011111; 0110010;
0101001}, the 4 × 7 bitmap is {0001111; 0001111; 0000010; 0101001}, AVG = 50, VAR = 6 and
the second secret stream Sb2 is {010; 101; 001; 000}.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 21

Figure 3. Example of embedding phase. Note: Rule 1 indicates Lin et al.’s data hiding strategy, it is also the hiding strate-
gies adopted in the first layer. Rule 2 is the hiding strategies designed in the second layer.

Although the rules of reversibility are defined in Step 3 of data embedding phase,
two cases of unreversible blocks are demonstrated below. These cases deem a block to be
unreversible when it contains six or more different pixels. Here, blocks B1, B2, and B3 are
used to demonstrate the application of our un-reversible rule in second-layer embedding.

Block B1, for instance, contains six pixels {4, 5, 6, 7, 23, 24} after second-layer data
embedding. After checking the continuity feature and parity values of the modified pixels
{4, 5, 6, 7, 23, 24}, we see two sublists—{4, 5, 6, 7} and {23, 24}. This is the “42” type, since,
after second-layer data embedding, eight pixels at most can be found in the list of different
pixels {(AVG – VAR − 2, AVG – VAR − 1, AVG − VAR, AVG − VAR + 1), (AVG + VAR, AVG
+ VAR − 1, AVG + VAR + 1, AVG + VAR + 2)}. By mapping the two sublists {4, 5, 6, 7} and
{23, 24}, we can only conclude that AVG – VAR = 6. In other words, we cannot calculate
the exact value of AVG and VAR for block B1. Therefore, block B1 is determined to be un-
embeddable, and all modifications conducted in the second layer must be cancelled. The
situation in block B3 is the same. As for block B2, two sublists can be found—{43, 44, 45}
and {56, 57, 58}—but there are two possible candidates for the former: {AVG – VAR − 2,
AVG – VAR − 1, AVG − VAR} and {AVG – VAR − 1, AVG − VAR, AVG – VAR + 1}. The same
holds for the latter; therefore, it can be concluded that the modified pixel values have no
parity property and block B2 is determined as unreversible one. Once the blocks listed in
Table 3 are determined to be unreversible, all modifications conducted in the second-layer
embedding will be undone and (Sb2_k × 3) will be embedded into the next block.

Figure 3. Example of embedding phase. Note: Rule 1 indicates Lin et al.’s data hiding strategy, it is also the hiding strategies
adopted in the first layer. Rule 2 is the hiding strategies designed in the second layer.

To conduct the first-layer data embedding, the first secret bit stream Sb1 is combined
with a 4 × 7 bitmap. Note that the combination merges the first bit of Sb1 with that of the
4 × 7 bitmap as ‘00’. Follow the same concept, there are 28 pairs are derived. Take the first
pair as ‘00’ for example, its pixel value should be modified as 44 (= 50 − 6) according to
rule of Case00 defined in Table 1. Finally, modified pixels are generated as {44 44 44 57
57 56 57; 44 44 43 57 57 57 57; 44 43 43 44 44 57 44; 44 57 44 57 44 56 57} by adopting the
modification rules defined in Table 1.

Once first-layer data embedding is completed, the second-layer data embedding
begins. Noted that the number of different pixels is more than 3 in above example; therefore,
all 4 × 7 blocks will be proceeded by conducting the second-layer data embedding to
conceal secret bits of Sb2. For a given 4 × 7 block, the first seven bits are selected from
the first row of the corresponding 4 × 7 bitmap as x as defined in Equation (8), and the
first three bits are then selected from the second bit stream Sb2 to serve as m as defined

Electronics 2021, 10, 281 9 of 20

in Equation (8). Finally, syndrome = (110)Tx is obtained, and its corresponding position
is identified as the first row in H0. Take the first three bits of Sb2 as {010} for example.
The first bit denoted ‘0’ of the first row of the 4 × 7 bitmap is determined to be changed
according to Equation (8) and its corresponding modified pixel is equal to AVG − VAR
after the first-layer data embedding. It can be categorized as Case00 as defined in Table 2.
In other words, the corresponding pixel should be modified as 45(= AVG − VAR + 1 =
44 + 1). Following the same concept, the seventh position in the second row, the fourth
position in the third row and the second position in the fourth row of Figure 3 are classified
as Case11, Case00, and Case11, respectively. All modified pixels have been marked in
blue, red, yellow, and green for different rows as shown in Figure 3 to provide a visual
representation. Finally, the stego pixels after second-layer data embedding are {45 44 44
57 57 56 57; 44 44 43 57 57 57 58; 44 43 43 45 44 57 44; 44 58 44 57 44 56 57}. To ensure
that reversibility can be guaranteed after data extraction, reversibility must be checked
according to the rules defined in Step 6 of the data embedding phase.

Although the rules of reversibility are defined in Step 3 of data embedding phase,
two cases of unreversible blocks are demonstrated below. These cases deem a block to be
unreversible when it contains six or more different pixels. Here, blocks B1, B2, and B3 are
used to demonstrate the application of our un-reversible rule in second-layer embedding.

Block B1, for instance, contains six pixels {4, 5, 6, 7, 23, 24} after second-layer data
embedding. After checking the continuity feature and parity values of the modified pixels
{4, 5, 6, 7, 23, 24}, we see two sublists—{4, 5, 6, 7} and {23, 24}. This is the “42” type, since,
after second-layer data embedding, eight pixels at most can be found in the list of different
pixels {(AVG – VAR − 2, AVG – VAR − 1, AVG − VAR, AVG − VAR + 1), (AVG + VAR, AVG
+ VAR − 1, AVG + VAR + 1, AVG + VAR + 2)}. By mapping the two sublists {4, 5, 6, 7} and
{23, 24}, we can only conclude that AVG – VAR = 6. In other words, we cannot calculate
the exact value of AVG and VAR for block B1. Therefore, block B1 is determined to be
un-embeddable, and all modifications conducted in the second layer must be cancelled.
The situation in block B3 is the same. As for block B2, two sublists can be found—{43, 44,
45} and {56, 57, 58}—but there are two possible candidates for the former: {AVG – VAR − 2 ,
AVG – VAR − 1, AVG − VAR} and {AVG – VAR − 1, AVG − VAR, AVG – VAR + 1}. The same
holds for the latter; therefore, it can be concluded that the modified pixel values have no
parity property and block B2 is determined as unreversible one. Once the blocks listed in
Table 3 are determined to be unreversible, all modifications conducted in the second-layer
embedding will be undone and (Sb2_k × 3) will be embedded into the next block.

Table 3. Unreversible example for cases where the number of different pixels inside a block is 6.

B1 B2 B3

Blocks

23 24 6 6 6 6 6 44 44 44 57 57 56 57 42 41 41 41 30 29 42

23 6 6 6 5 6 5 44 44 43 57 57 58 57 41 42 42 41 42 41 40

5 6 6 7 5 5 6 44 43 45 44 44 57 44 41 42 42 42 41 41 43

5 6 6 5 5 4 5 44 57 44 57 44 56 58 40 42 42 42 41 41 41

Different
pixels lists {(4, 5, 6, 7),(23, 24)} {(43, 44, 45),(56, 57, 58)} {(29, 30),(40, 41, 42, 43)}

Types “42” “33” “24”

3.2. Extraction and Recovery Phase

Before the extraction and recovery phase, eight cases are concluded and guide the
receiver to derive AVG and VAR according to the number of different modified pixels in a
given block after two-layer data embedding. However, by mapping to the two-layer data
embedding, two categories can be produced, depending on whether one-layer or two-layer
data embedding has been conducted. If the numb of modified pixels is 3 or 4, only the first

Electronics 2021, 10, 281 10 of 20

layer of the embedding phase has been performed and the current processing block only
carries secret bits Sb1, so the original extraction phase defined in Lin et al.’s method [31]
is applied. In contrast, if the number of modified different pixels is greater than or equal
to 6, then secret bits Sb1 and Sb2 have been concealed in the current processing block. It
is noted that the number different pixel values would not be equal to 5 since the second
layer data hiding is terminated as mentioned in Step 6 in the data embedding phase to
maintain the reversibility. To extract the hidden Sb2, our proposed extraction rules are
listed below along with an overview of our extraction phase (Figure 4). As we mentioned
earlier, S = 5 is not shown in Figure 4 because our embedding operation of the second layer
is terminated if the number of different values is equal to 5.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 21

Table 3. Unreversible example for cases where the number of different pixels inside a block is 6

 B1 B2 B3

Blocks

23 24 6 6 6 6 6 44 44 44 57 57 56 57 42 41 41 41 30 29 42
23 6 6 6 5 6 5 44 44 43 57 57 58 57 41 42 42 41 42 41 40
5 6 6 7 5 5 6 44 43 45 44 44 57 44 41 42 42 42 41 41 43
5 6 6 5 5 4 5 44 57 44 57 44 56 58 40 42 42 42 41 41 41

Different
pixels lists

{(4, 5, 6, 7),(23, 24)} {(43, 44, 45),(56, 57, 58)} {(29, 30),(40, 41, 42, 43)}

Types “42” “33” “24”

3.2. Extraction and Recovery Phase
Before the extraction and recovery phase, eight cases are concluded and guide the

receiver to derive AVG and VAR according to the number of different modified pixels in
a given block after two-layer data embedding. However, by mapping to the two-layer
data embedding, two categories can be produced, depending on whether one-layer or
two-layer data embedding has been conducted. If the numb of modified pixels is 3 or 4,
only the first layer of the embedding phase has been performed and the current processing
block only carries secret bits Sb1, so the original extraction phase defined in Lin et al.’s
method [31] is applied. In contrast, if the number of modified different pixels is greater
than or equal to 6, then secret bits Sb1 and Sb2 have been concealed in the current pro-
cessing block. It is noted that the number different pixel values would not be equal to 5
since the second layer data hiding is terminated as mentioned in Step 6 in the data em-
bedding phase to maintain the reversibility. To extract the hidden Sb2, our proposed ex-
traction rules are listed below along with an overview of our extraction phase (Figure 4).
As we mentioned earlier, S = 5 is not shown in Figure 4 because our embedding operation
of the second layer is terminated if the number of different values is equal to 5.

Figure 4. Flowchart of extraction and recovery phase. Note: S indicates the number of different pixel values.

Input: steog-image (Imag_k × 7)ij
Output: secret bits Sb1, secret bits Sb2, AVG and VAR

Figure 4. Flowchart of extraction and recovery phase. Note: S indicates the number of different pixel values.

Input: steog-image (Imag_k × 7)ij
Output: secret bits Sb1, secret bits Sb2, AVG and VAR
Step 1: Count the amount of modified values denoted as S, and S = {1, 2, 3, 4, 6, 7, 8}

inside the current processing stego-block. If S is 1 or 2, then the stego-block has carried no
secret. Otherwise, go to Step 2. It is noted that S would not equal to 5 since the embedding
operation in the second layer data hiding is not proceeded when the number of different
pixel values is equal to 5.

Step 2: If the different pixel values S is less than 6, then go to Step 3. Otherwise, go to
Step 5.

Step 3: If S = 3, follow the flowchart for the extraction phase, shown in Figure 5. Sort
the three different values as x1 <x2 <x3, and compare (x3 - x2) and (x2 – x1). If x3 – x2 > x2 –
x1, x1 ∈ case10 and x2 ∈ case00, then check the parity property among x3, x2; if Parity(x3,
x2) = 0, then x3 and x2 are either both even or odd, and it can be concluded that x3 ∈ case01.
Otherwise, x3 ∈ case11. If x3 − x2 < x2 − x1, then x2 ∈ case01. and x3 ∈ case11.. Check the
parity property between x2 and x1. If Parity(x1, x2)=0, then x1 and x2 are either both even or
both odd, and x1 ∈ case00. Otherwise, x1 ∈ case10. Since we know three pixels, the fourth
can be calculated according to Table 1. Then, from Table 1, we can easily extract Sb1 and
calculate AVG and VAR.

Step 4: If S = 4, we sort the different pixel values as x1 < x2 < x3 < x4 and directly
calculate AVG and VAR by the formula AVG = x3+x2

2 , VAR = x3−x2
2 . According to Table 1,

we can extract Sb1.

Electronics 2021, 10, 281 11 of 20

Electronics 2021, 10, x FOR PEER REVIEW 11 of 21

Step 1: Count the amount of modified values denoted as S, and S = {1, 2, 3, 4, 6, 7, 8} inside
the current processing stego-block. If S is 1 or 2, then the stego-block has carried no secret.
Otherwise, go to Step 2. It is noted that S would not equal to 5 since the embedding oper-
ation in the second layer data hiding is not proceeded when the number of different pixel
values is equal to 5.
Step 2: If the different pixel values S is less than 6, then go to Step 3. Otherwise, go to Step
5.
Step 3: If S = 3, follow the flowchart for the extraction phase, shown in Figure 5. Sort the
three different values as x1 <x2 <x3, and compare (x3 - x2) and (x2 – x1). If x3 – x2 > x2 – x1, 𝑥 ∈ 𝑐𝑎𝑠𝑒10 and 𝑥 ∈ 𝑐𝑎𝑠𝑒00, then check the parity property among x3, x2; if Parity(x3, x2)
= 0, then x3 and x2 are either both even or odd, and it can be concluded that𝑥 ∈ 𝑐𝑎𝑠𝑒01.
Otherwise, 𝑥 ∈ 𝑐𝑎𝑠𝑒11 . If 𝑥 − 𝑥 𝑥 − 𝑥 , then 𝑥 ∈ 𝑐𝑎𝑠𝑒01 . and 𝑥 ∈ 𝑐𝑎𝑠𝑒11 ..
Check the parity property between x2 and x1. If Parity(x1, x2)=0, then x1 and x2 are either
both even or both odd, and 𝑥 ∈ 𝑐𝑎𝑠𝑒00. Otherwise, 𝑥 ∈ 𝑐𝑎𝑠𝑒10. Since we know three
pixels, the fourth can be calculated according to Table 1. Then, from Table 1, we can easily
extract Sb1 and calculate AVG and VAR.

Figure 5. Flowchart of extraction phase when S = 3. Note: S indicates the number of different pixel values.

Step 4: If S = 4, we sort the different pixel values as 𝑥 𝑥 𝑥 𝑥 and directly calcu-
late AVG and VAR by the formula 𝐴𝑉𝐺 = , 𝑉𝐴𝑅 = . According to Table 1, we
can extract Sb1.
Step 5: If S = 6, go to Step 6. If S = 7, go to Step 7. Otherwise, go to Step 8.
Step 6: If S = 6, following the flowchart for the extraction phase in Figure 6, sort the differ-
ent pixel values as 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 , which can be divided into three Types:
42, 24 and 33. Since Type 42 has the same situation as Type 24, we illustrate Types 42 and
33 as Figures 6 and 7, respectively.

Figure 5. Flowchart of extraction phase when S = 3. Note: S indicates the number of different pixel values.

Step 5: If S = 6, go to Step 6. If S = 7, go to Step 7. Otherwise, go to Step 8.
Step 6: If S = 6, following the flowchart for the extraction phase in Figure 6, sort the

different pixel values as x1 < x2 < x3 < x4 < x5 < x6, which can be divided into three
Types: 42, 24 and 33. Since Type 42 has the same situation as Type 24, we illustrate Types
42 and 33 as Figures 6 and 7, respectively.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 21

Figure 6. Flowchart of extraction phase when S = 6. Type 42, Note: S indicates the number of different pixel values.

Figure 7. Flowchart of extraction phase when S = 6. Type 33, Note: S indicates the number of different pixel values.

Figure 6. Flowchart of extraction phase when S = 6. Type 42, Note: S indicates the number of different pixel values.

Electronics 2021, 10, 281 12 of 20

Electronics 2021, 10, x FOR PEER REVIEW 12 of 21

Figure 6. Flowchart of extraction phase when S = 6. Type 42, Note: S indicates the number of different pixel values.

Figure 7. Flowchart of extraction phase when S = 6. Type 33, Note: S indicates the number of different pixel values. Figure 7. Flowchart of extraction phase when S = 6. Type 33, Note: S indicates the number of different pixel values.

Step 7: If S = 7, the flowchart for extraction is shown in Figure 8. Sort the different
pixel values as x1 < x2 < x3 < x4 < x5 < x6 < x7, which can be divided into Types
43 and 34, where “43” means that the first four values are less than AVG, and the last
three are greater than AVG. Type 34 is the opposite, so we simply illustrate the former
Type 43 in Figure 8. If x1 + x4 = x2 + x5 and x3 − x2 = 1, then the leftmost four pixels are
continuous natural numbers. It is noted that x3=AVG-VAR. In this case, we simply need
to check the rightmost four pixels: (1) if 2x6 = x5 + x7, then the rightmost three pixels are
continuous natural numbers. Then check the parity of x3 and x5. If Parity(x3,x5) = 0, then it
can be concluded that x5 = AVG + VAR. So insert x5-1 between x4 and x5, and go to Step
8. Otherwise, it can be concluded that x6 = AVG + VAR. In this case, insert x7+1 behind
x7, and go to Step 8; (2) if 2x6 > x5 + x7, then the rightmost three pixels are not continuous
natural numbers, so x7 is closer to x6 than to x5, and x5 and x6 are not continuous natural
numbers; therefore, insert x5 + 1 between x5 and x6, and go to Step 8; (3) if 2x6 < x5 + x7, we
do the same as in (2), then insert x6 + 1 between x6 and x7, and go to Step 8.

Step 8: If S = 8, sort the eight different values as x1 < x2 < x3 < x4 < x5 < x6 < x7 <
x8, and we can conclude that x1, x2 ∈ case10, x3, x4 ∈ case00, x5, x6 ∈ case0, x7, x8 ∈
case11. Next, check whether pixels located in the kth column and mth row in the block are
equal to either x1, x4, x5, or x8. If so, then flip the corresponding bit value of the bitmap.
Otherwise, no pixels have been flipped in any row. Finally, multiply H0

T with each block
according to Equation (9) to extract the hidden secret (Sb2_k × 3)ij.

m’ = H0 syndrome (9)

where m’ is extracting Sb2, and y is the changed value of (Bm_k × 7)ij.

Electronics 2021, 10, 281 13 of 20

Electronics 2021, 10, x FOR PEER REVIEW 13 of 21

Step 7: If S = 7, the flowchart for extraction is shown in Figure 8. Sort the different pixel
values as 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 , which can be divided into Types 43 and 34,
where “43” means that the first four values are less than AVG, and the last three are
greater than AVG. Type 34 is the opposite, so we simply illustrate the former Type 43 in
Figure 8. If x1 + x4 = x2 + x5 and x3 − x2 = 1, then the leftmost four pixels are continuous natural
numbers. It is noted that x3=AVG-VAR. In this case, we simply need to check the rightmost
four pixels: (1) if 2x6 = x5 + x7, then the rightmost three pixels are continuous natural num-
bers. Then check the parity of x3 and x5. If Parity(x3,x5) = 0, then it can be concluded that x5

= AVG + VAR. So insert x5-1 between x4 and x5, and go to Step 8. Otherwise, it can be
concluded that x6 = AVG + VAR. In this case, insert x7+1 behind x7, and go to Step 8; (2) if
2x6 > x5 + x7, then the rightmost three pixels are not continuous natural numbers, so x7 is
closer to x6 than to x5, and x5 and x6 are not continuous natural numbers; therefore, insert
x5 + 1 between x5 and x6, and go to Step 8; (3) if 2x6 < x5 + x7, we do the same as in (2), then
insert x6 + 1 between x6 and x7, and go to Step 8.

Figure 8. Flowchart of extraction phase when S = 7. Type 43, Note: S indicates the number of different pixel values.

Step 8: If S = 8, sort the eight different values as 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 ,
and we can conclude that 𝑥 , 𝑥 ∈ 𝑐𝑎𝑠𝑒10 , 𝑥 , 𝑥 ∈ 𝑐𝑎𝑠𝑒00 , 𝑥 , 𝑥 ∈ 𝑐𝑎𝑠𝑒0, 𝑥 , 𝑥 ∈𝑐𝑎𝑠𝑒11. Next, check whether pixels located in the kth column and mth row in the block
are equal to either x1, x4, x5, or x8. If so, then flip the corresponding bit value of the bitmap.
Otherwise, no pixels have been flipped in any row. Finally, multiply H0T with each block
according to Equation (9) to extract the hidden secret (Sb2_k × 3)ij.

m’ = H0 syndrome, (9)

where m’ is extracting Sb2, and y is the changed value of (Bm_k × 7)ij.

Figure 8. Flowchart of extraction phase when S = 7. Type 43, Note: S indicates the number of different pixel values.

Example of Data Extraction and Recovery Phase

Here, a block containing six different pixel values (Figure 9), is used to demonstrate
how our proposed data extraction and recovery works. Assume a 4 × 7-sized block {45 44
44 57 57 56 57; 44 44 43 57 57 57 58; 44 43 43 45 44 57 44; 44 58 44 57 44 56 57} as below.
According to the flowchart of the extraction phase in Figure 4, the number of different pixel
values in a 4 × 7 block is 6. Sorting these six different values yields a sorted value stream
of {43, 44, 45, 56, 57, 58}. In this stream, there are three continuous values on the left and
three on the right. Therefore, the block shown in Figure 10 is Type 33, because it satisfies
2x2 = x1 + x5 and 2x5 = x4 + x6. According to the flowchart of the extraction phase shown
in Figure 8, two pixels have the same values as x1 = 43, and they are located in the same
row (marked in red). This means that it cannot be the changed pixel, so insert x1 – 1 = 42
in front of x1. Here, a new sorted value stream—denoted as {42, 43, 44, 45, 56, 57, 58}—is
obtained and belongs to Type 43.

Since this value stream has seven different pixel values, it belongs to Type 43 and
satisfies 2x6 = x5 + x7, so the parity of x3 and x6 is checked. In this case, x3 = 44 and x6 = 56,
both of which are even, so Parity (x4, x6) = 0; therefore, x5 − 1 = 55 is inserted between x4
and x5, and a new sorted value stream is obtained—{42, 43, 44, 45, 55, 56, 57, 58}. Eventually,
we can see that {42, 43} belongs to Case 10; {44, 45} belongs to Case 00; {55 56} belongs to
Case 01; and {57, 58} belongs to Case 11, based on Step 8 of the extraction and recovery
algorithm shown in Figure 4. Finally, the original two quantizer levels can be easily derived
from AVG = (44 + 56)/2 = 50 and VAR = (56 − 44)/2 = 6, respectively. Based on the rules
listed in Table 1, two bits can be derived from a pixel, and a bit block can be transformed
from the pixel block. The former bits (marked red in Figure 10) can be collected to obtain
the hidden secret bits Sb1. The remaining bits are collected to derive the bitmap. From 45,
58, 45, and 58—colored blue, red, yellow, and green in the pixel block, respectively—we
know that the values of the bitmap need to be changed in the corresponding positions.
Thus, we change the original bitmap value of the corresponding position to its opposite
value. And by multiplying HT

0 , we obtain the secret bits Sb2.

Electronics 2021, 10, 281 14 of 20

Electronics 2021, 10, x FOR PEER REVIEW 14 of 21

Example of Data Extraction and Recovery Phase
Here, a block containing six different pixel values (Figure 9), is used to demonstrate

how our proposed data extraction and recovery works. Assume a 4 × 7-sized block {45 44
44 57 57 56 57; 44 44 43 57 57 57 58; 44 43 43 45 44 57 44; 44 58 44 57 44 56 57} as below.
According to the flowchart of the extraction phase in Figure 4, the number of different
pixel values in a 4 × 7 block is 6. Sorting these six different values yields a sorted value
stream of {43, 44, 45, 56, 57, 58}. In this stream, there are three continuous values on the
left and three on the right. Therefore, the block shown in Figure 10 is Type 33, because it
satisfies 2x2 = x1 + x5 and 2x5 = x4 + x6. According to the flowchart of the extraction phase
shown in Figure 8, two pixels have the same values as x1 = 43, and they are located in the
same row (marked in red). This means that it cannot be the changed pixel, so insert x1 – 1
= 42 in front of x1. Here, a new sorted value stream—denoted as {42, 43, 44, 45, 56, 57, 58}—
is obtained and belongs to Type 43.

Figure 9. Example of extraction and recovery phase.

Since this value stream has seven different pixel values, it belongs to Type 43 and
satisfies 2x6 = x5 + x7, so the parity of x3 and x6 is checked. In this case, x3 = 44 and x6 = 56,
both of which are even, so Parity (x4, x6) = 0; therefore, x5 − 1 = 55 is inserted between x4 and
x5, and a new sorted value stream is obtained—{42, 43, 44, 45, 55, 56, 57, 58}. Eventually,
we can see that {42, 43} belongs to Case 10; {44, 45} belongs to Case 00; {55 56} belongs to
Case 01; and {57, 58} belongs to Case 11, based on Step 8 of the extraction and recovery
algorithm shown in Figure 4. Finally, the original two quantizer levels can be easily de-
rived from AVG = (44 + 56)/2 = 50 and VAR = (56 − 44)/2 = 6, respectively. Based on the
rules listed in Table 1, two bits can be derived from a pixel, and a bit block can be trans-
formed from the pixel block. The former bits (marked red in Figure 10) can be collected to
obtain the hidden secret bits Sb1. The remaining bits are collected to derive the bitmap.

Figure 9. Example of extraction and recovery phase.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 21

From 45, 58, 45, and 58—colored blue, red, yellow, and green in the pixel block, respec-
tively—we know that the values of the bitmap need to be changed in the corresponding
positions. Thus, we change the original bitmap value of the corresponding position to its
opposite value. And by multiplying 𝐻 , we obtain the secret bits Sb2.

4. Experiment Results and Discussions
This section presents experimental results to demonstrate how our proposed method

outperforms existing methods. All experiments were implemented in MATLAB R2014b
on a PC with Intel® Core (TM) i7-8750H CPU @2.20 GHz, 16 GB RAM. Ten standard gray-
scale images of 512 × 512 resolution—Lena, F16, Barbara, Gold hill, Wine, Bird, Zelda,
Boat, Baboon, and Peppers shown in Figure 10—were drawn from the USC-SIPI data [40].

(a) Lena (b) F16 (c) Barbara (d) Goldhill (e) Wine

(f) Bird (g) Zelda (h) Boat (i) Baboon (j) Peppers

Figure 10. Ten test grayscale images: (a) Lena, (b) F16, (c) Barbara, (d) Goldhill, (e) Wine, (f) Bird, (g) Zelda, (h) Boat, (i)
Baboon, (j) Peppers.

Three criteria are utilized to measure the performance of the proposed method—
peak signal-to-noise ratio (PSNR), hiding capacity (HC) and embedding efficiency rate
(ER). As we know that PSNR is used to estimate the visual quality of an AMBTC-com-
pressed image, which is defined in Equation (10), where xi,j and x’i,j indicates the pixel
value of the coordinate (i, j) of the original image and of the AMBTC-compressed steog-
image, respectively. HT and WH represent the height and width of the image, respectively. 𝑀𝑆𝐸 = ∑ 𝑥 , − 𝑥 , /(𝐻𝑇 × 𝑊𝐻), 𝑃𝑆𝑁𝑅 = 10log 255𝑀𝑆𝐸 (𝑑𝐵)

(10)

To examine the performance of different types of RDH schemes, we utilize the em-
bedding efficient rate (ER) by Equation (11) 𝐸𝑅 = _ , (51)

where HC and stego_size represent the total of embedded secret bits and the size of stego
bitstream codes, respectively. An embedding method with higher ER indicates that it of-
fers a larger payload for stego bitstream codes.

Figure 10. Ten test grayscale images: (a) Lena, (b) F16, (c) Barbara, (d) Goldhill, (e) Wine, (f) Bird, (g) Zelda, (h) Boat, (i)
Baboon, (j) Peppers.

4. Experiment Results and Discussion

This section presents experimental results to demonstrate how our proposed method
outperforms existing methods. All experiments were implemented in MATLAB R2014b on
a PC with Intel® Core (TM) i7-8750H CPU @2.20 GHz, 16 GB RAM. Ten standard grayscale

Electronics 2021, 10, 281 15 of 20

images of 512 × 512 resolution—Lena, F16, Barbara, Gold hill, Wine, Bird, Zelda, Boat,
Baboon, and Peppers shown in Figure 10—were drawn from the USC-SIPI data [40].

Three criteria are utilized to measure the performance of the proposed method—peak
signal-to-noise ratio (PSNR), hiding capacity (HC) and embedding efficiency rate (ER).
As we know that PSNR is used to estimate the visual quality of an AMBTC-compressed
image, which is defined in Equation (10), where xi,j and x’i,j indicates the pixel value of
the coordinate (i, j) of the original image and of the AMBTC-compressed steog-image,
respectively. HT and WH represent the height and width of the image, respectively.

MSE = ∑HT
i=1

(
xi,j − x′i,j

)2
/(HT ×WH),PSNR = 10 log10

(
2552

MSE

)
(dB) (10)

To examine the performance of different types of RDH schemes, we utilize the embed-
ding efficient rate (ER) by Equation (11)

ER =
HC

stego_size
, (11)

where HC and stego_size represent the total of embedded secret bits and the size of stego
bitstream codes, respectively. An embedding method with higher ER indicates that it offers
a larger payload for stego bitstream codes.

4.1. Performance of Proposed Method

In this subsection, we demonstrate the performance of our improved method under
different partitions. Our improved method can restore the original two quantizer levels
AVG and VAR from the steog-image, apart from special cases when the number of different
pixels in a block is 6, but the block is determined to be irreversible after data embedding.
Such unique cases are presented in Table 4 under different partitions.

Table 4. Number of irreversible blocks when a block contains six different pixels.

Partition\
Image Lena F16 Barbara Gold

Hill Wine Bird Zelda Boat Baboon Peppers

4 × 7 1 0 1 0 0 0 1 0 0 0

8 × 7 0 0 0 0 0 0 0 0 0 0

Here, we can see that even in a 4× 7 partition, only one case is found in Lena, Barbara,
and Zelda, respectively. It is concluded that these irreversible blocks do not affect the
hiding capacity of our improved method. Therefore, no extra information is required to
record these irreversible data. It is simple to ignore or cancel the modification that has
been done once the block is determined to be irreversible. Through this arrangement, the
reversibility of our improved method is maintained while achieving a high hiding capacity.

The performance of our proposed method with different block sizes is shown in Table
5. Although the first-layer hiding strategy is the same as Lin et al.’s method [9], we changed
the partition size in our improved method from 4 × 4 to 4 × 7 or 8 × 7, to extend it
to the second-layer data hiding operations. Therefore, we can see that the PSNR of the
first layer is slightly lower with our improved method than that achieved by the original
AMBTC. With our proposed method, the ‘Bird’ and ‘Baboon’ images, which are relatively
complex, have a lower PSNR, but a higher capacity in 4 × 7 and 8 × 7 partitions. This is
because they offer more blocks that contain six or more different pixel values in a block,
as compared with smoother images. The hiding capacity of ‘Wine’, for example, can be
increased from 343,096 to 35,072 bits when a block size is changed from 4 × 7 to 8 × 7.
As for the remaining images, the general increased number of secret bits remains around
10,000 bits. This is because in the larger partition, with fewer smooth blocks, there are more
numerous embeddable blocks. If we explore the relationship between the hiding capacity

Electronics 2021, 10, 281 16 of 20

and PNSR with our proposed method, we can see that that the highest hiding capacity with
our proposed two-layer data hiding strategies is up to 368,348 bits with ’Baboon’ under
block size 4 × 7 while maintaining PSNR as 25.6 dB which is lower 0.5 dB than the original
BTC. This is because we adopt the (7, 4) Hamming code to achieve the reversible data
hiding in the second layer. With the concept of (7, 4) Hamming code, three secret bits can
be embedded into the embeddable stego blocks after the first layer data hiding at the cost
of single bit modification. Certainly, to maintain all modifications caused in the second
layer can be successfully restored in the recovery phase, many rules are designed to decide
whether the stego blocks after the first layer can be proceeded in the second layer data
hiding or not. However, in Table 5 we will find such judgements do not cause too much
computation cost but make sure the reversibility of our proposed method.

Table 5. Performance of proposed method with different block sizes (unit: dB)

Criteria\Image

4 × 7 8 × 7

HC
AMBTC First Layer Second Layer

HC
AMBTC First Layer Second Layer

PSNR PSNR PSNR PSNR PSNR PSNR

Lena 364,432 31.29 30.48 30.46 370,976 29.52 29.46 29.45

F16 329,552 30.49 28.84 28.83 352,568 27.35 27.31 27.30

Barbara 366,496 28.25 27.83 27.82 371,600 27.11 27.08 27.02

Goldhill 364,192 31.35 30.72 30.70 369,912 29.62 29.56 29.55

Wine 308,024 30.84 29.72 29.71 343,096 29.52 28.37 28.36

Bird 367,168 28.46 27.93 27.92 373,544 27.19 26.77 26.76

Zelda 367,192 34.66 34.06 34.01 373,208 33.25 32.74 32.71

Boat 366,184 29.60 28.77 28.75 372,416 28.33 27.58 27.57

Baboon 368,348 26.10 25.61 25.60 373,736 25.28 24.77 24.76

Peppers 366,820 31.46 29.60 29.58 373,256 29.97 28.25 28.24

Because the 4 × 7 and 8 × 7 partitions are not generally adopted by conventional
AMBTC, we slightly modified our partition to n × n in order to increase applicability.
Corresponding data is presented in Table 5. Generally speaking, six different pixels can be
found inside a 4 × 4 block when adopting our proposed (7, 4) Hamming code-based data
hiding strategy. This is because in a 4 × 4 block, two sets can be obtained, each of which
has 7 bits derived from its corresponding bitmap. The core concept of (7, 4) Hamming
code is that only one bit is modified after data embedding. Under such circumstances,
our improved method would not retain enough information to conclude the original
two quantizer levels VAR and AVG in the extraction and recovery phase. Therefore, our
embedding strategy must be slightly modified as follows.

First, all n × n embeddable blocks are expanded into 1 × n2 and linked together to
form a (1 × n)2× N table, where N denotes the number of embeddable blocks. 1 × 7
continuous bits are selected from the bitmap to conduct our proposed (7, 4) Hamming
code-based data hiding strategy. The only modification is as follows: when the mth bit
is determined to be changed after the (7,4) Hamming code-based data hiding strategy
at the first 1 × 7 data set, the corresponding pixel of mth is then modified instead of its
corresponding bit value on the bitmap. To embed the next secret bit, the second 1 × 7 data
set begins from the (m + 1)th. If the second data set does not cause any modification, then
the next 1 × 7 data set begins from the next seven bits. Certainly, every 4 × 4 data set needs
to be checked for reversibility after data embedding. All reversibility rules are the same as
above, except each row can carry more than one single secret bit. During data extraction,
the corresponding bit in the bitmap is changed from ‘1’ to ‘0,’ or vice versa, when the first
pixel value to differ from previous ones is determined. Let us assume that the first pixel
value that differs is located at the mth. For the remaining data extraction, the next data set
begins from the (m + 1)th. In the modified (7, 4) Hamming code-based data hiding strategy,

Electronics 2021, 10, 281 17 of 20

since the construction is defined in our initial data hiding strategy: each row that hides
only a single secret bit has been omitted; thus, hiding capacity increases. The experimental
data of embedding capacity with our modified (7, 4) Hamming code-based data hiding
strategy is shown in Table 6. Notably, the hiding capacity for 8 × 8 is significantly higher
than that for 8 × 7, as shown in Table 5. The hiding capacity offered by 4 × 4 is lower than
that of 4 × 7, but the corresponding PSNRs are significantly improved.

Table 6. Comparison of six methods

Algorithm Performance Lena Peppers Baboon Boat Gold Hill F16

Proposed scheme

PSNR (dB) 32.41 31.61 26.34 30.26 32.07 30.33

HC (bits) 347,106 351,493 352,795 350,268 347,890 302,000

ER 16.55% 16.76% 16.82% 16.70% 16.59% 14.40%

Chang et al. [27]

PSNR (dB) 33.72 34.10 27.78 31.16 33.72 33.29

HC (bits) 175,145 174,222 151,439 166,786 168,185 177,814

ER 26.85% 26.71% 23.22% 25.57% 25.78% 27.26%

Lin et al. [31]

PSNR (dB) 32.44 31.63 26.34 30.28 32.10 30.35

HC (bits) 262,128 262,112 262,144 262,144 262,096 262,112

ER 12.50% 12.50% 12.50% 12.50% 12.50% 12.50%

Pan et al. [32]

PSNR (dB) 33.14 33.28 26.96 31.08 32.77 31.86

HC (bits) 262,128 262,112 262,144 26,2144 262,096 262,112

ER 12.50% 12.50% 12.50% 12.50% 12.50% 12.50%

Hong et al. [28]

PSNR (dB) 33.24 33.42 26.98 31.12 32.83 31.97

HC (bits) 64,516 64,516 64,516 64,516 64,516 64,516

ER 12.8% 12.8% 11.8% 12.9% 13.0% 12.8%

Hong et al. [29]

PSNR (dB) 33.20 33.39 26.91 31.12 32.83 31.95

HC (bits) 64,516 64,516 64,516 64,516 64,516 64,516

ER 12.3% 12.4% 11.6% 11.7% 11.8% 12.4%

4.2. Performance Comparison with Related Studies

In this subsection, to further demonstrate our method’s contribution, we compare its
improved performance with five existing works, including Chang et al. [27], Lin et al. [31],
Pan et al. [32], and Hong et al. [27,28]. Chang et al. and Hong et al.’s methods are based
on Sun et al. [20], while Lin et al. and Pan et al. use four hiding strategies to conceal a
secret message into a bitmap. Three criteria—PSNR, HC, and ER—are used to demonstrate
related data with different methods. Results of the comparison are shown in Table 6.

As shown in Table 6, the PSNR of our improved method is quite close to that of
Lin et al.’s scheme, but our method has the highest HC than other existing methods. The
significant difference between the proposed method and the others is that richly textured
images will offer a higher hiding capacity with our improved method; i.e., ‘Baboon’ can
carry 352,795 bits, more than doubling the capacity of Chang et al.’s method (151,439 bits).
Our proposed method offers the highest HC than other methods because our method
extends Lin’s four hiding strategies and uses two-layer data embedding strategies. On the
ER side, the result is slightly inferior to Chang et al.’s method, but compared with other
methods, our ER still outperforms other methods.

Except the performance on hiding capacity, PSNR and ER, computation complexity
is also the other criterion to evaluate the performance of the RDH scheme. In Table 7,
the computation operations adopted in data embedding and data extracting phases are
listed. We can find schemes of Lin et al. [31] and Pan et al. [32] used either table lookup

Electronics 2021, 10, 281 18 of 20

or reference matrix checking to conduct data embedding and data extracting phases,
respectively. Therefore, the computation complexity of both of two schemes are the lowest.
As for our proposed method, there are two layers of data hiding and data extracting. The
first layer data hiding operation of our proposed method simply inherits from Lin et al.’s
scheme [31] but the second layer data hiding operation is (7, 4) Hamming coding. In other
words, the second layer data hiding of our proposed method is matrix coding operation.
In the contrast, only table lookup operation is required for both first layer and the second
layer of data extracting operations. Therefore, the computation complexity of our proposed
method is relatively higher than schemes of Lin et al.’s [31] and Pan et al.’s [32].

Table 7. Comparison of six methods on computation operations

Algorithms BTC or AMBTC-Family
Computation Operations

Embedding Extracting

Proposed Scheme AMBTC First layer: table lookup
Second layer: matrix coding

First layer: table lookup
Second layer: table lookup

Chang et al. [27] AMBTC XOR operation, table lookup,
and concatenation Index table lookup

Lin et al. [31] AMBTC Table lookup Table lookup

Pan et al. [32] AMBTC Checking reference matrix Checking reference matrix

Hong et al. [28] AMBTC Prediction error calculation, table
lookup, and concatenation

Prediction error calculation and
table lookup

Hong et al. [29] BTC

Block type classification, minimal
distortion computation and

checking reference matrix (smooth
block), flipping (complex block)

Checking reference matrix

Hong et al.’s scheme [28] needs three kinds operations such as calculating prediction
error, table lookup, and concatenation to embed secret bits. In Chang et al.’s scheme [27],
they needed to perform XOR operation when embedding secret bits. Therefore, these two
schemes require relatively higher computation complexity than Lin et al.’s scheme [31],
Pan et al.’s scheme [32] and our proposed method. As for Hong et al.’s scheme [29], their
computation complexity is the highest among six schemes because they needed to classify
blocks into complex and smooth blocks first. Then, for smooth blocks, minimal distortion
computation and reference matrix checking are conducted for carrying secret bits. For
complex blocks, flipping operation is required to conceal secret bits.

Comparing performance on hiding capacity, PSNR, ER, and computation operations
listed in Tables 6 and 7, we found the computation complexity of our proposed method
is not the lowest, and it is relatively higher than that of schemes of Lin et al. [31] and
Pan et al. [32]; however, the hiding capacity of our proposed method is 1.15 times of
that of two schemes in the worst case. In other words, we can conclude our proposed
method successfully significantly enhance the hiding capacity while maintaining acceptable
computation complexity.

5. Conclusions

In this paper, an effective two-layer data hiding method was proposed for AMBTC-
compressed images using (7, 4) Hamming code. In the first layer, four disjoint sets using
different combinations of AVG and VAR are derived according to the combination of
the secret bits and a bitmap, following Lin et al.’s method. In the second layer, these
four disjoint sets are extended to eight by adding or subtracting 1 according to a matrix
embedded with (7, 4) Hamming code. In the data extraction and recovery phase, continuity
feature, parity of pixels, and the unique number of changed pixel in the same row are
used to restore AVG and VAR. The experiments demonstrate that our proposed method

Electronics 2021, 10, 281 19 of 20

has the highest HC among six representative BTC or AMBTC-family based RDH schemes.
Moreover, the computation complexity of our proposed method is next to schemes of Lin
et al.’s [31] and Pan et al.’s [32] since matrix coding is required in the second layer data
hiding but only table lookup operation is required for the second layer data extracting.
We can conclude our proposed method is suitable for real-time applications. However,
considering attacks supported by deep learning [41] or other technologies [42] may cause
the hidden security unsecure or the forged stego image. In the future, we hope to explore
ways of further enhancing the security of hidden data or identifying the valid stego image
while maintaining high HC and low computation complexity, so that our proposed method
can be more practical for various applications.

Author Contributions: Conceptualization, C.-C.L. and C.-C.C.; Methodology, J.L.; Software, J.L.;
Writing—original draft preparation, J.L.; Writing—review and editing, C.-C.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by MOST 109-2410-H-167-014.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, C.C.; Chang, C.C.; Wang, Z.M. Reversible data hiding scheme using adaptive block truncation coding based on an edge-based

quantization approach. Symmetry 2019, 11, 765. [CrossRef]
2. Peticolas, F.; Anderson, R.; Kuhn, M. Information hiding—A survey. Proc. IEEE 1999, 87, 1062–1068. [CrossRef]
3. Hong, W.; Chen, T.S.; Chen, J. Reversible data hiding using delaunay triangulation and selective embedment. Inf. Sci. 2015, 308,

140–154. [CrossRef]
4. Chan, C.K.; Cheng, L.M. Hiding data in images by simple LSB substitution. Pattern Recognit. 2004, 37, 469–474. [CrossRef]
5. Ni, Z.C.; Shi, Y.Q.; Ansari, N.W.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–362.

[CrossRef]
6. Lin, C.C.; Tai, W.L.; Chang, C.C. Multilevel reversible data hiding based on histogram modification of difference images. Pattern

Recognit. 2008, 41, 3582–3591. [CrossRef]
7. Zhang, D.Z.; Panand, Z.; Li, H. A contour-based semi-fragile image watermarking algorithm in DWT domain. In Proceedings

of the Second International Workshop on Education Technology and Computer Science, Wuhan, China, 6–7 March 2010; pp.
228–231.

8. Wu, X.; Sun, W. Robust copyright protection scheme for digital images using overlapping DCT and SVD. Appl. Soft Comput. 2013,
13, 1170–1182. [CrossRef]

9. Gray, R.M. Vector quantization. IEEE Assp. Mag. 1984, 1, 4–29. [CrossRef]
10. Kim, T. Side match and overlap match vector quantizers for images. IEEE Trans. Image Process. 1992, 1, 170–185. [CrossRef]
11. Delp, E.J.; Mitchell, O.R. Image compression using block truncation coding. IEEE Trans. Commun. 1979, 27, 1335–1342. [CrossRef]
12. Wang, K.; Lu, Z.M.; Hu, Y.J. A high capacity lossless data hiding scheme for JPEG images. J. Syst. Softw. 2013, 86, 1965–1975.

[CrossRef]
13. Lema, M.; Mitchell, O. Absolute moment block truncation coding and its application to color images. IEEE Trans. Commun. 1984,

32, 1148–1157. [CrossRef]
14. Kumar, R.; Kim, D.S.; Jung, K.H. Enhanced AMBTC based data hiding method using hamming distance and pixel value

differencing. J. Inf. Secur. Appl. 2019, 47, 94–103. [CrossRef]
15. Li, C.H.; Lu, Z.M.; Su, Y.X. Reversible data hiding for BTC-compressed images based on bitplane flipping and histogram shifting

of mean tables. Inf. Technol. J. 2011, 10, 1421–1426. [CrossRef]
16. Lin, C.C.; Liu, X.L. A reversible data hiding scheme for block truncation compression based on histogram modification. In

Proceedings of the Sixth International Conference Genetic and Evolutionary Computing (ICGEC), Kitakyushu, Japan, 25–28
August 2012; pp. 157–160.

17. Chang, C.I.; Hu, C.Y.; Chen, L.W.; Lu, C.C. High capacity reversible data hiding scheme based on residual histogram shifting for
block truncation coding. Signal Process. 2015, 108, 376–388. [CrossRef]

18. Li, F.; Bharanitharan, K.; Chang, C.C.; Mao, Q. Bi-stretch reversible data hiding algorithm for absolute moment block truncation
coding compressed images. Multimed. Tools Appl. 2016, 75, 16153–16171. [CrossRef]

19. Chuang, J.C.; Chang, C.C. Using a simple and fast image compression algorithm to hide secret information. Int. J. Comput. Appl.
2006, 28, 735–743.

20. Ou, D.; Sun, W. High payload image steganography with minimum distortion based on absolute moment block truncation
coding. Multimed. Tools Appl. 2015, 74, 9117–9139. [CrossRef]

21. Huang, Y.H.; Chang, C.C.; Chen, Y.H. Hybrid secret hiding schemes based on absolute moment block truncation coding. Multimed.
Tools Appl. 2017, 76, 6159–6174. [CrossRef]

http://doi.org/10.3390/sym11060765
http://doi.org/10.1109/5.771065
http://doi.org/10.1016/j.ins.2014.03.030
http://doi.org/10.1016/j.patcog.2003.08.007
http://doi.org/10.1109/TCSVT.2006.869964
http://doi.org/10.1016/j.patcog.2008.05.015
http://doi.org/10.1016/j.asoc.2012.09.028
http://doi.org/10.1109/MASSP.1984.1162229
http://doi.org/10.1109/83.136594
http://doi.org/10.1109/TCOM.1979.1094560
http://doi.org/10.1016/j.jss.2013.03.083
http://doi.org/10.1109/TCOM.1984.1095973
http://doi.org/10.1016/j.jisa.2019.04.007
http://doi.org/10.3923/itj.2011.1421.1426
http://doi.org/10.1016/j.sigpro.2014.09.036
http://doi.org/10.1007/s11042-015-2924-7
http://doi.org/10.1007/s11042-014-2059-2
http://doi.org/10.1007/s11042-015-3208-y

Electronics 2021, 10, 281 20 of 20

22. Chen, Y.Y.; Chi, K.Y. Cloud image watermarking: High quality data hiding and blind decoding scheme based on block truncation
coding. Multimed. Syst. 2019, 25, 1–13. [CrossRef]

23. Wang, K.; Hu, Y.; Lu, Z.M. Reversible data hiding for block truncation coding compressed images based on prediction-error
expansion. In Proceedings of the Eighth International Conference on Intelligent Information Hiding and Multimedia Signal
Processing, Piraeus-Athens, Greece, 18–20 July 2012; pp. 317–320.

24. Sun, W.; Lu, Z.M.; Wen, Y.C.; Yu, F.X.; Shen, R.J. High performance reversible data hiding for block truncation coding compressed
images. Signal Image Video Process. 2013, 7, 297–306. [CrossRef]

25. Hong, W.; Ma, Y.B.; Wu, H.C. An efficient reversible data hiding method for AMBTC compressed images. Multimed. Tools Appl.
2017, 76, 5441–5460. [CrossRef]

26. Tsai, Y.Y.; Chan, C.S.; Liu, C.L.; Su, B.R. A reversible steganographic algorithm for BTC-compressed images based on difference
expansion and median edge detector. Image Sci. J. 2014, 62, 48–55. [CrossRef]

27. Chang, C.C.; Chen, T.S.; Wang, Y.K.; Liu, Y.J. A reversible data hiding scheme based on absolute moment block truncation coding
compression using exclusive OR operator. Multimed. Tools Appl. 2018, 77, 9039–9053. [CrossRef]

28. Hong, W.; Zhou, X.Y.; Weng, S.W. Joint adaptive coding and reversible data hiding for AMBTC compressed images. Symmetry
2018, 10, 254. [CrossRef]

29. Hong, W. Efficient data hiding based on block truncation coding using pixel pair matching technique. Symmetry 2018, 10, 36.
[CrossRef]

30. Sun, S.; Yin, Z.; Tang, J.; Luo, B. Improved reversible data hiding scheme based on AMBTC compression technique. In International
Conference on Industrial IoT Technologies and Applications; Springer: Cham, Switzerland, 2017; pp. 111–118.

31. Lin, C.C.; Liu, X.L.; Tai, W.L.; Yuan, S.M. A novel reversible data hiding scheme based on AMBTC compression technique.
Multimed. Tools Appl. 2015, 74, 3823–3842. [CrossRef]

32. Pan, J.; Li, W.; Lin, C.C. Novel reversible data hiding scheme for AMBTC-compressed Images by reference matrix. In Proceedings
of the Multidisciplinary Social Networks Research, Kaohsiung, Taiwan, 13–14 September 2014; pp. 427–436.

33. Zhang, Y.; Guo, S.Z.; Lu, Z.M.; Luo, H. Reversible data hiding for BTC-compressed images based on lossless coding of mean
tables. IEICE Trans. Commun. 2013, 96, 624–631. [CrossRef]

34. Huynh, N.T.; Bharanitharan, K.; Chang, C.C.; Liu, Y.J. Minima-maxima preserving data hiding algorithm for absolute moment
block truncation coding compressed images. Multimed. Tools Appl. 2018, 77, 5767–5783. [CrossRef]

35. Chang, C.C.; Kieu, T.D.; Chou, Y. A high payload steganographic scheme based on (7, 4) hamming Code for digital images. In
Proceedings of the International Symposium on Electronic Commerce and Security, Guangzhou, China, 3–5 August 2008; pp.
16–21. [CrossRef]

36. Cao, Z.; Yin, Z.; Hu, H.; Gao, X.; Wang, L. High capacity data hiding scheme based on (7, 4) hamming code. SpringerPlus 2016, 5,
175. [CrossRef]

37. Bai, J.; Chang, C.C. A high payload steganographic scheme for compressed images with hamming code. Int. J. Netw. Secur. 2016,
18, 1122–1129.

38. Hamming, R.W. Error detecting and error correcting codes. Bell Syst. Tech. J. 1950, 29, 147–160. [CrossRef]
39. Mao, Q. A fast algorithm for matrix embedding steganography. Digit. Signal Process. 2014, 25, 248–254. [CrossRef]
40. The USC-SIPI Image Database. Available online: http://sipi.usc.edu/database (accessed on 20 January 2020).
41. Akhtar, N.; Mian, A. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access 2018, 6, 14410–14430.

[CrossRef]
42. Chakraborty, T.; Jajodia, S.; Katz, J.; Picariello, A.; Sperli, G.; Subrahmanian, V.S. FORGE: A fake online repository generation

engine for cyber deception. IEEE Trans. Dependable Secur. Comput. 2019. [CrossRef]

http://doi.org/10.1007/s00530-017-0544-y
http://doi.org/10.1007/s11760-011-0238-4
http://doi.org/10.1007/s11042-016-4032-8
http://doi.org/10.1179/1743131X12Y.0000000032
http://doi.org/10.1007/s11042-017-4800-0
http://doi.org/10.3390/sym10070254
http://doi.org/10.3390/sym10020036
http://doi.org/10.1007/s11042-013-1801-5
http://doi.org/10.1587/transcom.E96.B.624
http://doi.org/10.1007/s11042-017-4487-2
http://doi.org/10.1109/ISECS.2008.222
http://doi.org/10.1186/s40064-016-1818-0
http://doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://doi.org/10.1016/j.dsp.2013.11.001
http://sipi.usc.edu/database
http://doi.org/10.1109/ACCESS.2018.2807385
http://doi.org/10.1109/TDSC.2019.2898661

	Introduction
	Related Work
	Absolute Moment Block Truncation Coding
	Lin et al.’s RDH Method
	(7, 4) Hamming Code

	Improvement of Lin et al.’s Method
	Data Embedding Phase
	Extraction and Recovery Phase

	Experiment Results and Discussion
	Performance of Proposed Method
	Performance Comparison with Related Studies

	Conclusions
	References

