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Abstract: The development of multiple-beam devices is required due to the increasing demand of
compact, high-frequency, and high-power vacuum devices. A Ka-band multiple-beam extended-
interaction oscillator which operates in TM01 mode with a large diameter (as the value is 14.6 mm
which is larger than the operating wavelength of 8 mm) to obtain high output power has been
put forward. In previous studies, the performance differences of single-beam extended-interaction
oscillator with different electric field uniformity can be as high as 70%. Simulation results predicted
the multiple-beam device has an average output power of 7.594 kW when a total beam of 3 A, 18 kV
and the uniformity parameter is 0.064. Meanwhile, it predicted that the difference of output power of
multiple-beam devices with different field uniformity (corresponding uniformity parameter is within
0.064~0.278) is within 2.53% when other operating conditions are unchanged. The results show that
the multiple-beam device substantially decreases the influence of the field uniformity, which is an
important factor for the performance in the single-beam device. A cold test experiment has been
carried out based on perturbation theory to obtain the electric field distribution curves of this device,
and this provides a method for studying multiple-beam devices.

Keywords: multiple-beam extended interaction oscillator (MBEIO); the electric field uniformity;
perturbation theory

1. Introduction

The development of an electronic vacuum device involves obtaining high power and
operating in high frequency [1–5]. Extended-interaction oscillator (EIO) is one kind of
electronic vacuum device. EIO combines the advantages of the slow-wave circuit and
the coupled cavity to achieve high output power, efficient beam-wave interaction, and
reliability; meanwhile, it can also be miniaturized [6–9]. The output power of EIO depends
on the current which can be transported through the device at a particular voltage [10].
The previous design schemes involve designing the multiple electron-beams which are
parallel-arrayed between the coupling cavities [9,11]. Meanwhile, the fact that dimension of
the device becomes smaller with the increasing frequency must be taken into consideration.
The width of the sheet beam cannot be further enlarged due to the problems of field
distribution uniformity and mode competition while devices operate in W-band and higher.
The previous scheme made EIOs operate in higher order mode so that the efficiency of
wave interaction would be lower than that of the basic mode under the same operating
condition [11–13]. Thus, our team has designed a multiple-beam extended-interaction
oscillator (MBEIO) with a large diameter (as the value is 14.6 mm which is larger than the
operating wavelength of 8 mm) which operates in TM mode [14,15].
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The electric field uniformity of MBEIO is a noteworthy parameter as it is an important
parameter for the performance but has not been analyzed in the previous studies [16,17].
In this paper, the output power of MBEIOs which have different electric field distribution
uniformity have been predicted by simulation with Computer-Simulation-Technology
(CST) microwave studio. The uniformity parameter value is employed to quantify the
uniformity of the electric field distribution, and its calculation method has been presented
in the next section. The simulation results show that the multiple-beam device with a large
diameter substantially decreases the influence of the field uniformity which is an important
factor for the performance in the single-beam device [18].

The previous measurement methods which are suitable for the device with oper-
ating frequency less than 26.5 GHz are no longer applicable for the MBEIO. Thus, a
measurement scheme based on perturbation theory is provided to obtain the uniformity
parameter value in this paper. Perturbation theory is generally used to measure dielectric
constant of materials and the change in the resonant frequency of devices [19–25]. The
most common perturbation methods include changing device structures and changing
filling mediums [20]. Changing filling mediums have been employed in this study because
of advantages such as being non-destructive, flexible, and high-precision. The electric field
distribution uniformity of the MBEIO has been obtained in the experiment.

2. Analysis and Simulation
2.1. Analysis of Field Uniformity

This designed MBEIO is based on our previous study of the five-beams EIO [14]. The
MBEIO circuit consists of three beam tunnels, an annular closed coupling cavity and seven
interaction gaps. As shown in Figure 1, the device which corresponds to this circuit is
named ‘device-0’ for the convenience of understanding and set as the studying object. The
specific parameter values of MBEIO circuit have been given in Table 1.
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Figure 1. The cross-sectional views of layout of the circuit of multiple-beam extended interaction oscillator (MBEIO). (a) The
cross-sectional side view. (b) The cross-sectional front view.

Table 1. Specific Parameter for the MBEIO circuit.

Symbol Description Value

P Period of the Circuit 2.04 mm
rCin Inner radius of the coaxial structure 3.70 mm
rCout Outer radius of the coaxial structure 7.30 mm

w Width of the interaction gap 0.68 mm
rCSin Inner radius of the coupling structure 7.00 mm
rCSout Outer radius of the coupling structure 7.30 mm

d Diameter of the beam tunnels 1.00 mm
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Figure 2a,b show the eigenmode electric field contour in the 2π mode with seven peri-
ods. Figure 2c shows the field distribution of this MBEIO agrees well with the eigenmode
simulation. Figure 2d shows a snapshot of the 3-D trajectory of the electrons within the
device after oscillation, and a clear bunching of the electrons has been obtained. Figure 3
shows that the stable output power of device-0 is 7.594 kW and the operating frequency
is 35.36 GHz. The changing of output power with operating voltage is shown in Figure 4
and the 18 kV is chosen to be the operating voltage as it corresponds to the highest
output power.
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Figure 5 shows the comparison of field distribution curves between eigenmode simu-
lation and PIC (particle-in-cell) simulation. Corresponding field distributions of the two
are basically the same; thus, the field distribution under the eigenmode can be used to
predict the device performance.
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The electric field uniformity of MBEIO will be changed with the changing structure
of the device. The uniformity parameter which is selected for studying the uniformity is
calculated by the following steps. Firstly, the field intensity value at the center point of each
cycle on the axis line of each beam tunnel are obtained by simulation and experiment so
that seven sets of data can be obtained, and each set contains three pieces of data. Secondly,
the average value of each set of data is calculated and selected as the reference value, and
the three data are normalized based on it. Thirdly, the variance of each set of normalized
data is calculated, and the results are added to obtain the uniformity parameter value.
According to the above method, the uniformity parameter values of several devices are
calculated and shown in Table 2.

Table 2. Specific Parameter for the results of uniformity parameter and output power.

Device Uniformity Parameter Output Power (kW)

0 0.064 7.594
1 0.083 7.606
2 0.102 7.674
3 0.144 7.675
4 0.221 7.689
5 0.278 7.786

The field intensity curves of device-0 and device-5 are shown in Figure 6, respectively.
By comparing the corresponding field intensity curves of the device-0 and device-5, it
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can be concluded that the smaller the uniformity parameter value is, the better the field
distribution uniformity. Figure 7 shows that the output power is affected slightly with the
uniformity parameter and keep a relatively stable state. Therefore, it could be concluded
that the multiple-beam extended-interaction oscillator substantially decreases the influence
of electric field uniformity, which is an important parameter for performance in single-beam
extended-interaction oscillator. The next section presents a method for measuring field
uniformity in order to further study the effect of field uniformity on device performance in
practical applications.

Electronics 2021, 2021, x FOR PEER REVIEW 5 of 10 
 

field distribution uniformity. Figure 7 shows that the output power is affected slightly 
with the uniformity parameter and keep a relatively stable state. Therefore, it could be 
concluded that the multiple-beam extended-interaction oscillator substantially decreases 
the influence of electric field uniformity, which is an important parameter for performance 
in single-beam extended-interaction oscillator. The next section presents a method for 
measuring field uniformity in order to further study the effect of field uniformity on de-
vice performance in practical applications. 

 
Figure 6. (a) Schematic of field intensity curves of device-0. (b) Schematic of field intensity curves of device-5. 

 
Figure 7. The changing of the output power with uniformity parameter, and the output power is 
affected slightly. 

2.2. Analysis Based on Perturbation Theory 
It is extremely difficult to obtain the electric field intensity of the axial line of a reso-

nator by experiments; thus, the frequency offset parameter is chosen as the experimental 
measuring object. Dielectric perturbation theory is employed to obtain the intensity of the 
electric field. The insulator ball which has a radius of 0.325 mm and the dielectric constant 
of 4.82 is employed as the perturbation object and the related resonator perturbation ex-
pression is given below (1), as already reported in [26]: 

   
 

0

0

0 0 0 0
0

0 0 0 0 0 0

. v

v
V

V

E D E D H B H B d
f ff

f f E D H B d

           
 

  




 (1)

In the relation, f0 and f are the frequency of the resonator with or without perturbation 
object, respectively. V0 is the volume of the resonator cavity. When the perturbation object 
is not added in the resonator cavity, E0 and D0 are the electric field vector, induction in-
tensity vector, respectively, and 𝐸  and 𝐷  are the corresponding conjugate complex 
numbers; H0 and B0 are magnetic field vector, magnetic induction intensity vector, respec-
tively, and 𝐻  and 𝐵  are the corresponding conjugate complex numbers. Values of H  

O
ut

pu
t p

ow
er

(k
W

)

Figure 6. (a) Schematic of field intensity curves of device-0. (b) Schematic of field intensity curves of device-5.

Electronics 2021, 2021, x FOR PEER REVIEW 5 of 10 
 

field distribution uniformity. Figure 7 shows that the output power is affected slightly 
with the uniformity parameter and keep a relatively stable state. Therefore, it could be 
concluded that the multiple-beam extended-interaction oscillator substantially decreases 
the influence of electric field uniformity, which is an important parameter for performance 
in single-beam extended-interaction oscillator. The next section presents a method for 
measuring field uniformity in order to further study the effect of field uniformity on de-
vice performance in practical applications. 

 
Figure 6. (a) Schematic of field intensity curves of device-0. (b) Schematic of field intensity curves of device-5. 

 
Figure 7. The changing of the output power with uniformity parameter, and the output power is 
affected slightly. 

2.2. Analysis Based on Perturbation Theory 
It is extremely difficult to obtain the electric field intensity of the axial line of a reso-

nator by experiments; thus, the frequency offset parameter is chosen as the experimental 
measuring object. Dielectric perturbation theory is employed to obtain the intensity of the 
electric field. The insulator ball which has a radius of 0.325 mm and the dielectric constant 
of 4.82 is employed as the perturbation object and the related resonator perturbation ex-
pression is given below (1), as already reported in [26]: 

   
 

0

0

0 0 0 0
0

0 0 0 0 0 0

. v

v
V

V

E D E D H B H B d
f ff

f f E D H B d

           
 

  




 (1)

In the relation, f0 and f are the frequency of the resonator with or without perturbation 
object, respectively. V0 is the volume of the resonator cavity. When the perturbation object 
is not added in the resonator cavity, E0 and D0 are the electric field vector, induction in-
tensity vector, respectively, and 𝐸  and 𝐷  are the corresponding conjugate complex 
numbers; H0 and B0 are magnetic field vector, magnetic induction intensity vector, respec-
tively, and 𝐻  and 𝐵  are the corresponding conjugate complex numbers. Values of H  

O
ut

pu
t p

ow
er

(k
W

)

Figure 7. The changing of the output power with uniformity parameter, and the output power is
affected slightly.

2.2. Analysis Based on Perturbation Theory

It is extremely difficult to obtain the electric field intensity of the axial line of a res-
onator by experiments; thus, the frequency offset parameter is chosen as the experimental
measuring object. Dielectric perturbation theory is employed to obtain the intensity of
the electric field. The insulator ball which has a radius of 0.325 mm and the dielectric con-
stant of 4.82 is employed as the perturbation object and the related resonator perturbation
expression is given below (1), as already reported in [26]:

∆ f
f0

=
f − f0

f0
≈

∫
V0

[(
∆E · D0 − E0 · ∆D

)
+
(
∆H · B0 − H0 · ∆B

)]
dv∫

V0

(
E0 · D0 + H0 · B0

)
dv

(1)

In the relation, f 0 and f are the frequency of the resonator with or without perturbation
object, respectively. V0 is the volume of the resonator cavity. When the perturbation object is
not added in the resonator cavity, E0 and D0 are the electric field vector, induction intensity
vector, respectively, and E0 and D0 are the corresponding conjugate complex numbers; H0
and B0 are magnetic field vector, magnetic induction intensity vector, respectively, and H0
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and B0 are the corresponding conjugate complex numbers. Values of ∆H and ∆B are 0 due
to that the perturbation of dielectric medium of the magnetic field is negligible.

The field intensity inside the dielectric perturbation object can be regarded as uniform
when the size of three axes is far less than the wavelength, and the influence of the change
in the field intensity inside the perturbation object on the frequency migration of the whole
resonator cavity is negligible. Based on the above theory, the perturbation expression in
the ellipsoid coordinate system has been studied and is given below (2) [20]:

∆ f
f0

=
f − f0

f0
≈ 1 − εr

1 + abc
2 (εr − 1)A

·
4
3πabc · ε0E0 · E0

4W
(2)

In this relation, a, b, c are the dimensional values of the perturbation object. W is
the energy storage of cavity. ε is dielectric constant of perturbation object, εr is relative
dielectric, and ε0 can be calculated with expression 3 which is given below (3):

ε = εrε0 (3)

The dielectric sphere is chosen as the perturbation object on account of the considera-
tion of the reliability and feasibility of the experimental scheme. In the spherical coordi-
nates, the express (2) has been further derived to obtain the corresponding perturbation
expression which is given below (4):

∆ f
f0

=
3(1 − εr)

2 + εr
· ε0E0 · E0

4W
· 4

3
πa3 (4)

The frequency offset value is proportional to the square value of electric field intensity
according to Formula (4).

The frequency that can be disturbed by the perturbation object is very small because
the frequency offset value is less than 10 MHz. Thus, a vacuum perturbation object with the
same dimension is added at the same position to obtain more accurate simulation results
as it can exclude the frequency offset caused by the changing of grid, and the frequency
corresponding to TM01 mode of this device serves as the reference frequency f 0. Figure 8a
shows simulated S11 parameters at the standard waveguide port. Figure 8b shows the
frequency with dielectric perturbation object at 2π mode. Figure 8c shows the frequency
with vacuum perturbation object at 2π mode. The frequency offset value of 5.5 MHz can be
obtained by comparing the 2π mode operating frequency. Seventy sets of simulations based
on the described perturbation theory have been carried out and corresponding results
are shown in Figure 9. The calculated uniformity parameter value is 0.069 based on the
method mentioned in Part A of Chapter 1 and Formula (4), and the deviation between
the uniformity parameter of the field intensity and the uniformity parameter of frequency
offset is 7.8% which is due to the difference in the location of the sampling point. Thus, the
measurement scheme is proved to be feasible by simulation.

3. Cold Test Experiment
3.1. Schematic of the Measurement Setup

The experimental test platform is shown in Figure 10a, and consists of a Vector
Network Analyzer (VNA) system, perturbation system, and the fixed system of MBEIO
circuit. The VNA system is employed to measure S11 parameter accurately so that the
resonant frequency of MBEIO cavity can be obtained. The specific VNA model is “CEYAER
AV3672C” and it was developed and produced by the 41st Institute of Electronic Science
and Technology of China [27]. The perturbation system consists of a dielectric perturbation
object, a perturbation track, two optical brackets and electronically controlled displacement
plat form. Thus, the perturbation object can make accurate displacement in the electronic
beam tunnel, and the bit shift step length is 0.2 mm in this experiment. The schematic
diagram of the partial perturbation system and the connection scheme of each part are
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shown in Figure 10b. The fixed system of MBEIO circuit, which is employed to ensure
that the circuit is in the horizontal position, consists of a clamp and optical plate so as to
improve the reliability of the measurement.
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In this experiment, the S11 parameter of MBEIO circuit is changed with the perturba-
tion object position and accurately obtained by VNA.
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3.2. Analysis of Experimental Results

The 2π mode resonant frequency is changed with the position of the perturbation
object, and shown in Figure 11. The frequency offset value depends on the intensity of
the electric field at the position of the perturbation object. The position 1 corresponds to
the fact that the perturbation object is not located in the beam tunnel, and the resonant
frequency of 35.45 GHz is employed as the reference frequency for the experimental data
processing. Thus, the perturbation object at position 2 causes a 7 MHz frequency offset.
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The frequency offset values measured at the center of each cycle are listed in Table 3.
The normalized frequency offset value is proportional to the square of the value of the
normalized field intensity based on Formula (3). The experimental uniformity parameter
value was calculated to be 0.088, the deviation may be caused by assembly tolerances
and machining accuracy. Therefore, it demonstrates that this measurement method could
be adopted to study extended-interaction resonant cavities. There are some applications
of this method, such as: verifying machining accuracy of cavities, confirming the field
distribution corresponding to the resonance points, etc.

Table 3. Experimental data.

Frequency Off-
set Value

(MHz)
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Beam Tunnel 1 10.22 9.83 8.72 10.98 8.65 10.21 10.63
Beam Tunnel 2 13.33 11.33 11.69 10.85 9.28 10.07 10.68
Beam Tunnel 3 17.52 16.38 13.15 15.92 16.01 18.01 15.22

4. Conclusions and Discussion

In this paper, the stability of a Ka-band MBEIO has been analyzed through the electric
field distribution uniformity. This designed MBEIO could operate stably and has a good
performance and it has substantially decreased the influence of electric field uniformity for
the device performance. The experiment has been carried out based on perturbation theory,
and the experimental uniformity parameter value is 0.088 which is basically consistent
with the simulation. This study has greatly enhanced our confidence in the development
of MBEIO with a large diameter.

These multiple-beam extended-interaction oscillators with a large diameter which
operate in a higher frequency are being studied for their ability to obtain a higher out-
put power and practical application value. We plan to assemble the device to verify it
experimentally in the near future.
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