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Abstract: High voltage direct current (HVDC) transmission systems play an increasingly important 

role in long-distance power transmission. Realizing accurate and timely fault location of transmis-

sion lines is extremely important for the safe operation of power systems. With the development of 

modern data acquisition and deep learning technology, deep learning methods have the feasibility 

of engineering application in fault location. The traditional single-terminal traveling wave method 

is used for fault location in HVDC systems. However, many challenges exist when a high impedance 

fault occurs including high sampling frequency dependence and difficulty to determine wave ve-

locity and identify wave heads. In order to resolve these problems, this work proposed a deep hy-

brid convolutional neural network (CNN) and long short-term memory (LSTM) network model for 

single-terminal fault location of an HVDC system containing mixed cables and overhead line seg-

ments. Simultaneously, a variational mode decomposition–Teager energy operator is used in fea-

ture engineering to improve the effect of model training. 2D-CNN was employed as a classifier to 

identify fault segments, and LSTM as a regressor integrated the fault segment information of the 

classifier to achieve precise fault location. The experimental results demonstrate that the proposed 

method has high accuracy of fault location, with the effects of fault types, noise, sampling frequency, 

and different HVDC topologies in consideration. 
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1. Introduction 

Renewable power generation has been widely used in recent years. High voltage di-

rect current (HVDC) transmission systems can provide high power transmission capabil-

ity over long distances. This technology is practical in the long-distance transmission of a 

large amount of wind power from ocean to land. Using submarine cables at sea and over-

head lines on land is a practical method for connecting offshore wind farm stations with 

shore stations [1]. Owing to its long-distance transmission and complex natural environ-

mental factors, the probability of line failures in this transmission system with mixed lines 

is high. Therefore, achieving timely and accurate fault location is a prerequisite for im-

proving the reliable operation of the power system. 

Fault location techniques can be divided into several categories, such as impedance-

based, traveling wave-based, and machine learning-based methods [2]. Impedance-based 

methods [3] determine the fault distance via using fault voltage and current measure-

ments from one or more terminals to calculate line impedance. These methods use a sim-

plified equation for calculation by ignoring the capacitance and conductance of the trans-

mission line to ground, which limits the accuracy of fault location [4]. Traveling wave-

based methods determine the fault distance according to the reflection and refraction phe-

nomenon of the voltage and current traveling wave at the fault point and terminals, and 

the traveling wave propagation speed [5,6]. Specifically, the single-ended traveling wave 

Citation: Wang, L.; He, Y.; Li, L. A 

Single-terminal Fault Location 

Method for HVDC Transmission 

Lines Based on a Hybrid Deep  

Network. Electronics 2021, 10, 255. 

https://doi.org/10.3390/ 

electronics10030255 

Received: 17 December 2020 

Accepted: 20 January 2021 

Published: 22 January 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Electronics 2021, 10, 255 2 of 28 
 

 

method does not require a global positioning system and communication equipment, 

showing a popular application in the fault location of the HVDC system [7,8]. However, 

the challenge of this method is that it needs to accurately identify both the reflected and 

the initial traveling wave head, and determine traveling wave velocity [9]. Classical signal 

singularity detection methods, including wavelet transform (WT) [10,11], Hilbert–Huang 

transform (HHT) [12], and variational mode decomposition–Teager energy operator 

(VMD-TEO) [13,14], are adopted to solve the problem of traveling wave head identifica-

tion. Traveling wave heads can be identified during low impedance fault (LIF). However, 

the traveling wave becomes extremely weak during high impedance fault (HIF), and iden-

tifying the wave head is difficult, thereby causing huge fault location errors [15]. In addi-

tion, the fixed aerial-mode traveling wave velocity was used for calculation in the travel-

ing wave methods [10–14], but the actual velocity with a frequency variation characteristic 

is difficult to determine [16,17]. 

With the rapid development of artificial intelligence, machine learning has begun to 

be applied to various tasks in the electrical engineering field, such as load forecasting [18], 

optimal scheduling [19], fault diagnosis [20], etc. Machine learning-based methods are 

considered to be a tool for performing soft computing in fault location [21]. Shallow neural 

networks were used to distinguish fault locations considering different fault types [22]. In 

References [7,23], hybrid shallow machine learning and traveling wave methods were 

used for fault location. Support vector machine was first applied to distinguish the fault 

sections whether at the cable section or the overhead line section and whether at the front 

1/2 or the back 1/2 of the line length of this section. Then fault distances were calculated. 

However, the methods in References [7,23] still need to obtain accurate traveling wave 

velocity and understand the complex laws of traveling wave propagation on transmission 

lines, especially considering the discontinuous wave impedance. Deep learning methods 

have become an effective means to complete fault location tasks without a lot of expert 

knowledge. The 1D-convolutional neural network (CNN) model [15] for double-terminal 

fault location overcomes difficulties in determining traveling wave velocity and identify-

ing the wave head during HIF. However, the double-ended measuring devices increase 

the cost in actual engineering. In Reference [15], CNN’s regression mechanism performed 

fault location. Its essence is similar to completing a task of time series forecasting. Recur-

rent networks, such as recurrent neural network (RNN) [24], long short-term memory 

(LSTM) [25], and gated recurrent unit (GRU) [26] are better than CNN in processing time 

series forecasting. The advantage of LSTM and GRU over RNN is that they can learn long-

range-dependency time series. GRU is a simplified model of the LSTM structure, and its 

computational efficiency is higher than that of LSTM [26]. The bidirectional gated recur-

rent unit (Bi-GRU) can learn the characteristics of time series from both forward and re-

verse directions [27]. These recurrent networks as a regressor can be used for fault loca-

tion. In Reference [21], Bi-GRU was used to identify faulty lines and locate faults in a dis-

tribution network. However, considering the unobvious identification of traveling wave 

characteristics caused by HIF, it may not be able to solve the problem of the scenario of 

considering large transition resistance. 

The laws of refraction and reflection of traveling waves on actual HVDC transmis-

sion lines vary on different fault segments. This research is divided into two tasks includ-

ing fault segment identification and precise fault location, which are the classification and 

the regression task, respectively. After the DC side line in the HVDC system fails, the 

voltage and current measured from the terminals will change. In order to fully integrate 

the fault information of voltage and current signals, these signals can be converted into 

2D tensors similar to single-channel grayscale images. 2D-CNN has been verified its ad-

vantages in image classification tasks in References [28–30]. Therefore, the fault segment 

identification task can be completed by 2D-CNN. After the signal output from 2D-CNN 

passes through the flatten layer, a time series containing rich feature information can be 

obtained. These time series are used for precise fault location by a regressor such as 1D-

CNN, LSTM, GRU or Bi-GRU. Although CNN has feature extraction ability inherently, 
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the learning effect of the model can be improved by feature engineering in the case of a 

limited sample size. In Reference [15], empirical mode decomposition (EMD) was used 

for feature engineering, which may have a modal aliasing phenomenon in the EMD de-

composition process. In addition, the proposed method in Reference [15] is still strongly 

dependent on the sample size, and a large amount of memory could be occupied. There-

fore, feature engineering and deep learning models need to be further studied for fault 

location. 

The above analysis shows that the regressor needs to integrate the information of the 

classification results to achieve accurate fault location. Herein, a hybrid model of 2D-CNN 

and LSTM (CNN-LSTM) was adopted in this study. The main contributions of this work 

are as follows: 

(1) CNN-LSTM was used to solve many shortcomings of the single-ended traveling 

wave method, including high sampling frequency, difficulty to determine wave velocity 

and identify wave heads when an HIF occurs. It provides high precision and strong ro-

bustness to fault types, noise, sampling frequency, and different HVDC topologies in fault 

location. 

(2) VMD-TEO was used for feature engineering, which made the characteristics of 

the fault signals obvious. It reduced the dependence of deep learning on the number of 

samples to a certain extent, thereby improving the learning efficiency and accuracy of 

CNN-LSTM. 

(3) A comparison experiment of 1D-CNN and recurrent networks including LSTM, 

GRU and Bi-GRU as a regressor in the hybrid model explained the reason for choosing 

LSTM. Compared with feature engineering methods such as WT and HHT, VMD-TEO 

showed a better performance on the accuracy of fault location through CNN-LSTM. 

The rest of the paper is organized as follows: Section 2 introduces the principle of the 

single-ended traveling wave method and points out the difficulties of its application. The 

process of feature engineering by VMD-TEO and identifying fault sections by 2D-CNN 

are introduced. Section 3 describes a fault location approach, and presents a hybrid model 

comprising CNN and LSTM. Section 4 discusses the simulation parameters, results, and 

analysis. Section 5 provides the conclusions. 

2. Fault Location Based on Traveling Wave Theory 

2.1. Feature Engineering and Acquisition of Samples 

This study mainly investigated the fault location of hybrid transmission lines in a 

bipolar HVDC system, and its structure is shown in Figure 1. The transmission line on the 

DC side contains a mix of cables and overhead lines. Their connection point is denoted as 

J. The DC side close to the power supply and power receiving terminals are denoted as M 

and N, respectively. 

VSC Cable 

iMp

iMn

iNp

iNn

AC

Rectifier Inverter

VSC

AC

Overhead line 

M N
J

 

Figure 1. Hybrid two-segment voltage source converter–high voltage direct current (VSC-HVDC) system. 

To identify the fault sections, 2D-CNN was considered to classify the characteristic 

quantities of the fault voltage and current signals at terminal M. Feature engineering is 

extremely important for identifying fault sections. VMD-TEO was mainly used for this 

task in this work. A large number of fault signals could be obtained as input samples for 
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CNN considering the combination scenarios of different fault locations, fault types, and 

transition resistance. The process of obtaining one of these samples is described below. 

Bipolar lines have mutual coupling problems, and their parameters have frequency 

conversion characteristics. Phase-mode analysis is necessary to simplify the calculation 

process before feature extraction of fault signals. The specific process of phase-mode trans-

formation is expressed as the following formula [31]:

 
0

1

1 11

1 12

m p

m n

i i

i i

    
           

(1)

where im0 and im1 are the current or voltage of the ground-mode and aerial-mode traveling 

wave after decoupling, respectively, and ip and in are the fault current or voltage of the 

corresponding positive and negative electrodes, respectively. 

The principle of VMD-TEO singularity detection was described in detail in Refer-

ences [13,14]. The authors compared this method with WT, HHT, and EMD to prove its 

excellent detection performance. Feature engineering is mainly through decomposing the 

fault voltage and current signals at terminal M into several intrinsic mode function (IMF) 

[32,33] components by VMD and analyzing the first IMF component (IMF1) to obtain 

Teager energy values (TEVs) by TEO. 

To improve the classification effect of 2D-CNN, the TEVs of voltage and current need 

to be preprocessed using min–max normalization to make them at the interval [0,1], which 

can be expressed as follows: 

* min

max min

=
x x

x
x x




 (2)

where x* is the normalized value, and xmax and xmin are the maximum and minimum values 

in the sample data, respectively. 

The specific HVDC simulation model and related parameter settings are described 

in detail in Section 4. The sampling frequency was selected to be 100 kHz to improve the 

accuracy of fault location using the traveling wave method. The time window is 40.96 ms, 

i.e., 4096 sampling points are found in each time window. Considering the influence of 

the measurement noise at terminal M, 1% reference signal noise is added to the fault volt-

age and current of the two poles. Phase-mode transformation is first conducted, and the 

TEVs of the voltage and current are then calculated and normalized. In this way, a matrix 

with a size of 2 × 4096 is obtained, which is a 2D-tensor as an input sample. Considering 

different fault distances, transition resistance, and fault type scenarios, many input sam-

ples can be obtained. 

It is assumed that an NG fault occurs at a distance of 350 km from the M terminal, 

with the transition resistance of 0.03 Ω, the failure time of 4 s, and the duration of 0.02 s. 

The aerial-mode component of the fault voltage and fault current after noise is added, and 

the TEVs before normalization is shown in Figure 2. VMD has a good filtering effect be-

cause fault signals in Figure 2c,d are much smoother than Figure 2a,b. The calculation of 

the TEVs based on IMF1 is shown in Figure 2e,f. They have much more high-frequency 

characteristic signals than Figure 2c,d. Therefore, more useful information of fault signals 

can be learned after VMD-TEO feature engineering. There is a slight difference in extreme 

value distribution in addition to the amplitude of TEVs of voltage and current between 

Figure 2e,f. The TEVs of voltage and current are constructed into 2D-tensor to complement 

each other with information. The work of classifying fault segments based on this charac-

teristic information needs to be handed over to 2D-CNN for completion. The process of 

the above feature engineering is shown in Figure 3. 
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Figure 2. Feature engineering analysis results of negative ground (NG) fault occurring at 350 km; (a) fault voltage with 

noise, (b) fault current with noise, (c) IMF1 of fault voltage by variational mode decomposition (VMD), (d) IMF1 of fault 

current by VMD, (e) Teager energy values (TEVs) of the first intrinsic mode function (IMF1) in fault voltage, and (f) TEVs 

of IMF1 in fault current. 

Obtain M 
terminal voltage 

and current
Add noise

Phase-mode 
transformation

Extract IMF1s of 
voltage and 

current by VMD

Calculate Teager 
energy values

Min-max 
normalization

(Figure 8 )
 

Figure 3. Process of feature engineering. 
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2.2. Fault Segment Identification Based on 2D-CNN 

A deep 2D-CNN model was built, as shown in Figure 4. This model consists of 19 

layers, including an input layer, six convolutional layers (C1–C6), six pooling layers (S1–

S6), a flatten layer (R1), two dense layers (F1, F2), two dropout layers (D1, D2), and a softmax 

layer (F3). The parameter configuration of each layer in this model is listed in Table 1. 
In
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Figure 4. Deep 2D-CNN structural diagram for fault segment identification. 

The convolution layer operation can be described as: 

1( ) * +
j

l l l l l
j j ij i j

i M

x f z f w x b



 
    

 
  (3)

where * is the convolution operation, l is the l-th layer in the network, i is the i-th weight 

in the kernel, j is the j-th kernel, M denotes local feelings, w is the weight of synaptic con-

nections, b is the bias coefficient, z is the result after the convolution operation, xi is the 

input sample or the feature sample of the previous layer, xj is the output feature sample, 

and f is the activation function to be selected. 

The main chosen activation function of the proposed model is the exponential linear 

unit (ELU). Compared with the rectified linear unit function, ELU has a negative part. The 

linear part of ELU can alleviate the vanishing gradient problem, and the negative part can 

be robust to input changes or noise [34]. 

The pooling layer can compress and filter the feature samples outputted by the con-

volution layer, thereby reducing redundant information and network parameters and im-

proving the performance and robustness of the network. The pooling layer operation can 

be described as: 

1( * ( ) )l l l l
j j j jx f down b     (4)

where down(·) is the subsampling method to be selected, and λ is the weight of the pooling 

layer. 

The fully connected layer can integrate the features of all neurons in the previous 

layer. The first fully connected layer, such as flatten layer (R1) in Figure 4, has a tiling 

function that can tile neurons on multiple multidimensional feature samples into 1D vec-

tors. The operation of the fully connected layer can be described as: 
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1( ) ( )l l l l
j j j jx f z f x b     (5)

where ζ is the weight of the fully connected layer, and f is the ELU activation function. 

To prevent overfitting during the learning process, regularization is needed to reduce 

the generalization error of the model. Batch normalization can prevent gradient disper-

sion and explosion. The dropout layer can make neurons randomly deactivate with a cer-

tain probability, thereby compressing the number of neurons, improving the model learn-

ing speed, and effectively reducing overfitting. Here dropout layers (D1, D2) are set as 0.3 

and 0.2, respectively. 

Table 1. Architecture of the proposed 2D-CNN model. 

Layer 

Types 

Kernel/Pool 

Size 

Sub- 

Sampling Layer 
Stride 

Number of  

Kernels 

Number of 

Neurons 

Activation 

Function 
Outputs 

Input layer - - - - - - 2 × 4096 × 1 

C1 2 × 2 - 1 16 - ELU 2 × 4096 × 16 

S1 2 × 2 Maximum 2 - - - 1 × 2048 × 16 

C2 2 × 2 - 1 16 - ELU 1 × 2048 × 16 

S2 1 × 2 Maximum 2 - - - 1 × 1024 × 16 

C3 2 × 2 - 1 32 - ELU 1 × 1024 × 32 

S3 1 × 2 Maximum 2 - - - 1 × 512 × 32 

C4 2 × 2 - 1 32 - ELU 1× 512 × 32 

S4 1 × 2 Maximum 2 - - - 1 × 256 × 32 

C5 2 × 2 - 1 64 - ELU 1 × 256 × 64 

S5 1 × 2 Average 2 - - - 1 × 128 × 64 

C6 2 × 2 - 1 64 - ELU 1 × 128 × 64 

S6 1 × 2 Average 2 - - - 1 × 64 × 64 

R1 - - - - - - 4096 

F1 - - - - 200 ELU 200 

D1 - - - - - - 200 

F2 - - - - 64 ELU 64 

D2 - - - - - - 64 

F3 - - - - N Softmax N 

2.3. Single-Ended Traveling Wave Method for Fault Location 

The laws of refraction and reflection of traveling waves on actual HVDC transmis-

sion lines vary in different fault segments [7]. The reflected wave head identified on the 

rectifier side may come from the fault point, the connection point of the hybrid line, or 

even the bus on the inverter side [23]. Different calculation formulas are adopted in the 

single-ended traveling wave method when faults occur in different sections [7,23]. When 

the fault section is located in the first or second halves of the cable, the fault traveling wave 

propagation is depicted in Figure 5. The lengths of the overhead line and the cable are L1 

and L2, respectively. As reported in Reference [16], the wave velocity is a frequency-de-

pendent variable. The traveling wave velocities on the overhead line and the cable are 

v1(ω) and v2(ω), respectively. Here ω is the frequency when the traveling wave component 

reaches the rectifier side. Δt is the time difference between the second traveling wave head 

and the first traveling wave head identified at the M terminal. The distance from the fault 

point to the M terminal is x, which is the fault location result. 
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tc1

tc2

td2

td1
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Figure 5. Fault traveling wave propagation on different sections. 

As shown in Figure 5, L1 < x < L1 + L2/2 when the fault occurs at F1, and L1 + L2/2 < x < 

L1 + L2 when the fault occurs at F2. When the fault point is at F1, the path of the traveling 

wave is F1-J-F1-J-M, i.e., the second traveling wave head recognized by the M terminal is 

the reflected wave from the fault point. The fault distance can be calculated using the fol-

lowing formula: 

2 2 2 1
1 1

( ) ( )( )

2 2
c cv t v t t

x L L
  

     (6)

When the fault point is at F2, the path of the traveling wave is F2-N-F2-J-M, i.e., the 

second traveling wave head recognized by the M terminal is the reflected wave from the 

opposite bus N. The fault distance can be calculated by the following formula: 

1 2 2 1 2 2 2 1

1 1
( ) ( )( )

2 2
d dx L L v t L L v t t          (7)

There is a complicated nonlinear relationship of the fault distance, the time of the 

traveling wave reaching the rectifier side and the traveling wave velocity. 

3. Fault Location Based on CNN-LSTM 

The information on the time of traveling wave reaching the rectifier side and wave 

velocity can be obtained through combining the fault signal after feature engineering with 

the corresponding fault distance. A nonlinear relationship is found between these feature 

quantities and fault distance. These feature quantities have time correlation since it can be 

regarded as time series. LSTM can be used for the regression prediction of fault distances. 

The complete fault location process of CNN-LSTM is shown in Figure 6. The fault voltage 

and current are obtained at the M terminal. High-frequency components (TEVs) of the 

fault traveling wave are extracted by phase-mode transformation and VMD-TEO. Then 

TEVs are constructed into a 2D-tensor as an input of 2D-CNN. Finally, the fault location 

is performed through the trained LSTM model. 
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Figure 6. Fault location based on CNN-long short-term memory (LSTM). 

3.1. Theoretical Background of LSTM 

An LSTM network is an improved temporal recurrent neural network. The introduc-

tion of a forgetting gate solves the problem of gradient disappearance during training, 

enabling LSTM to learn the long-term and short-term dependence information of time 

series [18,30]. Its network basic unit is shown in Figure 7. 
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Figure 7. Basic unit of LSTM network. 

The basic unit of LSTM contains forget, input, and output gates. Input xt in the forget 

gate, state memory unit St−1, and intermediate output ht−1 together determine the forgotten 

part of the state memory unit. xt in the input gate is determined by the sigmoid and tanh 

functions to jointly determine the vector retained in the state memory unit. Intermediate 

output ht is jointly determined by the updated St and ot. The calculation formulas in these 

processes are expressed as follows: 

1(W W )t fx t fh t ff x h b     (8)

1(W W )t ix t ih t ii x h b   
 

(9)

1(W W )t gx t gh t gg x h b   
 

(10)

1(W W )t ox t oh t oo x h b   
 

(11)

1t t t t tS g i S f  
 

(12)

( )t t th S o 
 

(13)

where ft, it, gt, ot, ht, and St are the states of the forget gate, input gate, input node, output 

gate, intermediate output, and state unit, respectively, Wfx, Wfh, Wix, Wih, Wgx, Wgh, Wox, and 

Woh are the matrix weights of the corresponding gate multiplied by input xt and interme-

diate output ht−1, bf, bi, bg, and bo are the bias terms of the corresponding gate. ☉ is the 

bitwise multiplication of the elements in the vector. σ is the sigmoid function, and φ is the 

tanh function. 

3.2. CNN-LSTM Hybrid Model for Fault Location 

A CNN-LSTM hybrid model showed in Figure 8 is built based on the previous 2D-

CNN structure. The model 2D-CNN in the left half as a classifier completes the task of 

identifying fault segments, and the model LSTM in the right half as a regressor completes 

the task of precise fault location. The fault segment with the highest probability output 

from the softmax function is selected as the current fault segment. The feature information 

output by the flatten layer (R1) in 2D-CNN and the probability information of the fault 

segment are calculated by the regressor. The experimental results demonstrate that six 

LSTM layers should be used in the CNN-LSTM network, and each LSTM layer contains 

64 neurons. The dense layer (F4) uses a neuron. The loss function is mean squared error, 
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and the optimizer is Adam. The proposed hybrid network model can intelligently inte-

grate information from different fault sections and corresponding fault distances, and con-

tinuously optimize and update network parameters to make it close to ideal. 
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Figure 8. CNN-LSTM hybrid model. 

With the development of modern data acquisition technology and deep learning 

technology, the proposed method is feasible for engineering applications. A high-preci-

sion and adjustable sampling frequency transient recorder is installed on the M terminal 

to obtain a large number of fault sample data. The operation of the proposed method can 

be accelerated by parallelizing on graphical processing units or tensor processing units. 

After the proposed model is trained, it can be used repeatedly for fault location, and the 

speed is calculated in milliseconds. Circuit breakers in HVDC systems, which is a key 

element to interrupt and clear the faults [35]. The fault location speed of the proposed 

method can meet the operating time requirements of an actual circuit breaker. Feature 

engineering is performed in MATLAB 2019a. The model training and testing are carried 

out on the Python3.7 Keras framework. 

4. Simulation Results and Analysis 

4.1. Simulation Model and Related Parameters 

The voltage source converter (VSC)-HVDC transmission system with mixed lines in 

Figure 1 is constructed on the power system simulation software PSCAD/EMTDC. The 

model proposed in Reference [14] was used in this study. Its structure and related param-

eter settings remained constant. In this paper, a bipolar DC transmission line power and 

a current double closed-loop proportional–integral (PI) control were adopted. The VSC 

overall control system structure is shown in Figure 9a comprising the inner loop current 

controller, outer loop power regulator, phase lock synchronization, trigger pulse genera-

tion, and other components, in which the inner loop current controller is used to directly 

control the AC side current waveform and the phase of the converter is applied to rapidly 

track the reference current. The outer loop power control is based on the control objectives 

of the system, i.e., DC voltage, active power, fixed frequency, reactive power, constant AC 

voltage, and other control objectives. The outer loop control mode of the M-side keeps 
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constant active power control and constant reactive power control, whereas the outer loop 

control mode of the N-side is constant DC voltage and constant reactive power control. 

The inner loop controllers of the M-side and N-side are identical, and their controller 

structure is demonstrated in Figure 9b. 
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Figure 9. Voltage source converter (VSC) control system structure; (a) overall controller structure 

and (b) inner loop controller structure. 

The M-side system was modeled by a three-phase voltage source with the following 

main parameters; the line voltage of 110 kV, system impedance of 1.7 Ω, transformer Yn/Δ 

link capacity of 25 MVA, winding voltage of 110 kV/25 kV, leakage resistance of 0.2 pu, 

phase reactor of 0.053 H, and equivalent resistance of 0.8 Ω. The N-side system was sim-

ulated as an infinite system by a three-phase voltage source with the following main pa-

rameters; the system impedance of 0 Ω, line voltage of 110 kV, transformer Yn/Δ link, 

capacity of 20 MVA, winding voltage of 110 kV/25 kV, leakage resistance of 0.1 pu, phase 

reactor of 0.053 H, and equivalent resistance 0.6 Ω. Modeling cables and overhead lines 

using the frequency dependent (phase) approach are shown in Figure 10. The resistance, 
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sheath resistivity, and armor resistivity of the cable are 1.72 × 10−8, 2.2 × 10−7, and 1.8 × 10−7 

Ω.m, respectively. The relative dielectric constant of the insulator is 2.5 with length of 200 

km. The resistance, GMR, and length of the overhead wire are 0.03206 Ω/km, 0.0122834 

m, and 300 km, respectively. 

 

Figure 10. Parameters of cables and overhead lines. 

4.2. Experimental Result of Traveling Wave Method 

The fault resistance value used to distinguish HIF and LIF is related to specific HVDC 

system parameters. This research is mainly based on the change of the fault current. An 

assumption is that a positive ground (PG) fault occurs at a distance of 50, 150, 300 and 400 

km from the M terminal. When the transition resistance Rf changes, the aerial-mode com-

ponent of the fault current is shown in Figure 11. When Rf is less than 100 Ω, the fault 

current amplitude is larger and its variety is more obvious than that when Rf is between 

800 and 1200 Ω. Through this analysis, it can be seen that the fault resistance of LIF and 

HIF ([0, 100 Ω] and [800 Ω, 1200 Ω], respectively) is one of the reasonable circumstances. 
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(a) (b) 

  

(c) (d) 

Figure 11. Fault current at M terminal when the transition resistance Rf changes; (a) PG fault at 50 km, (b) PG fault at 150 

km, (c) PG fault at 300 km, and (d) PG fault at 400 km. 

As depicted in Reference [7], the hybrid line was divided into four fault segments, 

and SVM was used to identify these sections. In this work, 2D-CNN was used to achieve 

this aim. A large number of CNN input samples can be obtained through different fault 

scenarios. The sampling frequency and time window are 100 kHz and 40.96 ms, respec-

tively. A total of 4096 sampling points is found in each time window. Three fault condi-

tions include PG, NG, and short between positive and negative (PN). The maximum tran-

sition resistance is 100 Ω with LIF considered. The performance of the proposed method 

is evaluated for various fault scenarios under different system conditions. The simulations 

are conducted with the following values or types: 

(1) The change step size of the fault distance is taken as 1 km. 

(2) Transition resistance Rf = 0.0001%, 1%, 2%, 3% … 100% of the maximum transition 

resistance. 

(3) Fault types include PG, NG, and PN. 

A total of 151,197 different cases were simulated, and 1% reference signal noise was 

considered. After performing feature engineering by VMD-TEO on all simulation results, 

151,197 input samples can be obtained as input samples for CNN. Due to the large number 

of samples, only samples with fault points located at 50, 150, 300 and 400 km are displayed 

in Figure 12. There are 101 samples in each of the three fault scenarios corresponding to 

each fault distance. In different fault sections, changes of the voltage and current are dif-

ferent as shown in Figure 12a–d,i–l. After the fault signals are processed by VMD, the high 

frequency components, which are IMFs, of the fault traveling wave can be obtained as 
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shown in Figure 12e–h. Yet, the characteristics of these components are not obvious. If 

they are directly used in deep learning for fault segment identification and fault location, 

the number of training samples and the complexity of the neural network will greatly 

increase. However, after VMD-TEO feature engineering is performed on the fault signals, 

as shown in Figure 12m–p, the information of these high-frequency components will be-

come clearer. Therefore, this feature engineering is conducive to the learning of the CNN-

LSTM network. The extreme point positions of the high-frequency components (TEVs) 

are related to the fault distances, and are less affected by the fault types. Simultaneously, 

the amplitude of these components and the polarity of the extreme values varied with the 

fault distances. TEVs of IMFs are feasible as input to the CNN-LSTM model. 
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(m) (n) (o) (p) 

Figure 12. Partial samples when faults occur at 50, 150, 300 and 400 km. (a–d) Fault current without noise; (e–h) IMF1 of fault current by VMD; (i–l) fault voltage 

without noise; (m–p) TEVs of IMF1s in fault voltage. 
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Randomly take 80% of the total sample as training data and the remaining samples 

as test data. One-hot coding is performed for the four fault sections, i.e., the first and sec-

ond halves of the overhead line and cable are encoded as [1,0,0,0], [0,1,0,0], [0,0,1,0], and 

[0,0,0,1]. 

When LIF occurs, the test results are represented by a normalized confusion matrix, 

as shown in Figure 13a. The recognition effect of the four fault sections is excellent with 

an accuracy rate over 99.5% in Figure 13a. Under consideration of HIF, the value range of 

fault resistance is [800 Ω, 1200 Ω]. In this interval, the change step of fault resistance is 4 

Ω. The other failure scenario settings are the same as above, and a total of 151,197 different 

cases can also be obtained. The normalized confusion matrix of the test results in this case 

is shown in Figure 13b. The recognition effect of the four fault sections is extremely poor, 

the lowest and fault recognition rates are 46.1% and 57.3%, respectively. The classification 

method of the four fault sections can only be used in the case of LIF and is not applicable 

to the case of HIF. 

 
 

(a) (b) 

Figure 13. Normalized confusion matrix of classification effect; (a) low impedance fault (LIF) and (b) high impedance fault 

(HIF). 

Assuming that PN LIF occurs at a distance of 450 km from the M terminal, the tran-

sition resistance is 10 Ω, the time of failure is 4 s, the duration is 0.02 s, and the fault section 

can be correctly identified. The fault current signal at the M terminal and the result of the 

singularity detection using the VMD-TEO are recorded in Figure 14. The IMF1 obtained 

by VMD can reflect the essential characteristics of the fault signal. After calculating the 

TEV of IMF1, evident extreme points are obtained. The positions of these extreme points 

can reflect the positions of singular points of the signal. In accordance with the previous 

analysis, the first two extreme points are the traveling wave initial wave head and the 

opposite wave bus head, respectively. The fault distance can be calculated using Formula 

(7), where td1 = 4.00175 s, td2 = 4.00233 s. According to the theoretical analysis [7,14], it is 

assumed that the parameters of the aerial-mode component do not change much, and the 

influence of frequency on the traveling wave velocity is ignored. Since the HVDC model 

and parameters in this study are exactly the same as that described in Reference [14], the 

fixed aerial-mode traveling wave velocities in Reference [14] are used for calculation, 

where v1 = 293,997.1102 km/s, v2 = 196,333.3333 km/s. The theoretical value of fault distance 

is 443.063 km, the error distance of fault distance is 6.937 km, and the error percentage is 

1.54%. This error does not meet the actual engineering requirements. The possible reason 
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of the error is that fixed traveling wave velocities are adopted while ignoring their fre-

quency variation characteristics. 

 

Figure 14. Experimental results of signal extraction and singularity detection for a PN fault at 450 km; (a) fault current at 

terminal M, (b) IMF1 obtained from VMD, (c) TEV of IMF1 with a time window of 40.96 ms, and (d) TEV of IMF1 with a 

time window of 5 ms. 

4.3. Experimental Result of CNN-LSTM 

Several shortcomings are found in the previous fault location analysis of the traveling 

wave method. The connection points of the fault sections are not considered. The effect of 

identifying HIL is extremely poor. Many overlapping fault sections are considered to 

solve these problems. 

The length of the mixed line and the overlap of the fault sections are considered as 

the length of the sample (Ls) and its offset (Δs), respectively. When Δs is large, the number 

of categories (N) of the fault sections is small. When N is small, the recognition rate for 
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HIF is low. When N is large, the data amount and learning effect of CNN-LSTM are af-

fected. Therefore, the selection of appropriate Δs is very important for accurate fault loca-

tion. 

The length of the mixed line is 500 km, and the interval of Ls is [0, 500]. When Δs = 

100, N = 4, the fault sections are [0, 200], [100, 300], [200, 400], and [300, 500]. When Δs = 

50, N = 9, the fault sections are [0, 100], [50, 150],…, and [400, 500]. When Δs = 25, N = 19, 

the fault sections are [0, 50], [25, 75],…, and [450, 500]. Δs is changed, and the classification 

experiments of HIF and LIF are performed again. With the change in Δs (Δs = 2, 5, 10, 20, 

25, and 100), the accuracy percentage of the 2D-CNN classifier is shown in Figure 15. The 

width of the ribbon in Figure 15 reflects the accuracy range of each fault segment identifi-

cation, where the edges of the ribbon reflect the maximum and minimum accuracy, and 

the solid line reflects the average accuracy. When Δs = 25, i.e., N = 19, the classification 

effect of HIF and LIF is best with accuracies of 99.98% and 99.99%, respectively. 

 

Figure 15. Test results when the number of categories changes. 

The number of 2D-CNN layers can affect the classification effect of CNN-LSTM. Take 

the number of CNN layers as 4, 5,..., 8 and N = 19 for experimental tests, and the results 

are shown in Figure 16, which is similar to Figure 15. When the number of 2D-CNN layers 

changes, the accuracy range of the classification in 19 fault sections includes the maxi-

mum, minimum, and average values. Properly increasing the number of 2D-CNN layers 

can improve the classification ability of the model. However, the accuracy of training de-

creases when the number of 2D-CNN layers exceeds six layers, indicating that the model 

is overlearning. When the number of 2D-CNN layers is 6, the accuracy of the classifier in 

the 19 fault sections is close to 100%, and the variation range is the smallest. Therefore, the 

6-layer 2D-CNN model is reasonable as a classifier. 
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Figure 16. Test results when the number of 2D-CNN layers changes. 

The influence of the number of LSTM layers on the regression effect of CNN-LSTM 

is also considered. Take the number of LSTM layers as 4, 5,..., 8 and N = 19 for experimental 

tests, and the results are shown in Figure 17, which is similar to Figures 15 and 16. When 

the number of LSTM layers changes, the accuracy range of the regression prediction in 

each fault section includes the maximum, minimum, and average. The accuracy calcula-

tion sets a fault distance tolerance of ±0.5%, thereby meeting the actual engineering re-

quirements. The predicted values of multiple samples for each fault distance are averaged. 

The predicted value is recorded as accurate when the average is within the fault distance 

tolerance. When the number of LSTM layers is more than or less than six, the accuracy of 

the regressor is not as good as that of the six-layer LSTM. The predicted fault distances 

are highly accurate at each fault section. 

 

Figure 17. Test results when the number of LSTM layers changes. 

The CNN-LSTM network with six LSTM layers was chosen for the test. The 500 sets 

of data with a fault distance of 12, 50,..., and 450 km are randomly taken for experiments. 
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Regression is used to predict the fault distance by CNN-LSTM and calculate the error. The 

experimental results of LIF and HIF are shown in Figure 18a,b, respectively. The color of 

the circle in the scatter plot reflects the value of fault resistance ([0.01 Ω, 100 Ω], [800 Ω, 

1200 Ω]), and the size of the circle reflects the fault types (PG, NG, PN). The vertical axis 

of the scatter plot is the fault distance error without considering the tolerance, i.e., the 

difference between the actual fault distance and its predicted value. The fault error values 

of LIF and HIF are approximately concentrated in the range of −0.4 to 0.4 km. The pro-

posed method has small fault location error, and is less affected by fault resistances and 

fault types. 

 
 

(a) (b) 

Figure 18. Test results of CNN-LSTM with six LSTM layers; (a) LIF and (b) HIF. 

4.4. Influence of Sampling Frequency 

The traveling wave method requires the measurement device to use a high sampling 

frequency, which is disadvantageous for practical engineering applications. To illustrate 

the effect of sampling frequency on the experimental results of CNN-LSTM, the sampling 

frequencies are taken as 100, 50, 20, 10, and 2 kHz. Regressive prediction is performed on 

1000 groups of data with fault distances of 50, 150, 250, 350, and 450 km. The accuracy 

percentage of the fault location is obtained as follows: 
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where yact is the actual fault distance, ypred is the predicted fault distance, N1 and N2 are the 

number of test samples for HIF and LIF, respectively, and N1 = N2 = 500. 

The accuracy of fault location at different sampling frequencies is shown in Figure 

19. When sampling frequency is between 20 and 100 kHz, the change in the accuracy of 

CNN-LSTM fault prediction is relatively stable. Therefore, the method requires lower 

sampling frequency than the traveling wave method. 
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Figure 19. Test results at different sampling frequencies. 

4.5. Influence of Noise 

In the previous experimental analysis, the influence of measurement noise at the M 

terminal is considered, and 1% reference signal noise is added. Considering the effect of 

load changes during the actual operation of the HVDC system, 2% and 5% reference signal 

noises are added to the voltage and current signals at the M terminal. Similar to the pro-

cess of analyzing the effect of sampling frequency on the accuracy of fault location, 1%, 

2%, and 5% reference signal noises are added for fault prediction, and the sampling fre-

quency is 50 kHz. The accuracy of fault location testing at different noise levels is shown 

in Figure 20. The effect of fault location is slightly affected by different levels of noise 

environment. The roles of VMD and CNN make the CNN-LSTM fault location method 

robust to noise. 

 

Figure 20. Testing results at different levels of noise. 
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4.6. Comparison of Other Methods 

This study reasonably reduces the sampling frequency from 100 to 50 kHz to test 

HIF. In order to achieve a fair comparative test, the following methods adopt the same 

training and testing samples. Different feature engineering methods such as WT, HHT 

and VMD-TEO in this study are considered for experimental comparison. The experi-

mental results are displayed in Table 2. The results by CNN-LSTM in the table are the 

average of 500 sets of test data. Since the data in the table are average values, it may hap-

pen that the test results cannot meet the allowable error range of actual engineering ap-

plications. Different feature engineering methods have a great influence on the accuracy 

of fault location, which can be seen in Table 2. It is verified here that the VMD-TEO 

method mentioned in our previous work [14] is superior to WT and HHT in terms of sin-

gularity recognition and robustness. The error in WT may be caused by the difficulty in 

using WT to select the basic functions and decomposition scales, and the error source of 

HHT may be a modal aliasing phenomenon in the EMD decomposition process. 

Table 2. Comparison of feature engineering methods. 

Fault 

Distance 

WT HHT VMD-TEO 

Distance Error Distance Error Distance Error 

(km) (km) (km) (km) (km) (km) (km) 

50 53.797 3.797 53.386 2.386 50.137 0.137 

100 103.827 3.827 95.564 4.436 99.773 0.227 

150 153.624 3.624 153.518 3.518 150.265 0.265 

200 196.671 3.329 204.447 4.447 200.272 0.272 

250 254.227 4.227 244.596 5.404 250.257 0.257 

300 305.106 5.106 304.234 4.234 300.251 0.251 

400 404.534 4.534 396.522 3.478 400.197 0.197 

450 446.575 3.425 455.416 5.416 450.234 0.234 

In order to facilitate the comparison of experiments, the 2D-CNN classifier structure 

of the left half of the proposed model remains unchanged. Other regression algorithms 

such as 1D-CNN, GRU, and Bi-GRU are used to replace the regressor in the right half of 

the proposed hybrid model. The experimental results by different regression methods are 

listed in Table 3. The comparison of the test effects of these three deep learning methods 

shows that the effect of LSTM in the regressor is significantly better than that of 1D-CNN, 

GRU, and Bi-GRU. The average error interval of CNN-LSTM, 1D-CNN, GRU and Bi-GRU 

are in [0.137, 0.265 km], [4.104, 5.213 km], [1.104, 1.333 km], and [1.821, 2.721 km], respec-

tively. The fluctuation range of the error value of CNN-LSTM fault location is within the 

range of error tolerance value of actual engineering application. 1D-CNN has the worst 

experimental accuracy because its ability to learn the time correlation of fault signals is 

not as good as GRU, Bi-GRU and LSTM. GRU is a simplified model of the LSTM structure, 

which reduces the amount of calculation. However, reducing the model parameters may 

not guarantee that the regression effect is better than LSTM. Bi-GRU is that GRU learns 

the time series from the forward and reverse directions. The reason that the experimental 

accuracy of Bi-GRU is not as good as that of GRU and LSTM is that all regression predic-

tion capabilities must come from the forward learning of the Bi-GRU network, and the 

reverse learning performs poorly on this task. 
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Table 3. Comparison of different regression algorithms. 

Fault 

Distance 

1D-CNN GRU Bi-GRU LSTM 

Distance Error Distance Error Distance Error Distance Error 

(km) (km) (km) (km) (km) (km) (km) (km) (km) 

50 54.186 4.186 51.186 1.186 51.919 1.919 50.137 0.137 

100 104.333 4.333 101.333 1.333 98.179 1.821 99.773 0.227 

150 154.221 4.221 151.221 1.221 151.978 1.978 150.265 0.265 

200 195.896 4.104 198.896 1.104 202.149 2.149 200.272 0.272 

250 254.131 4.131 251.131 1.131 252.721 2.721 250.257 0.257 

300 305.213 5.213 301.213 1.213 302.497 2.497 300.251 0.251 

400 404.238 4.238 401.238 1.238 397.768 2.232 400.197 0.197 

450 445.879 4.121 448.879 1.121 452.011 2.011 450.234 0.234 

4.7. Other HVDC Model 

In order to verify the feasibility of the proposed method in the other HVDC model, 

the topology in Figure 1 is changed to the form in Figure 21. Here L1 and L3 are overhead 

lines with a length of 150 km, and L2 is a cable with a length of 150 km. The CNN-LSTM 

model is retrained according to the previous program, and 10 samples are randomly se-

lected for testing, as shown in Table 4. The error interval of the proposed method is in 

[0.249, 0.379 km]. This error range also meets engineering needs. By the analysis of Table 

4, it can be concluded that this fault location method has higher accuracy when consider-

ing different HVDC topologies, and is also rarely affected by fault types and fault re-

sistance. 

VSC Cable 
AC

Rectifier Inverter

VSC

AC

Overhead line 

M N
L1 L2 L3

 

Figure 21. Hybrid three-segment VSC-HVDC system. 

Table 4. Experimental results on hybrid three-segment system. 

Fault Location Fault Type Fault Resistance Distance Error 

(km)  (Ω) (km) (km) 

40 PG 900 39.739 0.261 

80 NG 75 80.379 0.379 

120 PN 1100 119.668 0.332 

150 PN 65 149.618 0.382 

180 NG 29 180.317 0.317 

250 PG 840 249.749 0.251 

310 NG 920 310.346 0.346 

375 PN 1020 374.688 0.312 

400 PG 1120 399.627 0.373 

440 NG 54 440.249 0.249 
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5. Conclusions 

A deep CNN-LSTM method was proposed to locate the fault in HVDC systems with 

mixed cables and overhead lines. In the case of LIF and HIF, this method has high fault 

location accuracy with the effects of fault types, noise, sampling frequency, and different 

HVDC topologies in consideration. 

VMD-TEO is used in feature engineering to improve the learning effect of the model. 

Experimental results prove that this method is superior to WT and HHT in feature extrac-

tion. This single-ended intelligent method transforms the problem of this research into 

two tasks: fault section identification by a 2D-CNN classifier and fault precise location by 

an LSTM regressor. Simultaneously, the regressor integrates the fault section information 

in the classifier, and finally completes the fault location task. Other deep learning methods 

such as 1D-CNN, GRU and Bi-GRU replace LSTM in the regressor as an experimental 

comparison. Experimental results show that the fault location accuracy of LSTM is better 

than other methods. 

Regarding the choice of the deep learning algorithm, it needs to be based on actual 

data. Although it is mentioned in References [26,27] that GRU and Bi-GRU are optimiza-

tions of LSTM, the results of this experimental data analysis cannot prove such a conclu-

sion. GRU simplifies the structure of LSTM and accelerates operations, but its learning 

effect is not as good as LSTM. Bi-GRU learns the characteristics of time series from both 

forward and reverse directions, but learning from the reverse direction is far worse than 

from the forward direction. The experimental results of Bi-GRU are not as good as LSTM, 

and even worse than GRU. 
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Abbreviations 

HVDC High voltage direct current 

CNN Convolutional neural network 

LSTM Long short-term memory 

VMD Variational mode decomposition 

TEO Teager energy operator 

WT Wavelet transform 

HHT Hilbert–Huang transform 

VMD-TEO Variational mode decomposition–Teager energy operator 

EMD Empirical mode decomposition 

LIF Low impedance fault 

HIF High impedance fault 

RNN Recurrent neural network 

GRU Gated recurrent unit  

Bi-GRU Bidirectional gated recurrent unit 

IMF Intrinsic mode function 
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IMF1 The first intrinsic mode function component 

TEV Teager energy value 

VSC Voltage source converter 

NG Negative ground 

ELU Exponential linear unit 

PG Positive ground 

PN Positive and negative 
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