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Abstract: Cognitive radio (CR) is an adaptive radio technology that can automatically detect avail-

able channels in a wireless spectrum and change transmission parameters to improve the radio op-

erating behavior. A CR ad-hoc network (CRAHN) should be able to coexist with primary user (PU) 

systems and other CR secondary systems without causing harmful interference to licensed PUs as 

well as dynamically configure autonomous and decentralized networks. Therefore, an intelligent 

system structure is required for efficient spectrum use. In this paper, we present a learning-based 

distributed autonomous CRAHN network system model for network planning, learning, and dy-

namic configuration. Based on the system model, we propose machine learning-based optimization 

algorithms for spectrum sensing, cluster-based ad-hoc network configuration, and context-aware 

signal classification. Using the sensing engine and the cognitive engine, the surrounding spectrum 

usage and the neighbor network operation status can be analyzed. The proposed policy engine can 

create network operation policies for the dynamically changing surrounding wireless environment, 

detect policy conflicts, and infer the optimal policy for the current situation. The decision engine 

finally determines and configures the optimal CRAHN configuration parameters through coopera-

tion with a learning engine, in which we implement the proposed machine-learning algorithms. The 

simulation results show that the proposed machine-learning CRAHN algorithms can construct CR 

cluster networks that have a long network lifetime and high spectrum utility. Additionally, with 

high signal context recognition performance, we can ensure coexistence with neighboring systems. 
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1. Introduction 

In recent years, as the demand for wireless communication services has increased 

rapidly, the problem of a shortage of frequency resources has greatly increased. For effi-

cient use of limited frequency resources, a cognitive radio (CR) technology, which is a 

frequency-sharing method achieved through dynamic spectrum access, has drawn atten-

tion. A CR network (CRN) is composed of unlicensed secondary users (SUs) and uses a 

spatially and temporally empty spectrum to avoid interference with licensed primary us-

ers (PUs) by sensing the surrounding wireless environment. The CRN should coexist with 

licensed users without causing harmful interference. It needs to dynamically set up a sys-

tem configuration suitable for the wireless environment, and it should make an optimal 

decision for the current situation. In this paper, we consider a CR ad-hoc network 

(CRAHN), which is decentralized and self-configured [1]. A CRAHN can respond quickly 

to dynamic changes in surrounding wireless environments and is more scalable. 

In recent years, CRAHNs have been applied in various fields, including disaster 

emergency networks and military tactical communications because they enable immedi-

ate network configuration without using the existing infrastructure and can efficiently use 
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frequency resources while responding to changes in dynamic radio resource demand 

[2,3]. 

With respect to existing wireless ad-hoc networks, such as MANET (mobile ad-hoc 

network), FANET (flying ad-hoc network), VANET (vehicular ad-hoc network), dynamic 

routing, and medium access control (MAC) technology, studies have been primarily con-

ducted to provide seamless services with changes in network topology according to the 

mobility of user devices. Conversely, in a CRAHN, the network topology changes in re-

sponse to the spatial and temporal changes in wireless environments caused by the pri-

mary system activation and neighbor CR network operations as well as the mobility of SU 

devices, so that each secondary device needs to find the available frequency resources and 

determine their quality. SU devices must dynamically reconfigure system parameters for 

optimal ad-hoc network operation. Conventional wireless ad-hoc systems generally fol-

low predefined policies for system parameter configurations, such as operating frequency 

and maximum transmission power. Therefore, the pre-defined policies are embedded in 

the device, and it is easy to enforce a transmission policy. However, because CR systems 

operate under conditions in which the surrounding wireless environments change from 

time to time, policies suitable for the current environmental conditions must be dynami-

cally reconfigured for the device. Dynamic policy updates and reasoning are challenging 

operations in a CRAHN. 

Recently, machine learning (ML), which is one of the most rapidly growing artificial 

intelligence (AI) technologies, has been extensively used to solve critical challenges in CR 

networks [4–7]. ML techniques can be applied to many functional elements in a CRAHN, 

including spectrum sensing, optimum resource allocation, precise environment context 

awareness, spectrum usage prediction, and ad-hoc routing. These techniques can make a 

CRAHN highly intelligent, provide fast adaptability to the dynamicity of the environ-

ment, and improve the quality of service of CR users. In [8], we proposed a Q-learning-

based dynamic optimal band and channel selection method in the CR network by consid-

ering the surrounding wireless environments and system demands in order to maximize 

the available transmission time and capacity at the given time and geographic area. For 

CRAHN cluster formation, in [9] we presented a Q-learning-based clustering mechanism 

for cluster head selection and inter-cluster coexistence. 

In this paper, we present a system model for an intelligent CRAHN and propose ma-

chine-learning algorithms for the proposed model. The proposed intelligent CRAHN sys-

tem model consists of sensing, cognitive, decision, policy, and learning engines. The learn-

ing engine, which is a core part of the proposed model, and other engines are integrated 

with the model and use statistics from sensing results and neighboring secondary system 

information to make optimum decisions for network parameter configuration. The learn-

ing-based policy engine predicts the optimal policy according to the region/time/mission 

and performs policy reasoning to prevent conflicts between policies. By designing and 

implementing the organized interactions between engines, we can provide a more stable 

ad-hoc network and improve the efficiency of the system. The proposed learning algo-

rithms capture the short-term and long-term changes in the surrounding wireless envi-

ronments. We propose a reinforcement learning-based CRAHN network configuration 

method that (re)configures a cluster-based ad-hoc network by sharing the spectrum sens-

ing results and other cluster network information. After establishing the CR cluster net-

work for fine sensing band selection at the sensing engine, we present a bio-inspired par-

ticle swarm optimization (PSO)-based algorithm. For cognitive engine operation to dis-

tinguish the received signal source and type, we propose a convolutional neural network 

(CNN)-based automatic modulation classification method. We evaluated the performance 

by implementing the proposed system model, and it showed that the proposed system 

can increase network reliability and frequency use efficiency. 

This paper is organized as follows. In Section 2, we present an intelligent CRAHN 

system model. Machine learning-based CRAHN configuration and optimum network pa-

rameter decision algorithms using the proposed system model are presented in Section 3. 
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In Section 4, the policy engine design and implementation of the proposed system are 

presented. The simulation results are evaluated in Section 5, and Section 6 concludes this 

paper. 

2. Intelligent Cognitive Radio Ad-Hoc Network System Model 

For a CRAHN to recognize the surrounding networks and spectrum environment 

and to configure optimal system parameters, an intelligent system model is required. In 

this section, we propose an intelligent wireless CRAHN system model based on artificial 

intelligence. As a reference for how a CR could achieve the required functionality, Mitora 

[10] introduced the basic cognition cycle as a top-level control loop for CR. Figure 1 shows 

the learning-based intelligent CR functional cycle considered in this study. 

In a CRAHN, each device independently or cooperatively observes the environment, 

including spectrum usage and neighboring network status. The observation is performed 

by analyzing the received signal for a certain period of time or collecting information from 

neighboring SU devices by a control message exchange. In the cognition stage, accurate 

context awareness of the surrounding environment is performed using the observed data. 

For context awareness, using artificial intelligence machine-learning technologies, we can 

more efficiently and accurately perform cognition of the current and future status, includ-

ing the classification of received signals and prediction of dynamic changes in user re-

quirements and network behaviors. 

 

Figure 1. Intelligent cognitive radio ad-hoc network (CRAHN) functional cycle. 

The intelligent CRAHN considered in this paper performs policy-based system op-

eration. Due to the nature of distributed ad-hoc systems that use unlicensed bands and 

non-centralized system control, the operation may cause several problems that interfere 

with mutual coexistence and may cause harmful interference to primary users. Therefore, 

for applications requiring strict control, as in disaster communication networks or military 

ad-hoc networks, a network operation capable of dynamically configuring policy re-

strictions is required [11]. The intelligent policy engine proposed and implemented in this 

study can dynamically perform reasoning for the optimal policy; accordingly, the decision 

engine sets the optimal wireless network operation parameters suitable for the current 

time and region where the CR system is located. For all processes in Figure 1, the learning 

engine, using the machine-learning algorithms proposed in this paper, helps to achieve 

improved performance. 

Figure 2 shows the distributed network model of the CRAHN considered in this 

study. There are multiple PU systems in a given area. PUs are licensed systems that have 

been assigned an operating frequency in advance, and it is assumed that there is no other 
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PU system using the same frequency within the system coverage through detailed inter-

ference control. As shown in Figure 2, SUs coexist with the PU systems and form distrib-

uted ad-hoc networks that do not rely on a pre-existing infrastructure. Since a CR network 

must not cause harmful interference to PUs during data transmission, it is very difficult 

or impossible to operate an ad-hoc network over a large area using a frequency channel 

[12]. Therefore, in this paper, we consider cluster-based CRAHNs, as in [13]. Cluster head 

(CH) nodes are selected in a dynamic and fully distributed manner based on connectivity 

with neighboring nodes, the stability of the use of available frequency channels, and re-

sidual energy. Afterward, a cluster network with one-hop neighbor nodes as member 

nodes (MNs) is formed around the selected CH. 

 

Figure 2. CRAHN coexistence model. 

In the network model of Figure 2, for inter-cluster communication, a special MN 

called a gateway node (GN) that guarantees a connection with neighboring clusters is se-

lected. When selecting a common active data channel of a cluster, the decision is made in 

consideration of the channels used by neighboring clusters to reduce interference between 

adjacent clusters in the CRAHN. Therefore, the GN must belong to two or more cluster 

networks to be connected, and all active data channels of each cluster must be available at 

the GN. When configuring the CRAHN, it must comply with the dynamic policy of the 

policy engine, including the conditions of specific frequencies that should not be used in 

certain regions or time zones, or restrictions on transmission power. In this study, it is 

assumed that a predefined common control channel (CCC) exists for the exchange of con-

trol messages between SUs. Therefore, when configuring the initial CRAHN or reconfig-

uring the network, information exchange with neighboring SU nodes uses the CCC allo-

cated to the secondary system. In some applications such as military tactical networks, the 

predefined CCC may not be possible or it may be vulnerable to security or jamming at-

tacks. In that case, we can apply distributed dynamic common control channel selection 

protocols [14], in which a network or cluster wise CCC is established dynamically based 

on the neighboring node’s channel availability. 
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Figure 3 shows the proposed intelligent CRAHN system model. The proposed sys-

tem model is composed of the following five engines: sensing, cognitive, decision, policy, 

and learning engines. The functions of each engine and the interactions between the en-

gines are as follows: 

 Sensing engine: To coexist with PUs, each SU periodically senses the spectrum. In the 

sensing engine, any sensing technique can be used, such as energy detection, cy-

clostationary-based feature detection, or coherent-based detection. In each MN, local 

spectrum sensing is performed, and in the CH, cooperative sensing is implemented 

by fusing the sensing results of MNs in the cluster. The main decision parameters in 

the sensing engine are the wide- and/or narrowband sensing schedules and the abil-

ity of bands to be sensed more precisely. These parameters are determined by the 

decision engine, combined with the learning engine, and then delivered to the sens-

ing engine. In addition, when a context awareness of the signal type or configuration 

of the surrounding networks is required beyond simple signal detection, the raw data 

from the sensing engine is passed to the cognitive engine. 

 

Figure 3. Proposed intelligent CRAHN system model. 

 Cognitive engine: The cognitive engine performs a more accurate recognition of sur-

rounding wireless environments based on the results obtained from the sensing en-

gine. The neighbor discovery module analyzes messages from MNs and GNs 

through the RF module and derives spectrum and network-aware information re-

garding the adjacent CR ad-hoc clusters, which include modulation types, active data 

channels, and reachable cluster identifications through the neighbor clusters. The 

cognitive engine proposed in this paper clearly distinguishes whether the signal re-

ceived is a PU signal, an adjacent SU cluster network signal, or a noise signal, thereby 

enhancing the efficiency of system coexistence and frequency used between systems. 

The cognitive engine classifies the signal source and type using deep learning in the 

learning engine. 
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 Decision engine: The decision engine is responsible for the final optimization in the 

CRAHN. It determines the optimal system parameters for sensing, network configu-

ration, and resource allocation using the received context information from the cog-

nitive engine. When configuring the optimization parameters in the system, the de-

cision engine should finally verify whether they conform to the network operation 

policy derived from the policy engine. Regarding sensing, when precise sensing of a 

specific band among the broadband spectrum is required, the best narrow sensing 

band is dynamically determined using the proposed PSO algorithm of the learning 

engine. In addition, the ad-hoc network is configured or reconfigured by dynamically 

selecting the network CH and the common data channel using the proposed rein-

forcement learning. 

 Policy engine: The policy engine implemented in this study has a structure for dy-

namically establishing, distributing, and applying policies. The CH of the cluster-

based CRAHN becomes an agent that infers and sets policies within the cluster. The 

configured policy is distributed to the MNs in the cluster. The policy engine dynam-

ically creates policies using the authoring tool, detects conflicts between policies, and 

performs reasoning to infer network policies available at the current location and 

time. In addition, long-term policy updates are performed using the prediction func-

tion of the learning engine. The regression function is used for updating the policy 

based on the long-term behavior prediction. 

 Learning engine: The learning engine is a core engine required for intelligent 

CRAHN configuration. It performs regression, classification, and optimization re-

quested by each engine based on sensed signal data, context-aware information, and 

related policy information. The machine-learning techniques implemented in this 

study include polynomial regression techniques, CNNs, unsupervised clustering, 

and Q-learning. The learning engine provides a common platform related to machine 

learning for CRAHN operation. In addition, the learning results for a specific pur-

pose can also be used as additional data or supplementary input for other optimiza-

tion purposes. Therefore, we have defined the learning platform and database as sep-

arate engine functions. 

Although security in CRNs has received less attention than other areas of CR tech-

nology, ensuring security becomes a major and crucial issue. An open channel for second-

ary users is used for communications that can easily be accessed by attackers and the par-

ticular attributes of CRNs raise new opportunities to malicious users, which can disrupt 

network operation. In this paper, even though we have not deeply considered the security 

issues in CRN, each engine needs to conduct security functionalities, which are applica-

tion or network operation environment-dependent. 

3. Learning-Based CR Ad-Hoc Network Configuration and Optimum Network  

Parameter Decision 

3.1. Optimum Narrow Spectrum Band Decision Using Particle Swarm Optimization 

Cognitive radio devices need to sense a wideband spectrum in the range of several 

hundred MHz to several GHz to find a channel that guarantees high throughput and long 

service time. However, a high sampling rate and implementation complexity are required 

for precise sensing of a wideband spectrum, which makes actual implementation difficult 

[15,16]. In a CRAHN, wideband spectrum sensing is used to find an operating channel in 

the initial stage of the network configuration, to find a new channel by the appearance of 

a primary user, or to periodically search for a better channel. In the proposed sensing 

method, during wideband spectrum sensing, rough and fast spectrum sensing with a 

small number of fast Fourier transform (FFT) bins in the unit frequency range is per-

formed. Then, the optimal narrow and fine sensing band that has the greatest possibility 

of the existence of high-quality available channels is derived using a machine-learning 

technique. 
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Figure 4 shows the proposed narrow sensing band decision procedure for fine sens-

ing. The CH requests wideband spectrum sensing to all nodes in the cluster (Figure 4(a)), 

and each member node performs wideband N-point FFT. At node �, if the value ����
� of 

each �-th FFT bin is less than the threshold �ℎ��  for determining the presence of the PU 

signal, the bin availability ��
� is set to 1; otherwise, it is expressed as 0. Each node makes 

an FFT bin availability vector �� for the entire wideband, as in Equation (1), and sends it 

to the CH (Figure 4(b)). 

�� = ���
�, ��

�, ⋯ , ��
�, ⋯ , ��

� �, ��
� = �

1, �� ����
� < �ℎ��

0, ���� 
  (1)

where ����
� is the �-th FFT bin value of node �, �ℎ��  is the threshold to determine the 

possible existence of the PU signal, ��
� is the FFT bin availability index, and �� is the FFT 

bin availability vector of node �. 

 

Figure 4. Wide and narrow-spectrum sensing band decision procedure. 

The CH calculates the cluster-wise wideband FFT bin availability vector �� for the 

entire cluster by fusing the availability vectors received from all member nodes, 

�� = �� ∩ �� ⋯ ∩ �� = ⋂ ��
�
��� , (2)

where �  is the number of member nodes in the cluster. CV is used to derive the opti-

mum narrow spectrum band for fine sensing and eventually to obtain the common data 

channel for the cluster so that the wideband FFT bins of CV should be available for all 

member nodes as in Equation (2). 

In this paper, the utility function of Equation (3) is defined to select the narrowband 

fine sensing range in which the FFT bin length is �. L is determined based on the RF meas-

urement capability of CR devices for fine spectrum sensing. 

�(�) = ������(�) + ������(�), (3)

where �(�) is the utility for the bin range [�, � + � − 1]; ����(�) is the number of avail-

able bins (bin value = 1) in bin range [�, � + � − 1] of cluster �� vector, ����(�) is the 

maximum number of consecutive available bins of �� in bin range[�, � + � − 1], and �� 

and �� are weight parameters. 

CH calculates utility �(�) at each wideband FFT bin point using a sliding window 

mechanism, in which the window size is �, and then derives the bin range [�∗, �∗ + � −

1] that has the largest utility value. Fine sensing is performed for this narrow range ���. 

�∗ = �����������
�

�(�) 
(4)

��� = [�∗, �∗ + � − 1] (5)

However, the utility calculation in each FFT bin of the wideband using the sliding 

window requires a large number of calculations. This makes its real-time implementation 

difficult. Therefore, in this study, the PSO algorithm, which is a bio-inspired machine-

learning technique, is used to quickly find the bin range with the optimal utility (Figure 
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4(c)). Finally, the CH broadcasts the narrow sensing band (NSB) range for fine sensing to 

all member nodes. 

PSO is a computational method that optimizes a problem by iteratively trying to im-

prove a candidate solution for a given utility function. It solves a problem by having a 

population of candidate solutions and moving these particles around in the search space 

according to simple mathematical formulae over the particle’s position and velocity. Each 

particle’s movement is influenced by its local best-known position but is also guided to-

ward the global best-known position in the search space, which is updated as better posi-

tions are found by other particles. The particle position in the proposed PSO-based 

method represents the FFT bin sliding window starting point. The velocity and position 

of the �-th particle are updated as in Equations (6) and (7), respectively, until the utility of 

Equation (3) converges or the PSO iteration number reaches a predefined number. 

��(� + 1) = ���(�) + ����[��(�) − ��(�)]+�������(�) − ��(�)� (6)

��(� + 1) = ��(�) + ��(� + 1) (7)

where ��(�) and ��(�) are the FFT bin sliding window starting point and velocity of the 

particle �  at the �-th iteration time, respectively;  �  denotes the inertia weight factor; 

{��, ��}  are the position acceleration constants; and {��, ��}  are random numbers uni-

formly distributed over interval [0, 1]. 

3.2. Reinforcement Learning-Based Distributed CR Ad-Hoc Network Configuration and 

Operational Channel Decision 

In the distributed CRAHN, the set of available frequency channels of the network 

and the list of connectable neighbor nodes using each channel continuously change over 

time because of the dynamics of the PU system activity, the mobility of SU nodes, and the 

network channel configuration of the neighbor cluster networks. To adjust to these 

changes, the network topology and the common data channel of a cluster should be con-

figured dynamically [17]. This section presents a dynamic cluster-based CRAHN (re)con-

figuration method using reinforcement learning (RL). 

RL essentially deals with the solution of optimal control problems using on-line 

measurements by interacting with an environment. It is suitable for application to 

CRAHN clustering because RL can capture the dynamics of the network topology and 

spectrum usage well. Q-learning is a model-free RL algorithm that includes an agent, a 

set of states �, and a set of actions �. By performing an action � ∈ �, the agent transitions 

from state to state. The agent in a state � interacts with the environment with an action 

� to learn the environment, while depending on the outcome, it acquires a reward value 

�(�, �). Suppose that at each time t, the agent selects an action ��, observes a reward ��, 

and enters a new state ����. Then, the Q-value of �(��, ��) is updated as: 

�(��, ��) = (1 − �)�(��, ��) + � ��� + � ∙ ����
�

�(����, �)�  (8)

where � is the learning rate and � is the discount factor for the future reward. 

Each node of the CRAHN periodically senses the spectrum and measures the quality 

of each channel with a predefined bandwidth. In this paper, the state �� of Equation (8) 

represents each secondary user ��� in the network, and the action set � = {��} that can 

be selected in each state is the available channels for the current state (i.e., each member 

node) at time �. The quality of each sensed channel is defined as a reward according to 

the periodic sensing result. The sensing reward �� for the channel �ℎ� of the node is ex-

pressed by 

�� = �� ∙ ����

��� + �� ∙ ����

���  (9)
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����

��� =
������� �ℎ� �ℎ����� ���� ����

����� ������� ���� 
, ����

���

=
������ �� ���� ������������ ��� �ℎ�

������ �� �ℎ� ������� ������ 
  

(10)

where �� and �� are the weight parameters, and �� + �� = 1. 

For cluster (re)formation, each node broadcasts its own device status, local sensing 

learning result, and neighboring cluster and neighbor node information in a packet using 

the predefined CCC. The device status includes the node identification and the current 

residual energy, and the local sensing learning result information includes a list of avail-

able channels and Q-values for available channels, which are updated with Equation (8). 

The neighboring cluster information contains the neighboring cluster identifications and 

the cluster active data channels to which the node can connect. The neighbor node infor-

mation includes the one-hop neighbor nodes and their available channel list. Each node 

that receives the broadcasting packets from neighbor nodes calculates the channel fitness 

value ��� (goodness of available channels of node �) and the cluster head fitness value 

�� (goodness node � to become a CH), in which node � is the node itself as well as one-

hop neighbor nodes. 

��� = � ��(�, �) × ��
��

�∈����

  (11)

�� = ��

��
�

����

+ ��

���

�����

+ ��

����

������

+ ��

��

�����

 (12)

where ���� is the set of commonly available channels between node � and its one-hop 

neighbors; ��
� is the number of neighbor nodes that can be connected with node � using 

channel �; �� + �� + �� + �� = 1; ��
� is the residual energy of node j; ���� is the num-

ber of reachable neighbor clusters through node j itself or node j’s neighbor nodes; and �� 

is the number of neighbor nodes of node j within the transmission coverage. ���� , 

�����, ������ , and ����  are the predetermined maximum values for normalization. 

Each node �  selects the node that has the highest CH fitness value and sends a 

CH_REQ (CH Request) message to the selected node using the CCC. If the CH fitness 

value of the node itself is highest among its neighbors, then it virtually sends a CH_REQ 

to itself. If a node has received more CH_REQ messages than the predetermined ratio � 

for the number of neighbor nodes, then it should act as a CH and start to determine the 

common data channel for its ad-hoc CR cluster. The common data channel ���� for node 

j’s cluster is derived as 

���� = ��(�, �) × ��
��

�∈����

������
 (13)

Finally, the CH broadcasts the selected optimal channel ���� to its neighbors using 

CCC. The neighbor nodes, where ���� is one of their available channels will join the clus-

ter network. The selected ���� is used for data communication between member nodes 

within the cluster. The other detailed protocol procedures for CR ad-hoc cluster formation 

have been previously published [9]. 

3.3. Modulation Type Classification Using Convolutional Neural Network 

In a CRAHN, interference between primary and secondary users should be mini-

mized, and coexistence between secondary systems should be considered important. To 

this end, it is necessary to accurately analyze the context of the sensed signal in a cognitive 

engine. 

Energy detection is one of the most widely used techniques for spectrum sensing 

because it does not require any prior knowledge about the characteristics of the primary 

and secondary signals. However, this technique cannot distinguish between primary and 

secondary signals. Worse, when the noise power is relatively large or the signal power is 
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weak, the energy detection technique may not be able to distinguish the signal from the 

noise. It shows low performance at a low signal-to-noise ratio (SNR), and the selection of 

the detection threshold becomes an issue because the noise is uncertain. Automatic mod-

ulation classification (AMC) is of great importance for achieving automatic receiver con-

figuration, interference mitigation, and spectrum management [18]. AMC also performs 

a role in distinguishing the modulation types of received signals from primary or second-

ary users. In the proposed system model, AMC is performed at the cognitive engine 

through cooperation with the learning engine. In [19], the SCF pattern vector is used as an 

input to the deep belief network (DBN) for AMC. 

In this section, we propose a CNN-based signal classification method to identify dif-

ferent modulation types. Instead of using raw sampled data of the received signal, we use 

the spectral correlation function (SCF) to capture the signal characteristics and to repre-

sent the signal as image data. In addition, some important statistical features are added to 

the neural network as an input to enhance the classification accuracy. 

Cyclic autocorrelation of a signal �(�) is defined as: 

���
�(�) = ���

�→�

1

�
� � �� +

1

2
�� � �� −

1

2
�� ���������

�/�

��/�

 (14)

Also, two frequency-shift signals of �(�) are defined as: 

�(�) = �(�)������  (15)

�(�) = �(�)������  (16)

Then, ���
�(�) can be represented as the cross-correlation of the two signals as follows: 

���
�(�) = ���

�→�

1

�
� � �� +

1

2
�� �∗ �� −

1

2
�� ��

�
�

�
�
�

 (17)

The spectral correlation function is the Fourier transformation of cyclic autocorrela-

tion. 

���
�(�) = � ���

�(�)
�

��

�(−�2���)�� (18)

If � = 0, ���
�(�) is a conventional autocorrelation function and ���

�(�) is the power 

spectral density. 

Therefore, SCF can be calculated from the following expression: 

���
�(�) = ���

∆�→�
���

∆�→�

1

∆�
� ∆�� �

∆�

∆�
�

�
∆�
�

��, � +
�

2
� � �

∆�

∗ ��, � −
�

2
� �� (19)

where 

� �
∆�

(�, �) = � �(�)���������
��

�
�∆�

��
�

�∆�

 (20)

Figure 5 shows the proposed CNN-based learning architecture for modulation-type 

classification. For the sampled signal, the SCF image is computed and forwarded to the 

convolutional layer. From the sampled signal, eleven statistically important features 

shown in Table 1 are concatenated with the convolutional layer output and are input to 

the fully connected layer. Some of the statistical features of Table 1 were presented in [20]. 

Using SCF and CNN learning methods, the received signal can be easily classified in a 

relatively good SNR region. Otherwise, the statistical features in Table 1 are resistant to 
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noise, so that the combination of SCF and statistical features makes a more accurate clas-

sifier. Using these two types of input data, we obtain a powerful performance for all SNR 

regions. In accordance with the classification results, we can determine whether the de-

tected signal is from a primary signal, secondary signal, or noise. Depending on the source 

of the signal, we can apply different coexistence policies to the policy engine. 

 
(a) 

 
(b) 

Figure 5. Convolutional neural network for automatic modulation classification. (a) Functional structure for received sig-

nal classification; (b) convolutional neural network (CNN) layer structure. 

Table 1. Statistical features for automatic modulation classification. 

Number Statistical Feature 

1 Ratio of in-phase component and quadrature component signal power 

2 Standard deviation of the direct instantaneous phase 

3 Standard deviation of the absolute value of the non-linear component of the instantaneous phase 

4 Standard deviation of the absolute value of the normalized instantaneous amplitude of the simulated signal 

5 Standard deviation of the absolute normalized centered instantaneous frequency for the signal segment 

6 Standard deviation of the normalized signal amplitude 

7 Mean of the signal magnitude 

8 Normalized square root value of sum of amplitude of signal samples 

9 Maximum value of power spectral density of the normalized signal samples 

10 Peak-to-RMS ratio 

11 Peak-to-average ratio 

4. CR Ad-Hoc Network Policy Engine Design and Implementation 

A device operating in a CRAHN needs to be able to perform opportunistic transmis-

sions based on policies that regulate the behavior of the device, even in a dynamic wireless 

environment. To accomplish this, dynamic policy management and control technology 

capable of actively responding to changing wireless environmental conditions are re-

quired. This section presents the proposed policy engine structure and system implemen-
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tation considering the scalability of policy expression for a policy-based CRAHN. The pol-

icy engine guarantees that CR devices operate within the domain defined by policies and 

prevents the configuration of wireless devices from changing to an unacceptable state in 

the current space and time. It is also used to ensure the establishment, distribution, and 

selection of appropriate policies in a dynamically changing wireless environment. The 

most important function performed by the policy engine is the reasoning function, which 

derives an appropriate policy for communication requested by the wireless devices and 

finds conflicts between policies. The policy engine works by organically linking with other 

engines in the system, as presented in the system model shown in Section 2. 

A policy defines an action appropriate to the current condition. An action generally 

does not determine the exact radio parameters but rather specifies the availability or range 

of allowable parameters (e.g., maximum or minimum). Policies can be created and up-

dated by network operators using a policy authoring tool. In some cases, the existing pol-

icy can be dynamically updated automatically based on the context recognition of the 

learning engine and the cognitive engine. Learning-based dynamic policy updating in the 

proposed system modifies the related policies for the current condition. The policy is up-

dated and applied based on long-term behaviors for wireless environments and CR user 

spectrum use trends. These long-term behaviors are predicted by a simple machine-learn-

ing technique in the proposed system. We implemented a polynomial regression algo-

rithm for long-term behavior prediction. In statistics, polynomial regression is a form of 

regression analysis in which the relationship between the independent variable � and 

the dependent variable � is modeled as an �th degree polynomial in �. As a simple ex-

ample scenario, depending on the traffic demand of a CRAHN cluster, the policy engine 

needs to update the policy for the bandwidth of a channel. In this case, the independent 

variable � is at time instance ��, and the dependent variable � has the observed traffic 

amount ��  at time ��. The general polynomial model is represented as 

�� = �� + ���� + ����
� + ⋯ + ����

� + �� (� = 1,2, ⋯ , �) (21)

where �� is an unobserved random error and � is the number of observations. Equation 

(21) can be expressed in matrix form in terms of a time matrix �, an observation vector �⃗, 

a parameter vector �⃗, and a vector  of random errors �⃗ as follows: 

�⃗ = ��⃗ + �⃗ (22)

where � = �
1 �� ⋯ ��

�

⋮ ⋮ ⋱ ⋮
1 �� ⋯ ��

�
�. The vector of estimated polynomial regression coefficients us-

ing ordinary least squares estimation is computed as 

�⃗ = (���)�����⃗ (23)

The polynomial regression coefficients �⃗ for the long-term behavior prediction can 

also be obtained using the iterative gradient descent algorithm as 

�⃗(� + 1): = �⃗(�) − �
1

�
���⃗(�) − �⃗�

�
� (24)

where �⃗(�) is the regression coefficient at the k-th iteration and � is the learning rate. 

Newly created or updated policies should be automatically verified to determine if 

they conflict with existing policies or whether merging or splitting is necessary. The policy 

engine designed for the distributed CRAHN in this study has three reasoning processes: 

transmission parameter reasoning, conflict reasoning, and optimal policy reasoning. Fig-

ure 6 shows the structure of the implemented policy engine. 
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Figure 6. Proposed policy engine architecture. 

Optimal transmission parameter reasoning is a process in which the decision engine 

examines whether the transmission parameters to be used by the device conform to the 

transmission policy stored in the policy repository. As a result of reasoning for the trans-

mission parameters, the policy engine returns a response in the form of allow, disallow, 

or conditional approval (allow if certain conditions are satisfied). When the policy engine 

allows the transmission parameters, the device transmits using the determined transmis-

sion parameters. In the case of disallow, the decision engine reconfigures the transmission 

parameters and then sends a query to the policy engine again. Conditional approval 

means that transmission is granted when a specific constraint is additionally satisfied; 

then the device performs transmission within a limit that satisfies the constraint. Conflict 

reasoning refers to the process of detecting whether a conflict occurs with other existing 

policies when a new policy is created or an existing policy is updated. When policy con-

flict is recognized, the policy conflict must be resolved according to a predetermined pri-

ority or by the policy operator. The parameters to be queried by the decision engine may 

not be mapped to a single policy, and in some cases, more than one policy can be applied. 

When multiple policies can be applied, the optimal policy reasoning selects the optimal 

policy as a simple intersection concept, or it derives an optimal response through reduc-

tion and expansion of conditions. Figure 7 shows some policy engine modules imple-

mented in this research. We used MATLAB and C++ language to describe policies and 

perform reasoning. As a further study, we have a plan to implement the policy engine on 

the ontology-based platform. 
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Figure 7. Policy engine implementation. 

5. Simulation Results 

This section presents the experimental results of the proposed intelligent CRAHN 

system model and machine learning-based optimization algorithms. We implemented the 

system in the form of combined sensing, cognitive, decision, policy, and learning engines. 

Each engine was implemented with C++ and MATLAB programs, and the learning algo-

rithm was programmed using TensorFlow. The performance evaluations were conducted 

for a narrow sensing band decision, Q-learning-based ad-hoc clustering, and automatic 

modulation classification methods. Table 2 lists the simulation parameters used in this 

study. For the path loss model, we used the Friis transmission model with a shadowing 

effect. 

Table 2. Simulation parameters. 

Objective Parameter Value Parameter Value 

Narrow sensing 

band decision 

Number of FFT bins 1000 FFT window length L 100~300 

Number of particles 5 Number of iterations 20 

Inertia weight 0.5 Acceleration constants ��, �� = 1.4 

Utility weights �� = �� = 0.5 
Average length of 

available bins 
E[ON] = 70 E[OFF] = 30 

Q-learning based ad-

hoc clustering 

Q-learning rate  � = 0.5 Discount factor � = 0.5 

Percentile threshold � = 0.5 Reward weights �� = �� = 0.5 

CH fitness weights 

Number of SUs 

Number of clusters 

�� = �� = �� = �� = 0.25 

10–40 

4–6 

Simulation area 

Number of PUs 

Primary E[on],E[off] 

100 m × 100 m 

4–12 

10–30 units 

CNN-based 

automatic 

modulation 

classification  

Size of SCF data 512 × 512 
Number of data 

samples 
10,000 

Learning rate 0.001 Activation function ReLu, Softmax 

Convolutional layer 
3 layers 

(5 × 5 × 3, 5 × 5 × 6, 5 × 5 × 12 filters) 
Fully connected layer 

5 layers (200, 150, 100, 50, 

30 nodes)  

Modulation types BPSK, BASK, BFSK, QPSK,16QAM, AM,FM, noise 

Data sample ratio training:validation:test = 7:2:1 

We implemented a decision engine and a learning engine to determine the optimal 

sensing band for precise narrowband sensing in the CH. To compare the performance 

with the proposed method, a method that selects the narrowband range that has the max-

imum utility among the disjoint narrowband ranges having a predetermined length is 

implemented without using a sliding window. The compared method also used the pro-

posed utility function and cooperative sensing method. As a result of wideband FFT sens-

ing, the availability bin length was generated using the ON/OFF model, and we assumed 
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that the length ON (available bin length) and OFF (unavailable bin length) follow an ex-

ponential distribution. 

Figure 8 compares the average utility value according to the change in the window 

length L for narrowband sensing. As the window size increases, the number of available 

FFT bins and the maximum length of consecutive available bins in Equation (3) also in-

crease. Therefore, the average utility values of the proposed method and the compared 

method increase as the observed FFT bin range window increases. Since the proposed 

method enables more precise band selection using PSO, the average utility value is higher 

than that of the disjoint window method by more than 20% on average. In addition, com-

pared with the full search method, the average utility value of the proposed method was 

reduced by 4%, but only 10% of the computation amount was required. 

 

Figure 8. Average utility for narrow sensing band decision. 

Figure 9 shows the cumulative distribution function of the utility value by fixing the 

window size � to 100. As can be seen, when the disjoint window method is used, the 

probability that the utility value of the selected narrowband is less than 65 is approxi-

mately 60%, but the proposed method has a probability that the utility value is less than 

65 of only 1%. Therefore, the proposed method can determine a high-utility band for nar-

rowband sensing. 
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Figure 9. Utility cumulative distribution function. 

The proposed Q-learning-based clustering algorithm was evaluated. We compared 

the clustering performance with K-means clustering for CR condition [21] and multichan-

nel-based clustering (MCBC) [22], where the CH is determined based on node degree, 

which can communicate using the commonly available channels. Figure 10 shows the av-

erage lifetime of a cluster. After a cluster has been configured, when the current cluster 

data channel (CDC) is no longer available, the residual energy of the CH is not sufficient, 

or some member nodes have moved, the cluster network can be broken and may need to 

be reconfigured. As we can see in Figure 10, the average lifetime of a cluster of the pro-

posed method is approximately 30% longer than that of the compared methods. 

 

Figure 10. Average lifetime of a cluster. 
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Figure 11 shows the average Q-value of the selected CDC. The proposed Q-learning-

based channel evaluation model and CH fitness function help select the optimum data 

channel of the cluster so that the Q-value of the CDC that represents channel goodness is 

higher than that of the MCBC. 

 

Figure 11. Average Q-value of the selected cluster data channel (CDC). 

The proposed CNN-based automatic modulation classification method for signal 

context awareness is compared with three other classifiers. These include a fully con-

nected network (FCN) classifier using 21 features [23], a 1D-CNN classifier using the SCF 

image, and a Gaussian mixture model (GMM) classifier using the sampled signal. 

Figure 12 presents the classification accuracy of each classifier with changing SNR. 

As we can see, in the low-SNR region, only the proposed CNN classifier results in accu-

racy greater than 90%. For the low-SNR case (SNR = −6 dB), the classification accuracy for 

each modulation type is presented in Table 3. The accuracy of the proposed method is 83–

100% for eight different modulation types including noise only. The GMM shows the 

worst performance, and the classification accuracy is less than 30% for all types. Moreover, 

it was observed that in the low-SNR region the convergence speed is lower than that of in 

the high-SNR region during the training process. 
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Figure 12. Modulation type classification for various signal-to-noise ratio (SNR) conditions. 

Table 3. Classification accuracy for different modulation types at low SNR (SNR = −6 dB). 

Modulation Type Proposed CNN-Based Fully Connected 1D-CNN GMM 

BASK 93% 82% 43% 23% 

BFSK 91% 82% 41% 22% 

BPSK 86% 77% 40% 21% 

QPSK 85% 75% 32% 21% 

16GAM 83% 76% 33% 20% 

AM 95% 84% 33% 25% 

FM 95% 82% 42% 26% 

Noise only 100% 95% 52% 31% 

6. Conclusions 

In this paper, we presented an intelligent system model for distributed cognitive ra-

dio ad-hoc networks and proposed machine learning-based algorithms for network con-

figuration, sensing band decision, and signal classification. The required functions in the 

sensing, cognitive, decision, policy, and learning engines were defined, and the coopera-

tion structure between the engines to achieve the goal of intelligence and autonomy 

through a learning engine was presented. To determine the optimal narrow sensing band 

after periodic rough wideband sensing in the sensing engine, we proposed a bio-inspired 

PSO algorithm that can determine the optimum narrowband for fine sensing with a high 

probability of the existence of available channels. For CRAHN configuration and recon-

figuration operations, we have presented a Q-learning algorithm that can improve the 

spectrum efficiency of ad-hoc clusters while minimizing interference with neighboring 

networks by learning channel quality, number of connectable neighboring nodes and clus-

ters, and energy consumption. In addition, a CNN-based automatic modulation-type clas-

sifier that can be used to coexist with neighboring systems by being aware of the context 

of the received signal in the cognitive engine is proposed. We designed and implemented 

a policy engine that can create a network operation policy, detect collisions between poli-

cies, and reason whether the decisions in the decision engine conform to the network op-
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eration policy. In addition, the proposed policy engine can dynamically update the con-

tents of the policy using regression-based prediction of the changes in the usage pattern 

of the surrounding radio environments. 

The proposed PSO-based narrowband sensing band determination algorithm 

showed a utility value improved by more than 20% compared with a simple disjoint nar-

rowband search. In the network configuration, it was confirmed that the proposed Q-

learning-based method shows a longer network lifetime and higher common data channel 

quality compared with other CR clustering methods. The proposed CNN-based algorithm 

using the statistical features for automatic modulation classification guaranteed accuracy 

of greater than 90% in all SNR ranges, including low-SNR cases. The intelligent system 

model and the learning algorithms proposed in this paper can be applied to various wire-

less ad-hoc network applications, including emergency disaster communications and mil-

itary tactical networks because they can provide stable network services while adaptively 

responding to dynamic network environment changes. 
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