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Abstract: Wind turbines are machines operating in non-stationary conditions and the power of a
wind turbine depends non-trivially on environmental conditions and working parameters. For these
reasons, wind turbine power monitoring is a complex task which is typically addressed through
data-driven methods for constructing a normal behavior model. On these grounds, this study is
devoted the analysis of meaningful operation curves, which are rotor speed-power, generator speed-
power and blade pitch-power. A key point is that these curves are analyzed in the appropriate
operation region of the wind turbines: the rotor and generator curves are considered for moderate
wind speed, when the blade pitch is fixed and the rotational speed varies (Region 2); the blade
pitch curve is considered for higher wind speed, when the rotational speed is rated (Region 2 1/2).
The selected curves are studied through a multivariate Support Vector Regression with Gaussian
Kernel on the Supervisory Control And Data Acquisition (SCADA) data of two wind farms sited in
Italy, featuring in total 15 2 MW wind turbines. An innovative aspect of the selected models is that
minimum, maximum and standard deviation of the independent variables of interest are fed as input
to the models, in addition to the typically employed average values: using the additional covariates
proposed in this work, the error metrics decrease of order of one third, with respect to what would be
obtained by employing as regressors only the average values of the independent variables. In general
it results that, for all the considered curves, the prediction of the power is characterized by error
metrics which are competitive with the state of the art in the literature for multivariate wind turbine
power curve analysis: in particular, for one test case, a mean absolute percentage error of order of
2.5% is achieved. Furthermore, the approach presented in this study provides a superior capability
of interpreting wind turbine performance in terms of the behavior of the main sub-components and
eliminates as much as possible the dependence on nacelle anemometer data, whose use is critical
because of issues related to the sites complexity.

Keywords: wind energy; wind turbines; data analysis; operation curves; control and monitoring

1. Introduction

Operation and maintenance of wind turbines represent an important fraction (up to
20–25%) of the life-cycle costs of an industrial plant. Furthermore the recent trends about
increasing rotor sizes [1,2] and offshore exploitation [3–5] complicate the accessibility
to wind turbine sites and increase the intervention costs in case of unexpected wind
turbine stops.

For these reasons, and also in light of the non-stationary conditions to which wind
turbines are subjected, remote control and monitoring [6,7] of wind farms is an objective
whose importance has been continuously growing. Fortunately, the widespread diffusion
of Supervisory Control And Data Acquisition (SCADA) control systems and of Turbine
Condition Monitoring (TCM) systems guarantees the availability of most of the data which
are necessary for wind turbine control and monitoring. Nevertheless, transforming the
available information into knowledge about the health status or the performance of wind
turbines is particularly complex. For example, as regards the detection of mechanical
damages at gears and bearings through vibration data analysis, it is prohibitive to isolate
the signatures associated to incoming faults [8–11].
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As regards the monitoring of wind turbine performance, the main issue is that a wind
turbine has a multivariate dependence on environmental conditions [12,13] and working
parameters. SCADA control systems typically record and store (with some minutes of
sampling time) the main working parameters and also internal temperatures collected
at meaningful wind turbine sub-components. By this point of view, therefore, the main
issue is incorporating efficiently this kind of information for constructing normal behavior
models for the performance of the wind turbines [14–17], which can useful as well for
condition monitoring purposes [18,19].

The simplest data-driven model employed for wind turbine performance monitoring
is the power curve [20–23], which is the relation between the average wind speed and the
extracted power. On the grounds of the above discussion, a recent trend in wind energy
literature regards multivariate approaches to the power curve: in [24–26], the point of view
is including additional environmental variables (either measured ambient temperature,
humidity, and wind direction as in [24] or estimated by a Numerical Weather Prediction
model as in [25]); in [27–30], the approach consists in including the most important opera-
tion variables (as the blade pitch and the rotor speed) in the multivariate modelling of the
power curve.

An interesting approach to wind turbine power monitoring consists in the analysis of
other operation curves, mainly regarding the rotor speed and the blade pitch. In [31,32],
the wind speed-blade pitch curve of wind turbines is analyzed using Support Vector Regres-
sion and the results are compared against the binning method. In [33], two fundamental
operation curves are analyzed through Gaussian process methods: the wind speed-blade
pitch and the wind speed-rotor speed curves.

A further development of these concepts regards the analysis of operation curves
which do not involve the wind speed measured at the nacelle of the wind turbines. The ra-
tionale for this consideration is that in general the nacelle wind speed is measured behind
the rotor span and the undisturbed wind speed is estimated through a nacelle transfer
function: this introduces possible drawbacks, especially in complex environment. Further-
more, it is not rare that nacelle anemometers are subjected to failures or bias [34]. These
considerations have even led to the formulation of the concept of rotor equivalent wind
speed [35,36]: the idea is that, since the rotor speed is controlled on the grounds on the
torque and not on the grounds of the nacelle anemometer, the rotor itself can be considered
as a probe for estimating the wind speed.

Therefore, this study is devoted to the data-driven analysis of three operation curves,
which are rotor speed-power, generator speed-power and blade pitch-power curve. To best
of the author’s knowledge, despite the potential interest of these curves in wind turbine
power monitoring, this topic has not been addressed systematically in the literature, except
for the intuition contained in [37], regarding the fact these curves can be particularly
meaningful for wind turbine aging estimation.

The objective of this study is formulating a methodology for monitoring the perfor-
mance of wind turbines using the above indicated curves: this in practice has been realized
by verifying the robustness of a non-linear multivariate regression, which can therefore be
employed as a normal behavior model for comparing the expected performance against
the actual performance.

The data analysis is appropriately conducted in light of the principles of the control
of wind turbines: for moderate wind speed (approximately between 5 m/s and 9 m/s),
the blade pitch is kept fixed and the wind turbine attains the highest possible aerodynamic
efficiency by regulating the rotor speed; for higher wind speed (approximately between
9 m/s and 13 m/s), the wind turbine operates in partial aerodynamic load by keeping
constant the rotational speed and by regulating the blade pitch. These two operation
regions are typically overall indicated as Region 2 of the power curve of a wind turbine,
because they are between cut-in and rated: in [37], in order to distinguish them, they are
indicated as Region 2 and Region 2 1/2 and the same notation is employed in this study.
Therefore, in this work, the selected operation curves are analyzed in the regions where
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they are of most interest for performance monitoring purposes: rotor and generator speed
curves in Region 2, blade pitch curve in Region 2 1/2. The interest for the blade pitch-power
curve regards also the fact that, when the rotor speed saturates, the rotor equivalent wind
speed becomes meaningless and therefore it is conceivable to use the blade pitch curve as
the basis for a sort of pitch equivalent wind speed.

Due to the non-linear relation between the input variables and the power output,
the selected methodology for the analysis of the curves is a Support Vector Regression with
Gaussian Kernel. An innovative aspect of this study deals with the selection of the set
of covariates for the regression. In the literature about wind turbine power monitoring,
it is typical that the selected covariates are the average values as stored by the SCADA
control system, but it should be noticed that SCADA systems store as well the minimum,
the maximum and the standard deviation in the sampling interval for each measured
channel. In this study, the possibility has been explored of including also minimum,
maximum and standard deviation of the selected input variables, in order to inquire within
what extent the normal behavior model improves. Sideways, this simple idea, which is
enriching the covariates structure rather than complicating the model structure, could
be inspiring for multivariate power curve modelling because the critical point is exactly
reproducing the observed variability of the extracted power, given average conditions.

The main result of this work therefore consists in the verification that, using the
proposed methodology, it is possible to model the power of a wind turbine with a precision
which is competitive with the state of the art in the literature, but without using the nacelle
wind speed as input variable: this is definitely non-trivial because, as discussed for example
in [27], the wind speed explains up to 98% of the variance of the power of a wind turbine.

Summarizing, the structure of the manuscript is therefore the following: in Section 2,
the test case and the data sets used for the present study are described; Section 3 is devoted
to the methods; the results are collected and discussed in Section 4; conclusions are drawn
and further directions of the present work are indicated in Section 5.

2. The Test Cases

The selected test cases were two wind farms (named as WF1 and WF2) sited in
southern Italy on gentle terrains, featuring respectively six and nine wind turbines whose
rated power was 2 MW. The rotor diameters at WF1 was 92 m and at WF2 was 82 m.
The layouts are reported in Figures 1 and 2: from these Figures it arises that the inter-
turbine distance at WF1 was considerably higher with respect to WF2. Therefore, the impact
of wakes on wind turbine operation was low for WF1, while it was relevant for WF2 (as
discussed, for example, in [38,39]).

Figure 1. The layout of the test case 1 wind farm.
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Figure 2. The layout of the test case 2 wind farm.

Operation data spanning the years 2017 and 2018 were used, courtesy of the ENGIE
Italia company. The measurements used were the following:

• nacelle wind speed v;
• power production P;
• blade pitch β;
• rotor speed Ω;
• generator speed ω.

The data had 10 min of sampling time. For each channel, average, minimum, maxi-
mum and standard deviation over the 10 min interval have been used.

Data were pre-processed by filtering on wind turbine operation using the appropriate
run time counter available in the SCADA data set. Subsequently, each data set was divided
according to the operation region, as indicated in Table 1, on the grounds of nacelle
wind intensity v. The same notation as in [37] was adopted: the regime when the wind
turbine operated at full aerodynamic load, with variable rotational speed and fixed pitch,
is indicated as Region 2; instead, the regime characterized by rated rotational speed and
variable pitch is indicated as Region 2 1/2.

Table 1. Operation regions for the test case wind turbine.

Region Condition

2 5 ≤ v ≤ 9
2 1/2 9 < v ≤ 13

Examples of the operation curves under analysis were reported for a sample wind
turbine (T1) for each test case in Figure 3 (generator speed-power), Figure 4 (rotor speed-
power) and Figure 5 (blade pitch-power): from these Figures, it arises that the curves were
qualitatively similar and therefore the logic of the control was the same.
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Figure 3. An example of generator speed-power curve for T1 in WF1 and WF2.
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Figure 4. An example of rotor speed-power curve for T1 in WF1 and WF2.

0 2 4 6 8 10 12

Blade pitch (°)

800

1000

1200

1400

1600

1800

2000

2200

P
o
w

e
r 

(k
W

)

(a) WF1

-2 -1 0 1 2 3 4 5 6 7 8

Blade pitch (°)

800

1000

1200

1400

1600

1800

2000

2200

P
o
w

e
r 

(k
W

)

(b) WF2

Figure 5. An example of blade pitch-power curve for T1 in WF1 and WF2.
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3. The Method

The objective of the study was formulating a reliable methodology for wind turbine
power monitoring using the selected operation curves, depending on the working region.
This passes through the construction of a normal behavior model for the curves and conse-
quently consists in the comparison between the model estimates and the measurements in
the validation data set. In this study, a Support Vector Regression with Gaussian Kernel
was selected for constructing the normal behavior models because this kind of regression
has proven to be effective for multivariate modeling of wind turbine power [37,40]. In the
following, therefore, the general principles of the Support Vector Regression are briefly
recapped and, subsequently, it will be discussed how to apply them for monitoring the
operation curves of interest.

Given a matrix X of input variables, where the covariates are grouped according to
the columns and the observations are grouped according to the rows, a linear model is
posed in Equation (1):

f (X) = Xβ + b, (1)

where β is the vector of regression coefficients and b is the intercept vector.
The Support Vector Regression consists in a methodology for estimating the β param-

eters. It relies on the constraint that the residuals between the measurement Y and the
model estimate f (X) are lower than a threshold ε for each n-th observation Equation (16):

|Yn − Xnβ + bn| ≤ ε. (2)

The optimization problem can be rephrased in the Lagrange dual formulation; the
function to minimize is L(α), given in Equation (3):

L(α) =
1
2

N

∑
i=1

N

∑
j=1

(αi − α∗i )
(

αj − α∗j

)
X ′i Xj + ε

N

∑
i=1

(αi + α∗i ) +
N

∑
i=1

Yi(α
∗
i − αi), (3)

with the constraints Equation (4)

N

∑
n=1

(αn − α∗n) = 0

0 ≤ αn ≤ C

0 ≤ α∗n ≤ C,

(4)

where C is the box constraint.
The solution for the β parameters in terms of the observations matrix X and of αn or

α∗n is given in Equation (5):

β =
N

∑
n=1

(αn − α∗n)Xn. (5)

In a nutshell, the optimization passes through the data-driven selection of the most
meaningful rows of the observations matrix X, which for this reason are named support
vectors and which are weighted through the αn or α∗n coefficients.

Once the β coefficients have been computed on a reference data set, they can be used
for predicting new values through Equation (6), given the input variables matrix X:

f (X) =
N

∑
n=1

(αn − α∗n)X ′
nX + b. (6)

The non-linear Support Vector Regression is obtained by replacing the products
between the observations matrix with a non-linear Kernel function Equation (7):

G(X1, X2) = 〈ϕ(X1)ϕ(X2)〉, (7)
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where ϕ is a transformation mapping the X observations into the feature space.
A Gaussian Kernel selection is given in Equation (8) and has been widely employed

in wind energy literature for non-linear regression problems [31]:

G
(
Xi, Xj

)
= e−κ‖Xi−Xj‖2

, (8)

where κ is the Kernel scale.
Then Equation (3) rewrites as in Equation (9):

L(α) =
1
2

N

∑
i=1

N

∑
j=1

(αi − α∗i )
(

αj − α∗j

)
G
(
Xi, Xj

)
+ ε

N

∑
i=1

(αi + α∗i ) +
N

∑
i=1

Yi(α
∗
i − αi), (9)

and Equation (6) for predicting rewrites as in Equation (10):

f (X) =
N

∑
n=1

(αn − α∗n)G(Xn, X) + b. (10)

In this work, the hyperparameters of the regression κ, C, ε have been automatically
optimized, basing on the evaluation on 30 model calls of the cross-validation loss.

In order to appreciate the usefulness of the selected non-linear regression for the
problem of this study, a comparison is set up against a multivariate linear model: Principal
Component Regression [41].

The ordinary least squares estimate of the linear model coefficients Equation (1) is
given in Equation (11):

βols =
(

XTX
)−1

XTY. (11)

If the input variables of the matrix X are strongly correlated, the estimate of the
β coefficients is affected by large uncertainty: for this reason, the idea of of the Princi-
pal Component Regression is constructing an input variables matrix having mutually
orthogonal columns.

Given the singular value decomposition of X in Equation (12)

x = U∆V T , (12)

the columns of U and V are orthonormal sets of vectors denoting the left and right singular
vectors of X and ∆ is a diagonal matrix, whose elements are the singular values of X.

Therefore, the matrix XXT can be decomposed as:

XXT = VΛV T , (13)

where Λ = diag
(
λ1, . . . , λp

)
and λ1 ≥ · · · ≥ λp ≥ 0.

The Principal Component Regression poses an ordinary least squares model between
the transformed data matrix W = xV and the target Y. Therefore, the estimate of β is given
in Equation (14):

βPCR = V
(

W TW
)−1

W TY. (14)

Once βPCR has been calculated using training data, the model can be used for predict-
ing through Equation (15):

f (X) = XβPCR, (15)

which is the corresponding of Equation (10) for the Principal Component Regression.
The data sets used for this study were employed as follows for the regression:

• The data from the year 2017 were used for optimizing and training the regression and
are named as D1;

• The validation data set D2 was constituted by the data from the 2018.
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The quality of the regression was analyzed through common error metrics, which
were the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root
Mean Square Error (RMSE).

Given the measurements Y(X) for the data set D2 and the model estimates f (X),
the residuals are defined in Equation (16):

R(X) = Y(X)− f (X). (16)

The MAE is defined in Equation (17):

MAE =
1
N ∑|R(X)|, (17)

where N is the number of samples in the D2 data set. The MAPE is defined in Equation (18):

MAPE =
100
N ∑

∣∣∣∣R(X)

Y(X)

∣∣∣∣ (18)

and the RMSE is defined in Equation (19):

RMSE =

√
∑(R(X)− R̄)2

N
, (19)

where R̄ is the average residual in the data set D2.
Finally, the selected structure of the regression was the following: for each curve,

the columns of the X matrix were constituted by the corresponding independent variable
(generator speed, rotor speed, blade pitch respectively). The main novelty proposed in this
manuscript as regards covariates selection was to include also the minimum, maximum
and standard deviation as further regressors in addition to the average value. Therefore
for, say, the generator speed-power curve regression, the X matrix was constituted by
average, minimum, maximum, standard deviation of the generator speed and the output
Y will be the power P. In the following, this kind of model will be indicated as M. In
order to provide a benchmark more in line with previous findings in the literature, a
reduced model (indicated as Mred) was analyzed as well: in this case, the unique covariate
was the average value of the independent variable of interest (for example, the generator
speed for the generator speed-power curve) and therefore the model was univariate non-
linear. Furthermore, for the M multivariate models, the Support Vector Regression and
the Principal Component Regression were set up and the results were compared, while
the univariate linear model was discarded because it was too simple for the problem.
Summarizing, for each curve a comparison of univariate and multivariate non-linear
models was performed (M against Mred), in order to appreciate the importance of the
additional covariates selection proposed in this study. Furthermore, for the multivariate
models, a comparison of non-linear (Support Vector) and linear (Principal Component)
regression was performed, in order to appreciate the importance of non-linearity. Therefore,
the structure of the employed regressions is summarized in Table 2.

Table 2. The structure of the regressions.

Curve Model Types Regressors

Generator Mgen SVR and PCR Generator speed ω (average, min, max, std. dev)
Generator Mgen

red SVR Generator speed ω (average)
Rotor Mrot SVR and PCR Rotor speed Ω (average, min, max, std. dev)
Rotor Mrot

red SVR Rotor speed Ω (average)
Pitch Mpitch SVR and PCR Blade pitch β (average, min, max, std. dev)
Pitch Mpitch

red PCR Blade pitch β (average)
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4. Results
4.1. WF1

In Figures 6–8, examples of measured and simulated curves are reported. The results
for the complete models M are reported on the left, while on the right the results for
the corresponding reduced models Mred are reported. A sample wind turbine (T1) was
selected and the employed data set was the validation one (D2). As regards all the curves,
it arises that the full models M were more capable of reproducing the actual dispersion of
the measured curves: therefore, the inclusion of the minimum, maximum and standard
deviation of the input as further covariates for the regression proved to be decisive for a
more realistic modelling of the curves.
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Figure 6. Measured and simulated generator speed-power curves: D2 data set, T1 wind turbine. Mgen model on the left,
Mgen

red on the right.
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Figure 7. Measured and simulated rotor speed-power curves: D2 data set, T1 wind turbine. Mrot model on the left, Mrot
red on

the right.
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Figure 8. Measured and simulated blade pitch-power curves: D2 data set, T1 wind turbine. Mpitch model on the left, Mpitch
red

on the right.

The qualitative results of Figures 6–8 were confirmed by the quantitative analysis re-
ported in Tables 3–5, where the error metrics are reported for the validation of the non-linear
univariate and multivariate models. A substantial decrease of the error metrics occurred
when the models also included in the input variables matrix the minimum, maximum
and standard deviation of the independent variable. In order to appreciate how much the
multivariate model improved with respect to the univariate reduced models, Table 6 was
reported: it contains the percentage decrease ∆ of each error metric, in average for the wind
farm, when the full model M was employed with respect to the corresponding reduced
model Mred. It arises that in general the order of error metrics improvement was one third.
In Table 7, the average wind farm error metrics for the multivariate linear models are
reported and it arises that they were several factors higher than the corresponding metrics
in Tables 3–5: this supports that it is fundamental to employ a non-linear multivariate
model as the selected one.

It is very important to notice that for all the three curves, the order of magnitude
of the MAPE was between 2.5% and 3%: this meant that it was conceivable to monitor
the power of a wind turbine with this order of precision using the selected curves, which
meant without using the wind speed measurements. This result was far from trivial, for
several reasons: as argued in [27], the wind speed explains up to 98% of the variance of
the data employed for multivariate power curve analysis and it is therefore remarkable to
obtain a comparable regression quality without using the most important covariate (wind
speed). Consider that, for example, in [25] multivariate models for wind turbine power
curve are analyzed and the best performing one provides a MAPE of order of 7%, which is
more than double of the results in this work. Putting together Region 2 and Region 2 1/2,
an overall MAE of order of 20 kW was obtained in this work along all the power curve
span: this result is similar to those in [30], with the difference that the percentage errors are
lower in the present study because the test case wind turbines had 2 MW of rated power
(while in [30] the rated power was 1.4 MW).

In order to appreciate the goodness of the obtained results in the context of wind
turbine power monitoring, a Support Vector Regression was set up for a multivariate model
of the power curve, including the nacelle wind speed v. The selected input variables were
nacelle wind speed v, blade pitch β, rotor speed Ω and generator speed ω; the output of the
model was the produced power P. Data from cut-in to rated were included and only the
average values of the above indicated variables were fed as input to the regression, which
was validated according to the same procedure as described in Section 3 and applied in
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this section. The rationale for this analysis was comparing the operation curves regression
proposed in this study against a benchmark of multivariate power curve model, which
included the most important operation variables but used only the average vales (as typical
in the literature): for this reason, the same model structure (Support Vector Regression)
was considered. It arises that the wind farm average MAE for the multivariate power
curve Support Vector Regression is of order of 20 kW, as for the combination of the curves
selected in this study. This supports that it can be more convenient for wind turbine
power monitoring to divide the data in appropriate working regions and to consider
separately different operation curves: the reason is that there is no con (the error metrics
were comparable to a multivariate power curve) and the main pros are that it is not needed
to use nacelle anemometer data and that the performance of the wind turbine is more easily
interpretable in terms of the behavior of the sub-components.

Table 3. Results of the models validation for the generator speed-power curve in Region 2.

Model Metric T1 T2 T3 T4 T5 T6

Mgen MAE (kW) 13.8 16.7 17.4 18.2 17.5 15.6
Mgen

red MAE (kW) 22.7 24.8 23.7 27.9 24.6 21.4
Mgen RMSE (kW) 23.8 26.9 30.9 30.3 27.1 25.5
Mgen

red RMSE (kW) 39.6 43.2 41.0 50.8 44.1 39.6
Mgen MAPE (%) 2.2 2.6 2.8 2.7 2.7 2.4
Mgen

red MAPE (%) 3.5 3.6 3.7 3.7 3.4 3.0

Table 4. Results of the models validation for the rotor speed-power curve in Region 2: WF1.

Model Metric T1 T2 T3 T4 T5 T6

Mrot MAE (kW) 13.4 17.3 17.5 18.4 17.5 15.5
Mrot

red MAE (kW) 20.4 23.6 22.3 27.4 26.5 21.4
Mrot RMSE (kW) 23.3 28.0 30.9 30.6 27.2 25.7
Mrot

red RMSE (kW) 39.4 43.2 40.7 50.8 44.0 39.5
Mrot MAPE (%) 2.3 2.6 2.8 2.7 2.7 2.4
Mrot

red MAPE (%) 2.9 3.3 3.4 3.5 3.9 3.0

Table 5. Results of the models validation for the blade pitch-power curve in Region 2 1/2: WF1.

Model Metric T1 T2 T3 T4 T5 T6

Mpitch MAE (kW) 44.2 50.9 52.1 47.0 51.4 42.8
Mpitch

red MAE (kW) 67.7 68.8 76.9 72.4 80.6 64.7
Mpitch RMSE (kW) 69.3 76.2 97.9 73.8 78.5 70.4
Mpitch

red RMSE (kW) 99.2 100.2 120.5 103.9 107.3 98.8
Mpitch MAPE (%) 2.8 3.1 3.4 2.9 3.3 2.7
Mpitch

red MAPE (%) 4.2 4.1 4.8 4.3 4.9 4.0
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Table 6. Average percentage reduction in error metrics for the full models with respect to the reduced
models: WF1.

Models Metric ∆(%)

Mgen vs. Mgen
red MAE (kW) 31.4

Mgen vs. Mgen
red RMSE (kW) 36.6

Mgen vs. Mgen
red MAPE (%) 36.7

Mrot vs. Mrot
red MAE (kW) 29.4

Mrot vs. Mrot
red RMSE (kW) 35.5

Mrot vs. Mrot
red MAPE (%) 22.4

Mpitch vs. Mpitch
red MAE (kW) 32.9

Mpitch vs. Mpitch
red RMSE (kW) 35.8

Mpitch vs. Mpitch
red MAPE (%) 43.3

Table 7. Results of the multivariate PCR models validation (WF1): for brevity, the average wind farm
results are reported.

Model Metric Average

Mgen MAE (kW) 55.2
Mgen RMSE (kW) 71.5
Mgen MAPE (%) 11.6
Mrot MAE (kW) 55.0
Mrot RMSE (kW) 71.4
Mrot MAPE (%) 11.6

Mpitch MAE (kW) 123.9
Mpitch RMSE (kW) 151.4
Mpitch MAPE (%) 7.3

4.2. WF2

In Figures 9–11, the measured and simulated operation curves are reported for a
sample wind turbine (T1), as has been done in Section 4.1 for WF1. Similar considerations
arise at this level of analysis, because it was evident that the multivariate non-linear models
(including minimum, maximum and standard deviation of the input variables) allowed
reproducing more realistically the dispersion of the actual curves.

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Generator speed (rpm)

0

200

400

600

800

1000

1200

1400

P
o

w
e

r 
(k

W
)

(a) Mgen

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Generator speed (rpm)

0

200

400

600

800

1000

1200

1400

P
o

w
e

r 
(k

W
)

(b) Mgen
red

Figure 9. Measured and simulated generator speed-power curves: D2 data set, T1 wind turbine. Mgen model on the left,
Mgen

red on the right.
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Figure 10. Measured and simulated rotor speed-power curves: D2 data set, T1 wind turbine. Mrot model on the left, Mrot
red

on the right.
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Figure 11. Measured and simulated blade pitch-power curves: D2 data set, T1 wind turbine. Mpitch model on the left,
Mpitch

red on the right.

In Tables 8–10, the results for the regressions are reported and in Table 11, the results
are reported for the comparison between the univariate non-linear models Mred and the
multivariate non-linear models proposed in this study (M). Employing the non-linear
multivariate models M, a sensible decrease was achieved as regards all the error metrics
(order of 30%). In Table 12, the average wind farm error metrics for the multivariate linear
models are reported and it arises that they were up to four times higher than for the models
proposed in this work: this supports that non-linearity is fundamental to incorporate the
variability of the wind turbine operation parameters.

Concerning the absolute values of the error metrics when the multivariate non-linear
models M were adopted, it can be noticed that for WF2 they were slightly higher with
respect to WF1: for example, the MAPE of the full model was of order of 4% (with respect
to order of 2.5% for WF1). This can be likely interpreted as the combination effect of the
different technology and of the fact that WF2 was a wind farm characterized by frequent
operation under wake: therefore, modelling its behavior reliably was more complicated,
especially as regards the pitch control. Nevertheless, it is important to notice that also
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for this challenging test case, the adoption of the further covariates proposed in this
work improved the quality of the regression considerably and the obtained results were
competitive with the state of the art in the literature as regards wind turbine power curve
modelling.

Table 8. Results of the models validation for the generator speed—power curve in Region 2: WF2.

Model Metric T1 T2 T3 T4 T5 T6 T7 T8 T9

Mgen MAE (kW) 22.7 27.4 27.7 26.0 22.5 21.2 19.6 22.3 22.6
Mgen

red MAE (kW) 32.3 36.5 39.0 36.2 30.8 29.2 26.0 28.5 30.9
Mgen RMSE (kW) 39.0 46.9 47.6 46.4 38.3 37.3 34.1 38.6 40.2
Mgen

red RMSE (kW) 55.9 63.1 64.4 63.6 54.1 52.2 46.9 52.3 55.9
Mgen MAPE (%) 3.9 4.3 4.5 4.3 4.4 3.9 3.9 4.3 4.1
Mgen

red MAPE (%) 5.2 5.3 6.2 5.5 5.2 4.9 4.8 4.9 5.1

Table 9. Results of the models validation for the rotor speed—power curve in Region 2: WF2.

Model Metric T1 T2 T3 T4 T5 T6 T7 T8 T9

Mrot MAE (kW) 23.5 27.4 27.1 26.2 22.1 21.2 19.5 22.3 22.6
Mrot

red MAE (kW) 32.4 40.9 37.6 36.4 30.8 29.2 26.0 29.4 31.0
Mrot RMSE (kW) 37.7 48.1 47.3 46.7 37.5 37.5 34.0 38.3 40.0
Mrot

red RMSE (kW) 56.3 63.6 64.3 63.7 54.0 52.3 46.9 53.3 55.5
Mrot MAPE (%) 4.2 4.2 4.2 4.3 4.1 3.9 3.9 4.4 4.1
Mrot

red MAPE (%) 5.1 7.1 5.5 5.6 5.2 4.9 4.7 5.1 5.2

Table 10. Results of the models validation for the blade pitch—power curve in Region 2 1/2: WF2.

Model Metric T1 T2 T3 T4 T5 T6 T7 T8 T9

Mpitch MAE (kW) 57.6 52.4 62.2 60.9 60.7 58.6 66.5 57.5 57.9
Mpitch

red MAE (kW) 78.9 66.2 79.8 79.9 85.0 82.8 84.0 75.4 79.0
Mpitch RMSE (kW) 76.4 70.8 82.8 81.4 80.1 80.2 89.6 78.7 78.8
Mpitch

red RMSE (kW) 104.7 90.0 104.3 104.6 112.8 110.5 111.0 103.8 104.8
Mpitch MAPE (%) 4.3 3.5 4.4 4.2 4.2 4.1 4.9 3.9 4.0
Mpitch

red MAPE (%) 5.5 4.4 5.5 5.5 5.8 5.8 6.0 5.1 5.3

Table 11. Average percentage reduction in error metrics for the full models with respect to the
reduced models: WF2.

Models Metric ∆(%)

Mgen vs. Mgen
red MAE (kW) 26.5

Mgen vs. Mgen
red RMSE (kW) 38.1

Mgen vs. Mgen
red MAPE (%) 24.9

Mrot vs. Mrot
red MAE (kW) 27.5

Mrot vs. Mrot
red RMSE (kW) 24.8

Mrot vs. Mrot
red MAPE (%) 28.0

Mpitch vs. Mpitch
red MAE (kW) 24.7

Mpitch vs. Mpitch
red RMSE (kW) 23.9

Mpitch vs. Mpitch
red MAPE (%) 23.3
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Table 12. Results of the multivariate Principal Component Regression (PCR) models validation
(WF2): for brevity, the average wind farm results are reported.

Model Metric Average

Mgen MAE (kW) 74.2
Mgen RMSE (kW) 96.7
Mgen MAPE (%) 17.6
Mrot MAE (kW) 74.1
Mrot RMSE (kW) 96.5
Mrot MAPE (%) 17.6

Mpitch MAE (kW) 129.4
Mpitch RMSE (kW) 158.8
Mpitch MAPE (%) 8.5

5. Conclusions

The objective of the present study was contributing to the SCADA data analysis
techniques for wind turbine power monitoring. The main innovative points are substan-
tially two:

• instead of analyzing the power curve from cut-in to rated, other meaningful operation
curves are considered and each of them is studied in the appropriate working region
of the wind turbines;

• the curves are studied through a multivariate Support Vector Regression with Gaus-
sian Kernel and the set of covariates has been augmented by including in the in-
put of the models the minimum, maximum and standard deviation of the indepen-
dent variables.

Three curves have been selected, which have not been addressed in detail in the
literature before:

• generator speed-power;
• rotor speed-power;
• blade pitch-power.

A model for the curves of interest has been set up using a Support Vector Regression
with Gaussian Kernel. The data sets employed for training and testing come from 152 MW
wind turbines from two industrial wind farm (owned by ENGIE Italia): the two test cases
have been selected because one is characterized by frequent operation under wakes and
the other is not.

The main result of this study is that targeting the curves and using the covariates
selected in this study, it is possible to model the power of a wind turbine with results
which are competitive with the state of the art in the literature as regards multivariate
power curve modelling. Therefore, there is no con in renouncing to use nacelle wind speed
measurements for wind turbine power monitoring, if the appropriate operation curves are
selected and if the models are set up appropriately. Instead, the possible advantages of
adopting this point of view are several:

• using operation curves which do not employ the nacelle wind speed as independent
variable, it is possible to compare the performance of wind turbines of the same model
which are sited in different environments. This is in general not possible using the
power curve, because the nacelle transfer function depends on wind shear, turbulence,
atmospheric stability and so on.

• the selected operation curves are particularly appropriate for interpreting the per-
formance of wind turbines in relation to the behavior of the main sub-components
and this represents an added value with respect to the power curve, which connects
directly the wind flow to the power output.

As regards the latter point, actually, it should be noticed that the generator speed-
power curve has been analyzed in the context of wind turbine aging analysis in [37]: despite
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the methodology employed in that study was simpler with respect to the analysis proposed
in this work, it has been sufficient to highlight a considerable under-performance of a
wind turbine because of generator efficiency aging. Another potential application of this
kind of methodology is the analysis of wind turbine optimization technology, which likely
intervenes with slight modifications of the characteristic operation curves of the wind
turbines (see for example [42–46]), involving the rotational speed and-or the blade pitch
control. A practical approach for assessing the net effect of this kind of technology upgrades
is training a model (similar to those presented in this work) with data before the technology
upgrade, validating on two target data sets (one before and one after the upgrade) and
analyzing how the statistical properties of the residuals between model estimates and
measurements change.

Another fruitful result of the present study is the analysis of how much the error
metrics for the selected curves modeling diminish when the set of covariates includes
minimum, maximum and standard deviation of the independent variable (in addition to
the average value): a percentage decrease of order of one third is achieved, with respect to
the same kind of model employing only the average of the variable of interest. Since the
variability of the main working parameters (as for example the rotational speed) is sub-
stantially connected to the turbulence intensity, by incorporating the additional covariates
proposed in this work it is possible to construct normal behavior models which are site-
specific, because they take into account the conditions which are measured on site and the
response of the machine. This inspires as further direction to adopt a similar approach also
for multivariate wind turbine power curve modelling: actually, there is a wide literature
about the improvement of the model structure, while the discussion about the use of further
covariates is at its early stages. In [24,25,27–29], multivariate models for the power curves
have been proposed, which include further environmental and operation variables with
respect to solely the average nacelle wind speed, but at present there are no studies dealing
with the inclusion in the models of minimum, maximum and standard deviation of the
main variables. Finally, it would be extremely interesting to analyze the operation curves
selected in this study by using time-resolved wind turbine data [47] having much lower
sampling time (order of seconds).
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