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Abstract: Power consumption and data processing speed of integrated circuits (ICs) is an increasing
concern in many emerging Artificial Intelligence (AI) applications, such as autonomous vehicles and
Internet of Things (IoT). Existing state-of-the-art SRAM architectures for AI computing are highly
accurate and can provide high throughput. However, these SRAMs have problems that they consume
high power and occupy a large area to accommodate complex AI models. A carbon nanotube field-
effect transistors (CNFET) device has been reported as a potential candidates for AI devices requiring
ultra-low power and high-throughput due to their satisfactory carrier mobility and symmetrical,
good subthreshold electrical performance. Based on the CNFET and FinFET device’s electrical
performance, we propose novel ultra-low power and high-throughput 8T SRAMs to circumvent the
power and the throughput issues in Artificial Intelligent (AI) computation for autonomous vehicles.
We propose two types of novel 8T SRAMs, P-Latch N-Access (PLNA) 8T SRAM structure and single-
ended (SE) 8T SRAM structure, and compare the performance with existing state-of-the-art 8T SRAM
architectures in terms of power consumption and speed. In the SRAM circuits of the FinFET and
CNFET, higher tube and fin numbers lead to higher operating speed. However, the large number
of tubes and fins can lead to larger area and more power consumption. Therefore, we optimize the
area by reducing the number of tubes and fins without compromising the memory circuit speed and
power. Most importantly, the decoupled reading and writing of our new SRAMs cell offers better
low-power operation due to the stacking of device in the reading part, as well as achieving better
readability and writability, while offering read Static Noise Margin (SNM) free because of isolated
reading path, writing path, and greater pull up ratio. In addition, the proposed 8T SRAMs show even
better performance in delay and power when we combine them with the collaborated voltage sense
amplifier and independent read component. The proposed PLNA 8T SRAM can save 96%, while the
proposed SE 8T SRAM saves around 99% in writing power consumption compared with the existing
state-of-the-art 8T SRAM in FinFET model, as well as 99% for writing operation in CNFET model.

Keywords: CNFET (Carbon Nanotube Filed Effect Transistor); FinFET (Fin Field Effect Transistor);
read SNM free; low power SRAM; 8-T SRAM; CNFET SRAM; FinFET SRAM

1. Introduction

The low power and high throughput issues are becoming increasingly important in
Very large-scale integration (VLSI) system, microprocessor, and Static Random Access
Memory (SRAM) designs for Artificial Intelligent (AI) application, such as in autonomous
vehicles [1] and Internet of Things (IoT) [2]. The causes of these low power problems
can be classified as follows. (1) In modern chip designs, most system-on-chips (SoCs)
for IoT application incorporate a large amount of caches built by SRAM cells. (2) As
the deep learning models for autonomous vehicles become more and more complex,
the area of the chip for deep learning accordingly is getting bigger, and this large areas
causes the power consumption problem of the integrated circuits (ICs). For these reasons,
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many recent chip designers are looking for resolutions to achieve high power efficiency
without compromising the chip speed and stability. The biggest problem with low power
consumption of traditional chips, Metal Oxide Semiconductor FET (MOSFET), is that
gate leakage current can no longer reduce the specific point size of the MOSFET. Because
of this size limitation, the supply voltage is no longer lowered, so designers have been
working hard to solve this limitation. To solve these MOSFET limitations, recently, many
state-of-the-art SRAMs use Fin Field Effect Transistor (FinFET)s instead of MOSFETs. In
addition to the traditional FinFET device, many companies are developing an improved
FinFET type. However, while most state-of-the-art SRAM devices have changed from
MOSFET to FinFET, the SRAM structure still uses traditional 6T (Figures 1 and 2) and is
lagging behind. Developing a device is the easiest way to increase SRAM performance,
but it has the disadvantage that it increases process cost and development cost. Therefore,
to maximize SRAM performance, not only device development but also SRAM structure
development must be carried out.

Figure 1. Conventional state-of-the-art SRAM cell structure: (a) 6T; and (b) 8T (Source [3]).

Therefore, we maximize low-power and high-speed effect by proposing a new SRAM
structure as well as changing the device in this paper. Furthermore, in this paper, we
maximize the performance for AI chip by using not only FinFET but also Carbon Nanotube
Filed Effect Transistor (CNFET) device, a next-generation device that has not yet been used
in state-of-the-art SRAM.

In using the FinFET device, because the fin number on the FinFET device limits the
design space of the circuitry that requires the proper WL ratio transistor, especially the
SRAM cell, the fin number must be taken into account to ensure stable read and write.
Therefore, we analyze and apply the optimal number of fins for using FinFET in this paper.
Since the large number of fins can make larger area and more power consumption, we
optimize the area by reducing the number of fins without compromising the memory circuit
speed and power. For low power and speed, this FinFET was first used by Intel Corporation
and showed a significant reduction in dynamic power compared to conventional MOSFETs
and is still being actively researched [4,5].

A Carbon Nanotube Filed Effect Transistor (CNFET) device has been reported as a
potential candidate for AI devices requiring low power and high throughput due to their
satisfactory carrier mobility and symmetrical, good subthreshold electrical performance.

Figure 2. State-of-the-art SRAM performance.
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The CNFET can be an alternative to solve these problems, which is now regarded as a
next-generation transistor. Due to the power efficiency and resistance of CNFET, SRAM
design using CNFET is very effective at low power and speed. This has the advantage of
having excellent electrical properties in terms of high speed and low power. In addition,
because the effective gate capacitance per unit width of CNTFET is more than twice that of
p-MOSFET, compatibility with the high-k gate dielectric is certainly an asset to CNTFET.

In this paper, we propose a reliable low power high throughput SRAM that is useful for
AI computation, using these advantages of FinFET and CNFET to secure these conventional
SRAM shortcomings.

2. Memory Issue for AI Computation in Autonomous Vehicles

In recent years, AI has been extensively researched to benefit society, from voice
recognition to autonomous vehicle [6] (e.g., Level 2 autonomous driving system based on
AI technology of Tesla [7], Nvidia, Intel/Mobileye, Waymo, Cruise, and classical OEMs
such as Toyota, VW, Daimler AG, etc.).

In addition, many challenges are underway to speed up the evolution of these AIs.
In this paper, we focus on the optimization of hardware, especially memory, for AI. The
most important point in researching optimized memory for these AIs is to identify the
best memory type for a particular AI function and find the best way to integrate various
memory solutions together. Figure 3 shows the power consumption rate of AI chip for Ford
Fusion’s autonomy system [8,9]. In this regard, AI faces two major memory limitations:
speed and power efficiency.

Figure 3. Power consumption rate of AI chip for Ford Fusion’s autonomy system.

The power demands of these AIs also make it an effort to extend AI beyond data
centers (i.e., the cloud) where power is readily available, but it is not easy because it causes a
variety of other issues (e.g., power consumption in network and security issues). Therefore,
we propose an energy efficient memory SRAM with no speed loss to enable AI.

Figure 4 shows the memory usage of the core cluster Processing Element (PE) block
during the Convolutional Neural Networks (CNN) process for AI [10,11]. Figure 5 shows
the percentage of memory for each CNN model’s compute. Since each PE block requires its
own memory for I/O, this memory becomes a crucial part in terms of power consumption
and speed. This is an area that must be addressed first and foremost in developing AI
hardware architecture. Recently, Renesas announced 16-nm technology AI SRAM for
autonomous vehicles and supported fast read times of 313 ps at 0.8 V [12,13].

Autonomous vehicles are undergoing a lot of research and testing for higher levels on
public roads, and Level 2 has already been popularized in many vehicles. Many AI chips
for autonomous vehicles not only focus on recognition accuracy and speed for fast object
recognition, but power consumption is also evolving. However, solutions to optimize
power consumption are still lagging behind the others.
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Figure 4. AI SRAM Configuration of PE Array for CNN Computing.

Figure 5. The percentage of Memory for CNN model’s compute.

Definitely, in future generations of the autonomous vehicles, especially Electric Vehicle
(EV)s other than Internal Combustion Engine (ICE) vehicles, serious power consumption
problems are expected because such power consumption issues can affect the range of EVs.
In addition, even in an ICE vehicle, the power consumption issues can create fuel economy
and battery space issues. For these reasons, many companies are investing in low-power and
high-throughput AI chip development. For example, Nvidia has more than 370 automotive
partners as the primary hardware supplier for autonomous driving solutions. With an 8 core
CPU and 512 core graphics processing unit (GPU), the Xavier platform delivers 30 Trillion
Operations Per Second (TOPS) and consumes 30 watts. The Pegasus platform, which is more
suitable for autonomous driving solutions, can perform 320 TOPS with the addition of two
Xavier chips and two GPUs and consumes 500 watts or 0.64 TOPS.

Intel is developing low-power chips optimized for self-driving cars, Tesla is devel-
oping its own low-power chips for Autopilot, and Qualcomm is building the necessary
communication hardware with low power and efficiency in mind [14].

From this point of view, our proposed new SRAM aims to support future AI chip
development by proposing a reliable low-power and high-throughput method for the
memory that occupies the most power consumption in these AI chips for reducing the
power consumption.
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3. Background of New Devices Technology

In this section, we discuss the power consumption and performance limitations in the
conventional MOSFET when it use to develop AI application. Further, the advantages of
the FinFET and CNFET devices are discussed for the AI applications.

3.1. Limitations of MOSFET for AI Application

There are two types of MOSFET, the Depletion and Enhancement type MOSFETs use
an electrical field created by a gate voltage to alter the flow of the charge carriers, through
the semi conductive drain-source channel. The MOSFET cannot be further down scaled for
the high speed AI computation due to fabrication limitations, increase in leakage current
sources, and reduction in threshold voltage. This is the main reason that we do not use
MOSFET and that it is being replaced by FinFET or CNFET in yjr future. In recent years, for
down scaling of Complementary metal–oxide–semiconductor (CMOS) technology, many
researchers have spent a lot of time reducing the thickness of the silicon dioxide gate
dielectric. Despite these efforts, there are still many problems with the SiO2 thickness
reduction due to the increased depletion of Poly-Si gate, the ingress of gate dopant into
channel areas, and the high direct tunneling gate leakage current. These problems can
cause serious problems in dielectric integrity, reliability, and power consumption. As
we have well recognized, the increased gate leakage current in MOSFET is a problem to
continue down scaling. The down scaling of MOSFETs to the nanometer regime leads to
the short channel effects, which further degrade the system performance and reliability. At
high frequencies, MOSFETs are not reliable, as switching takes place from PMOS to NMOS,
which results in more power consumption, as both MOSFETs conduct briefly.

3.2. FinFET Technology for AI Application

Much research and development is being done to develop transistors with low power
and high throughput for AI computation. One such development is called FinFET. FinFETs
have the advantage of using a fin-like structure instead of the flattened design of the
conventional CMOS, allowing engineers to build faster and more compact circuits and
computer chips. The term ’FinFET’ refers to a non-planar, double-gate transistor fabricated
on an Silicon on Insulator (SOI) substrate based on a single-gate transistor design [15]. The
gate is deposited to form the structure by surrounding the fin, as shown in Figures 6 and 7.

The main distinctive of FinFET is that the conducting channel is swaddled by a thin Si
”fin”, as shown in Figure 6, which forms the body of the device. The fin thickness determines
the effective channel length of the device. The CMOS devices have a gate only on one side,
but FinFET devices have three side gates, which is called multi-gate FinFET. FinFETs can be
operated in two modes, namely Short-Gate (SG) mode and Independent-Gate (IG) mode,
as shown in Figure 8a,b, respectively.

Figure 6. The Basic Structure of FinFET.
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Figure 7. Planar CMOS Structure vs. Non Planar FinFET Structure.

Figure 8. (a) Short-hate FinFET; and (b) independent-gate FinFET.

The number of gates that control the conduction channel could depend on the mode
of operation, and the front and rear gate terminals are shortened in SG mode. In IG mode,
the gate terminal is disconnected and two gates control the channel. The advantages of
FinFET over MOSFETs are from the FinFET model structure consisting of the following
regions with low doping silicon fin region: poly-silicon region, source and drain contact
region, highly doped, and gate region oxide (SiO2).

The advantages of FinFET for AI application are as follows [16]:

• Maintain excellent control of channel effect in sub micron system and expandability
of the transistor, thus small transistors may have greater intrinsic benefits and much
lower off-state currents than conventional transistors

• Ability of matching behavior
• Low cost
• Technical maturity higher than plane Double-Gate (DG)
• Suppressed Short Channel Effect (SCE)

Based on these advantages, FinFET is reported as an excellent technology that provides
better performance and reliability for AI computation.

3.3. CNFET Technology for AI Application

Carbon Nanotube Filed Effect Transistor (CNFET) devices have been reported as
potential candidates for AI devices requiring low-power and high-throughput due to their
satisfactory carrier mobility and symmetrical, good subthreshold electrical performance.
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Single-wall carbon nanotube (CNT) refers to a tube formed by rolling a sheet of graphene.
It can be a metal or semiconductor in accordance with the chiral vector (m, n) that indicates
the direction in which the graphene sheet is rolled. The semiconductor type of carbon
nanotubes is a promising high-performance channel material substitution because it is
easier to control and has strong current density.

CNFET uses a set of parallel carbon nanotubes to construct a channel between the
source and drain terminals compared to a bulk CMOS FET, as shown in Figure 9. The
carbon nanotubes provide much larger driving current compared to the traditional channel
inducted by the gate-body voltage. The threshold voltage of CNFET is mostly determined
by the diameter of the carbon nanotubes, instead of multiple factors in bulk CMOS technol-
ogy that make the circuits suffer from large indie subthreshold voltage variation [17,18],
which are associated with the chiral vector defined as:

DCNT =
a
π

√
m2 + n2 + mn (1)

Vth ≈
Eg

2e
=

aVπ√
3× qDCNT

(2)

q (q = energy gap) is equal to the unit electron charge, α is equal to the CNT atomic
distance of 2.49, πV is equal to the carbon π to π bond energy of 3.033 eV in the rigid
bonding model, e is the unit electron charge, and CNT D is a CNT diameter. The size of
the CNFET can be easily adjusted by setting the number of tubes. Since n-type and p-type
have the same carrier mobility, P-CNFET and N-CNFET with the same number of carbon
nanotubes have the same strength characteristics.

Figure 9. Structure of the CNFET.

Most single-walled nanotube (SWNT)s are close to 1 nm in diameter. This paper uses
1.5 nm and it can be billions of times longer. The structure of a SWNT can be represented
by a complete cylinder wrapping a one-atom-thick graphite layer called graphene. The
manner in which graphene sheets are wrapped is represented by a pair of indices (n, m), as
shown in Figures 10 and 11. The integers n and m represent the number of unit vectors
along the two directions of the honeycomb crystal lattice. If m = 0, as shown in Figure 11,
the nanotubes are referred to as zigzag nanotubes. If m = n, the nanotubes are referred to
as armchair nanotubes, as shown in Figure 10. Otherwise, they are called chirals.

Based on the electrical performance of the CNFET device, our proposed SRAM based
on the satisfactory carrier mobility and good subthreshold electrical performance, has
indicated a performance improvement of 99% reduction in power consumption and 97%
improvement in delay compared to the state-of-the art SRAM with same condition. These
power consumption and delay performance improvement results greatly affect the AI
computation in the PE Block.
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Figure 10. n = m (chiral angle = 30◦ tubes are called “armchair”). Adapted from Weisman, 2004, p. 24.

Figure 11. m = 0 (chiral angle = 0◦ tubes are called “zigzag”). Adapted from Weisman, 2004, p. 24.

4. Proposed SRAM Design for AI Application

The performance of write operation is considered very important for AI applications
as it helps significantly improve the parallel write operations required by AI computa-
tions. Therefore, we propose two new structures to significantly improve these write
performances while reducing power consumption and speed.

4.1. Decoupling the Read and Write Operation

The proposed new 8-T SRAMs are shown in Figures 12 and 13. It can be seen that the
writing part and reading part are completely separate and have an independent structure.
In the read part, you can see the advantage of providing lower power consumption because
the device is stacked. However, there is an area penalty due to the fact that read and
write are separated. However, as we can share the read part with several write parts in
actual SRAM design in future fabrication, we can easily solve this area problem. This
alternative SRAM cell design has the advantage of successfully coping with the difficulty
of maintaining proper operation at high yield constraints in the low threshold operating
region and providing characteristics for stable cache realization in Negative Temperature
Coefficient (NTC)-based systems.

Figure 12. Proposed PLNA 8T SRAM cell.
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Figure 13. Proposed SE 8T SRAM cell.

4.2. P-Latch N-Access (PLNA) 8T SRAM Design

The biggest difference from the traditional SRAM cell is that we have completely
separated the read and write parts to reduce switching power consumption, as shown in
Figure 12.

The proposed 8T SRAM cell uses only two driver transistors M1 and M2. Thus, during
a write operation, the circuit has the advantage of avoiding a strong or rapid current
flowing between the latch and the access transistor. This has the effect of improving write
speed and saving a lot of power consumption [19]. Although, in the reading operation,
our suggestion provides low power by stacking the device on the reading part, there is a
corresponding area penalty. However, this area penalty is not large because we can share
this single reading part with multiple writing parts in a SRAM design to real field [20].
This new SRAM cell design successfully addresses the difficulty of maintaining proper
operation at high yield constraints in the sub threshold operating region. The sizes of
FinFET and CNFET of the SRAM are described in Table 1.

Table 1. Size of FinFET and CNFET in PLNA 8T SRAM.

No TR No. of Fins (FinFET) No. of Tubes (CNFET)

1 M1 1 1
2 M2 1 1
3 M3 2 2
4 M4 2 2
5 M5 4 4
6 M6 1 1
7 M7 4 4
8 M8 2 2

4.3. Single-Ended (SE) 8T SRAM Design

To decrease the switching power consumption, which occupies the largest portion of
power consumption, we eliminate the switching of the weak inverter. In our case, we have
different read and write parts, as shown in Figure 13. In our design, we use two access
transistors, X7 and X8. The pull-up transistor is made weaker than the access transistor,
whereas the driver transistor is made stronger than the access transistor. This type of
constraint is called read stability and write stability.

FinFET has fin-like structure, while CNFET has tubes. Therefore, the sizes of FinFET
and CNFET are determined by number of fins and tubes they have, respectively. The large
number of fins and tubes can make larger area and more power consumption. Therefore,
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we optimize the number of fins and tubes without compromising the memory circuit speed
and power. The comparison of sizes in FinFET and CNFET is shown in Table 2.

Table 2. Size of FinFET and CNFET in SE 8T SRAM.

No TR No. of Fins (FinFET) No. of Tubes (CNFET)

1 X1 1 1
2 X2 1 1
3 X3 4 4
4 X4 1 1
5 X5 4 4
6 X6 4 4
7 X7 2 2
8 X8 2 2

5. Performance Verification
5.1. SRAM Operation

The proposed novel FinFET and CNFET SRAMs are compared with the conventional
FinFET 8T SRAM [21,22]. All FinFETs and CNFETs used in the experiment were simulated
at room temperature (27 ◦C) and VDD = 0.9 v in 32-nm technology. All transistors in SRAM
cells use the minimum size adjustment shown in Tables 1 and 2 considering area, power,
and speed. In addition, the size of the read access transistor is adjusted to 2×minimum
sizing in order to balance speed and power consumption. The sizes of the transistors used
in conventional 8T SRAM cells are 1×, 2×, and 4×minimum for the pull-up, access, and
pull-down transistors, respectively. In the whole SRAM circuit for the experiment, M9 and
X9 are scaled up to reduce the ground bounce effect. In a SRAM whole circuit, as shown in
Figures 14 and 21, designed for an environment similar to an actual SRAM circuit in the
real field, the produced SRAM whole circuit contains SRAM cells as well as peripherals
that are as close to real as possible. The bit line and bit line bar are pre-discharged to the
ground before the write operation, and the write enable signal is asserted at the same time
as the start of the write operation. For the analysis of writing and reading, we used a
pseudo-random sequence of 0110100.
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Figure 14. Proposed PLNA 8T SRAM cell operation.

5.2. PLNA 8T SRAM

The write operation starts with asserting write word line by data write block
(Figure 14), and all control signals for the operation are shown in Table 3. Q and Qb
are loaded to the states on Bit Line and Bit Line Bar, respectively. By adding the separated
reading access path, we can solve some issues of the reading operation. Because of the
stacking technology applied to the reading part, the proposed SRAM cell can operate on
even lower voltage and observe lower leakage. In addition, the reading speed only depends
on the discharging rate through the transistors of the reading part and the sensitivity of
sense amplifier.

Table 3. Status of control signals for proposed PLNA 8T SRAM.

Hold Read Write 1/0

Bit line 0 0 1/0
Bit line bar 0 0 1/0

Read Bit line 0 1 0
Read word line 0 1 0
Write word line 0 0 1
Pre discharge 0 0 0/1
Write enable 0 0 1
Read enable 0 1 0
Input(Din) 0 0 1/0
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5.2.1. Writing Operation

For writing operation, the data are first loaded to Bit Line and Bit Line Bar, and then
the word line is asserted to 1. The process starts with turning on M2, and then the Qb is
charged or discharged to the state on Bit Line Bar. Note that M4 is designed to be stronger
than M2. Thus, the state on the Qb is forced to be the state on Bit Line Bar even if it is
different with the latter. The same condition happens on the other side, and finally the state
be saved in the cell, as shown in Figures 15 and 16.

Figure 15. Waveform of write operations in FinFET (sequence of 0110100).

Figure 16. Waveform of write operations in CNFET (sequence of 0110100).

5.2.2. Reading Operation

In the case of reading operation, as mentioned above, we use an independent reading
part. During the reading operation, we switch on the M7 and M8 through the read word
line. At the same time, the writing part is switched off through the write word line to
reduce the power consumption. As a result, our proposed SRAM has the principle of
operating only four transistors in all operations of write and read, even though it has eight
transistors. The results of all reading operations are shown in Figures 17–20.
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Figure 17. Waveform of Reading 0 operation in FinFET.

Figure 18. Waveform of Reading 1 operation in FinFET.

Figure 19. Waveform of Reading 0 operation in CNFET.

Figure 20. Waveform of Reading 1 operation in CNFET.

Depending on the value of Qb, node X is 0 or 1. For Reading 0, the read bit line is
pre-charged to vdd. Since Qb is 1, M5 is activated and the read bit line discharges though
M8, M7 and M5. Because M7 and M5 are stacked, the power consumption can be reduced.
For Reading 1, Q remains 1 and QB remains 0. This is because the node X is 1 and the read
bit line can be read without discharging.
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The proposed PLNA 8T SRAM is suitable for our target low power and high speed,
but it has some loss in stability. Even though this structure has less stability, this low
stability is consistent with the criteria for using SRAM, so it is be a big problem in the actual
use of the SRAM output, but we compensate for the low stability with the following new
SE structure.

5.3. SE 8T SRAM

The write operation using single-ended structure can be started by asserting write
word line by writing block (write enable and input). Then, Q and Qb are loaded to the
states on bit line, as shown in Figure 21. And all control signals for the operation are shown
in Table 4. As the same approach as PLNA 8T SRAM, by adding the separated reading
access path, we can solve some issues of the reading operation. Due to the stacking of
devices on the read port, the proposed SRAM can operate on even lower voltage and
observe lower leakage [23]. In addition, the reading speed only depends on the discharging
rate through the transistors of the reading part and the sensitivity of sense amplifier.

Figure 21. Proposed SE 8T SRAM cell operation.

Table 4. Status of control signals for proposed SE 8T SRAM.

Hold Read Write 1/0

Write Bit line 0 0 1/0
Write Word line 0 0 1
Read word line 0 1 0

Read Bit line 0 1 0
Write enable 0 0 1
Read enable 0 1 0
Input(Din) 0 0 1/0
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5.3.1. Writing Operation

To perform writing operation, if the data are to be written as 1, then write enable
signal is turned on, the data signal is to changed to 1, the word line is activated, and
data are written as 1. If the data to be written are 0, then the data signal is changed to 0.
When the data signal is changed to 0, the write bit line is connected to ground and we can
write 0. Since we have different read and write operations, the switching of the inverter is
eliminated and the speed of both read and write operation is increased. And the results of
all writing operations are shown in Figures 22 and 23.

Figure 22. Waveform of write operations in FinFET (Sequence of 0110100).

Figure 23. Waveform of write operations in CNFET (Sequence of 0110100).

5.3.2. Reading Operation

For the reading operation, in our design, we have separate read access blocks. In the
reading mode, X8 and X7 are turned on by asserting read lines. All results for the reading
operation are shown in Figures 24–27.
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Figure 24. Waveform of Reading 0 operations in FinFET.

Figure 25. Waveform of Reading 1 operations in FinFET.

Figure 26. Waveform of Reading 0 operations in CNFET.

Figure 27. Waveform of Reading 1 operations in CNFET.

Based on the value of Qb, the value at node X is 1 or 0, because we use and inverter
that inverts the value at node Qb. To Read 0, the bit line on which is to be performed is
pre-charged to vdd. Depending on the value of Qb and node, Read 1 or Read 0 operations
are performed. In our case, when Qb is 1, node X is 0. When read word line is asserted and
the value at node x is 0, 0 is read by sense amplifier. To Read 1, Q is holding the value 1



Electronics 2021, 10, 256 17 of 22

and Qb has value 0. Thus, the value at node x is 1 and read bit line is not discharged. Thus,
the sense amplifier is Read 1. Since M7 and M5 are in series combination, we have a stack
effect here and in this way we can reduce static power.

5.4. A Latch Type Voltage Sense Amplifier

Sense amplifier (SA) is designed as shown in Figure 28, and the virtual read bit line bar
(VRBLB) in the SA for output is produced by M10 and M11. In the off-state, even though
the current flows, it is extremely small, so the power consumption is not significant, and,
because nodes 2 and 3 are pulled at M7 and M8, both inputs, as well as RBL, can be seen
pulling to Vdd.The SA starts working when asset SAEN is 1, which turns on M9 and turns
off M7 and M8. Node 1 is pulled down immediately after M9 turns on. The drain currents
of M5 and M6 start discharging nodes 2 and 3. With a difference between RBL and VRBLB,
the drain current through M5 and M6 is also different. During the Read 1 operation, the
delay is much shorter because there is no change in value in the RBL. During the Read 0
operation, the RBL is released as 0 through the read approach path. M10 is turned off, held
until the value of VRBLB is high, and gives the signal a reversal of RBL.The latch circuit
is controlled by the current through M5 and M6, and the output voltage of D-OUT and
D-OUT-b is determined by the current of M5 and M6. The output voltage of DOUT and
DOUT-b is amplified through the control of the latch.

Figure 28. Schematic of sense amplifier.

6. Stability Analysis

Figure 29 shows the Static Noise Margin (SNM) for each proposed SRAM structure.
SNM shows the tolerance for noise before the SRAM cell risks losing ’memorized’ bits.
Therefore, it is necessary to secure a minimum SNM when designing the SRAM structure,
which can be confirmed as a square, as shown in Figure 29. To find the SNM, we con-
sidered two consecutive inverters, as shown in Figure 30. Drawing both Vout (Vin) DC
characteristics, but swapping the X/Y axis for the second, we found the SNM graphically
with the largest square diagonal that fits the continuous DC characteristic.

The two new structures we proposed show lower SNM results than conventional
8T SRAM. We have put more emphasis on high-throughput and ultra-low power for AI
computations, even though the stability is slightly reduced compared to the conventional
8T SRAM. However, since the stability was reduced under the conditions that satisfy the
performance required for AI computation, the performance of our SRAM shows the same
results as the existing 8T SRAM, and it is reliable because it was analyzed using an actual
model. In addition, the proposed SRAM offers read SNM free because of a separated
reading section from an internal node of latch. There is no feedback from the read access
circuit, which makes it read SNM free.

While reading and writing operations show the same results as conventional state-of-
the-art SRAM, high-throughput and ultra-low power performances are what we aim at in
the SRAM design for AI computation.
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Figure 29. Comparisons of the SNM.

Figure 30. Back-to-back inverter circuit for checking the SNM.

7. Performance Analysis

For reliable data comparison, we applied the same transistor size ratio, capacitor size,
voltage source, temperature, and test circuit as the proposed SRAM to the comparable
tradition 8T FinFET SRAM, and all conditions were equally applied.

The traditional 8T FinFET data are a result of re-simulating the traditional 8T SRAM
structure [21,22] under the same conditions as our proposed 8T SRAM. The total memory
power consumption and delay may vary depending on type of the applied AI chip and
CNN model. Therefore, we measured power consumption and delay with each sequence
separately (e.g., Reading 0, Reading 1, Writing 0, and Writing 1) for reliable measurement
results. For this reason, we are showing the power consumption for Readings 0 and 1 and
Writings 0 and 1 separately in the table, not just total power consumption of the memory.
This is more accurate and reliable information when we do not know which AI chip the
memory is applied to. For reliable comparison, all conditions (input data, size, temperature,
etc.) of the traditional SRAM and the proposed SRAM are set the same.

The purpose of this simulation is to show the possibility of achieving improved
results in terms of power consumption and speed even by simply changing the SRAM
cell structure, and the improved results for our new structure compared to the traditional
SRAM structure were analyzed through the following session.
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7.1. PLNA 8T SRAM

We used a BSIM-Independent Multi Gate (IMG) HSPICE FinFET model and Stanford
CNFET HSPICE model [24] in 32-nm technology. We chose chirality vector as (19,0), diam-
eter 1.5 nm for CNFET. The Stanford University CNFET model includes enhanced modes
of channeling single-walled carbon nanotubes; each device can have at least 1–10 carbon
nanotubes with user-specified chirality. In addition, this model is based on a quasi-ballistic
transport picture and is open for use by the researcher, which includes an accurate descrip-
tion of the capacitor network in the CNFET.

We set the optimal Vdd to 0.9v considering all the characteristics, low power, and
speed of the transistor model. CNFET transistor in 4T PLNA cell used the minimum size
for both area and low power, as shown in Table 1. For the CNFET design, we chose the
chirality vector as (19,0) using a common method (3) of making carbon nanotubes into
semiconductors as below. The delay measurement value was measured at 50% of the
Vdd according to each transition. All measurements were conducted through Netlist and
Hspice, and circuit and waveform were checked through Cadence Virtuoso and Synopsys
Cosmos Scope for function verification.

|m− n| = 3k± 1; k : integer (3)

By using the CNT diameter in Equation (4) as below, we set the CNT diameter as
1.5 nm.

DCNT =
a
π

√
m2 + n2 + mn (4)

In addition to the SRAM simulation, we constructed the 8-T CNFET and FinFET
SRAM whole circuits, as shown in Figures 14 and 21, for simulations as similar to actual
circuits in real field as possible. Both the bit line and bit line bar were pre-discharged with
ground before writing operation, and writing and reading operations were analyzed and
simulated using pseudo-random sequence input as 0110100.

As shown in Table 5, in the design of the FinFETs and CNFETs, due to the elimination
of a strong or rapid current flowing between the latch and the access transistor and
the optimization of the CNFET model, the proposed SRAM reduces the static power
consumption by up to 73% in Hold 0 and Hold 1 modes. The results of dynamic power
consumption are shown in Table 6.

Table 5. Static power consumption comparison.

Power (W) Traditional
8TFinFET

Proposed
8TFinFET

Proposed
8TCNFET

Improvement
(FinFET/CNFET)

Hold 0 1.228× 10−9 6.852× 10−10 5.591× 10−10 44.2%/54.5%
Hold 1 1.228× 10−9 6.562× 10−10 3.315× 10−10 46.6%/73%

Table 6. Dynamic power consumption comparison.

Power (W) Traditional
8TFinFET

Proposed
8TFinFET

Proposed
8TCNFET

Improvement
(FinFET/CNFET)

Write 0 1.906× 10−5 7.330× 10−7 3.599× 10−8 96%/99%
Write 1 1.882× 10−5 5.001× 10−7 7.074× 10−8 97%/99%
Read 0 1.081× 10−9 1.560× 10−10 4.575× 10−11 85.6%/95.8%
Read 1 1.094× 10−9 1.532× 10−10 6.068× 10−11 86%/94.5%

In the write operation ’1’, the dynamic power of the proposed PLNA 8T SRAM can
be seen as a reduction of approximately 99% in CNFET compared to the conventional 8T
FinFET SRAM. For Writing 0, the dynamic power of the our proposed CNFET 8T SRAM is
reduced by 99%. In addition, the reading part of the design in the actual SRAM design can
be shared for all writing part 4T PLNAs in the SRAM column; thus, the proposed SRAM
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design is able to improve the area compared to the conventional SRAM design. In other
words, one reading part and several writing parts can be composed together.

In Table 7, because of the optimized SRAM cell size and characteristics of the PLNA
and SE structure in the writing part, we can see a 90% improvement in writing operation
speed. In addition, the independently separated read operation and the speed of the sense
amplifier (Figure 28) had a great effect on improving read delay time.

Table 7. Delay comparison.

Delay (s) Traditional
8TFinFET

Proposed
8TFinFET

Proposed
8TCNFET

Improvement
(FinFET/CNFET)

Write 0 4.255× 10−10 4.047× 10−11 1.419× 10−11 90.5%/96.7%
Write 1 5.643× 10−10 7.551× 10−11 6.452× 10−11 86.6%/88.6%
Read 0 1.511× 10−9 1.418× 10−9 2.659× 10−10 6.2%/82.4%
Read 1 1.640× 10−9 1.637× 10−9 3.097× 10−10 0.2%/81.1%

Since our design has separate read and write operations, it makes our design novel
compared to conventional SRAM cell.

7.2. SE 8T SRAM

In Table 8, the static power is calculated and compared with traditional 8T FinFET
SRAM. The improvement of our new SE 8T SRAM is that CNFET has better performance
compared to FinFET.

Table 8. Static power consumption comparison.

Power (W) Traditional
8TFinFET

Proposed
8TFinFET

Proposed
8TCNFET

Improvement
(FinFET/CNFET)

Hold 0 1.228× 10−9 3.552× 10−10 2.679× 10−10 71%/78.2%
Hold 1 1.228× 10−9 2.561× 10−10 2.299× 10−10 79.1%/81.3%

After simulation, we achieved 71% improvement for Hold 0 and 79.1% for Hold 1 in
FinFET and 78.2% for Hold 0 and 81.3% for Hold 1 in CNFET.

Table 9 shows the performance results of dynamic power for traditional and proposed
8T SRAM using FinFET and CNFET. For Write 0 and 1, we have around 99% improvement
compared to traditional 8T SRAM for FinFET and CNFET. For Read 0 and 1, we have 86%
for FinFET and 95% for CNFET. As shown in Table 10, since we have discrete read and
write operations, which have different control paths, we can show that the proposed 8T
SRAM cell is faster than the traditional 8T SRAM cell.

Table 9. Dynamic power consumption comparison.

Power (W) Traditional
8TFinFET

Proposed
8TFinFET

Proposed
8TCNFET

Improvement
(FinFET/CNFET)

Write 0 1.906× 10−5 3.533× 10−8 2.395× 10−8 99%/99%
Write 1 1.882× 10−5 1.624× 10−7 7.269× 10−8 99%/99%
Read 0 1.081× 10−9 1.560× 10−10 4.575× 10−11 85.6%/95.8%
Read 1 1.094× 10−9 1.532× 10−10 6.068× 10−11 86%/94.5%
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Table 10. Delay Comparison.

Delay (s) Traditional
8TFinFET

Proposed
8TFinFET

Proposed
8TCNFET

Improvement
(FinFET/CNFET)

Write 0 4.255× 10−10 3.736× 10−11 1.039× 10−11 91.2%/97.6%
Write 1 5.643× 10−10 1.586× 10−10 3.503× 10−11 71.9%/93.8%
Read 0 1.511× 10−9 1.418× 10−9 2.659× 10−10 6.2%/82.4%
Read 1 1.640× 10−9 1.637× 10−9 3.097× 10−10 0.2%/81.1%

8. Conclusions

To accommodate complex CNN models, existing state-of-the-art SRAMs have reached
physical limitations to increasing power efficiency due to scaling and density. This has
been a major limiting factor in improving AI computing performance and the need for
new SRAMs. Various SRAMs for AI have been proposed by many researchers, but a lot of
power consumption is being used to provide high-throughput. However, in various AI
applications, such as autonomous vehicles, security systems, and Internet of Things (IoT),
power consumption is an important factor that cannot be compromised.

Therefore, in this paper, we propose two types of novel 8-T SRAMs, PLNA 8T SRAM
and SE 8T SRAM, based on CNFET and FinFET models for high-throughput, ultra-low
power, better readability, and writ-ability for AI application. Our proposed new SRAM can
be used as memory for I/O in PE blocks for AI computations. Since the memory for I/O of
each PE block occupies most of the power consumption in CNN, our new memory will
bring a lot of power consumption reduction in AI chip. In addition, our proposed memory
maximizes the effect by improving the throughput as well as the power consumption in
the AI chips.

We compared the existing state-of-the-art 8-T FinFET SRAM with our proposed
SRAMs. The proposed SRAM achieved low dynamic and static power dissipation due to
single-ended scheme and PLNA scheme. Experimental results show that our proposed
design reduced static power consumption up to 81.3% for Hold 1 in CNFET. Furthermore,
due to the combination of independent reading access component and voltage sense am-
plifier, the reading power consumption of our 8T SRAM was improved up to 95.8% for
Reading 0 and 86% for Reading 1. Moreover, because of the separated reading part from
an internal node of latch, there is no feedback from the read access circuit, which makes it
read SNM free.
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