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Abstract: The non-equilibrium Green’s function (NEGF) is being utilized in the field of nanoscience
to predict transport behaviors of electronic devices. This work explores how much performance
improvement can be driven for quantum transport simulations with the aid of manycore computing,
where the core numerical operation involves a recursive process of matrix multiplication. Major
techniques adopted for performance enhancement are data restructuring, matrix tiling, thread
scheduling, and offload computing, and we present technical details on how they are applied to
optimize the performance of simulations in computing hardware, including Intel Xeon Phi Knights
Landing (KNL) systems and NVIDIA general purpose graphic processing unit (GPU) devices. With a
target structure of a silicon nanowire that consists of 100,000 atoms and is described with an atomistic
tight-binding model, the effects of optimization techniques on the performance of simulations are
rigorously tested in a KNL node equipped with two Quadro GV100 GPU devices, and we observe
that computation is accelerated by a factor of up to ∼20 against the unoptimized case. The feasibility
of handling large-scale workloads in a huge computing environment is also examined with nanowire
simulations in a wide energy range, where good scalability is procured up to 2048 KNL nodes.

Keywords: manycore computing; quantum transport simulations; recursive Green’s function method;
matrix inversion

1. Introduction

The non-equilibrium Green’s function (NEGF) formalism [1] is essential to predict
quantum transport behaviors of carriers (electrons or holes) in ultra-scale electronic devices
such as nanowire transistors [2], quantum dot photodetectors [3], and low-dimensional
devices [4]. Numerically, the NEGF simulation requires the evaluation of an inverse
of the large-scale system matrix that describes a specific nanostructure with an open
boundary condition, where the dimension of this system matrix is proportional to the
number of atoms residing in the nanostructure. When the system matrix is constructed
with empirical approaches such as a nearest-neighbor tight-binding model [5], the matrix
becomes block-tridiagonal, and the recursive Green’s function (RGF) algorithm [6] can then
be used to tackle the matrix-inversion problem with multiplication of smaller sub-matrices
in a recursive manner. Even though the RGF algorithm can save huge computing cost
compared to the direct inversion of the whole system matrix, the repeated multiplication
of sub-matrices is still time-consuming particularly as the nanostructure becomes larger or,
equivalently, the dimension of the system matrix increases. Consequently, solid strategies
for performance enhancement with high-performance computing resources need to be
strongly pursued.

In this work, we discuss several technical strategies for performance optimization of
RGF-based NEGF simulations with the aid of manycore computing resources. Using our
in-house code package, named the quantum simulation tool for advanced nanoscale device
designs (QAND) [7,8], which employs tight-binding models for atomistic representation of
semiconductor nanostructures [5,9] and has been actively being used for modeling studies
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of device designs with solid connections to experiments [10,11], we apply the strategies to
our NEGF solver and rigorously conduct performance tests to understand how the applied
technical strategies affect the performance in a single computing node that is equipped
with a 64-core Intel Xeon Phi Knights Landing (KNL) processor [12] and two NVIDIA
Quadro GV100 general-purpose graphic processing unit (GPU) devices [13]. In addition,
in order to verify the ability of our NEGF solver to handle large-scale problems in huge
computing environments, a strong scalability is tested in up to 2048 KNL nodes of the
NURION supercomputer (the 21st fastest supercomputer in the world) [14], for end-to-
end simulations of quantum transport in a wide energy range. Being solidly verified
with excellent speed-up and scalability of computation, the technical details we deliver
can serve as a practical guideline of how manycore computing resources can be used to
accelerate quantum transport simulations, as well as other numerical problems involving
multiplication of dense and complex matrices.

2. Methods
2.1. Processes of RGF Computation

As addressed, NEGF simulations of quantum transport involve computation of an
inverse of the system matrix describing the target nanostructure [1,6]. However, a direct
inversion of the entire matrix is not a good idea in terms of efficient utilization of computing
resources, since the core physical quantities (local density of states and transmission
probability) can be obtained with a part of the inverse matrix (the diagonal sub-matrices
and sub-matrices in the leftmost and rightmost columns). Additionally, the system matrix
always becomes block-tridiagonal since we use a 10-band nearest-neighbor tight-binding
model [5] to describe the nanostructure. The RGF method can therefore be a computing-
efficient approach to solve transport behaviors of nanostructures under non-equilibrium
conditions [6]. We note that the well-established mathematical background of the NEGF
formalism and the RGF method are presented in work by Datta [1] and Cauley et al. [6],
respectively.

The RGF method consists of the four computational steps shown in Figure 1 and the
major computing action involves multiplication of sub-matrices of the original system
matrix. The computing steps are executed in a mixed parallel scheme that combines
the message passing interface (MPI) [15] and multithreading with OpenMP [16]. Since
the whole computing process can be divided into two regions (the top and bottom half
of the system matrix), computation in each region is allocated to a single MPI process,
and the computing load of a single MPI process is processed further in parallel with
OpenMP threads. Step 1 conducts a forward sweep with diagonal sub-matrices (Di,i)
and sub-matrices below (ti−1,i) and above (ti,i+1) the main diagonal of the system matrix.
Once the forward sweep is completed, the two MPI processes send and receive the two
sub-matrices that are necessary to conduct the next computation, as step 2 in Figure 1
shows. In step 3, the backward sweep of diagonal sub-matrices is conducted and half of
the off-diagonal sub-matrices of the inverse matrix are evaluated. Since the number of
sub-matrix multiplications required here is considerably bigger than the number needed in
other steps, step 3 serves as the most time-consuming part of the RGF computation, and
therefore it is designed to support GPU offloading with the NVIDIA CUDA toolkit [17] (a
detailed description will be presented in Section 2.2). The final step evaluates sub-matrices
in the leftmost and rightmost columns of the inverse matrix, and here a single sub-matrix
must be sent and received by the two MPI processes.
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Figure 1. The computational process of the recursive Green’s function (RGF) method. Computation is distributed with
two message passing interface (MPI) processes and the workload belonging to a single MPI process is further parallelized
with OpenMP threads. Step 3, which evaluates half of the off-diagonal sub-matrices of the inverse matrix, is the most
time-consuming step, involving repeated multiplication of the sub-matrices of the original system matrix.

The size of sub-matrices and the number of sub-matrix multiplications increases as the
size of the nanostructures to be simulated increases. We discuss the correlation between the
size of a nanostructure and corresponding computing load with a square nanowire structure
as shown in Figure 2a, where the transport happens along the X-direction. As shown in
Figure 2b, the number of off-diagonal sub-matrices that need to be computed in step 3
increases in proportion to a square of the number of atomic unitcells that a nanostructure
has along the X-direction (X-UC). The size of complex sub-matrices is related to the number
of unitcells on the YZ-plane of a nanostructure (YZ-UC) and is proportional to (YZ-UC)2 as
described in Figure 2c with a couple of examples. Here, the unitcell (UC) is defined as the
smallest repeating unit in atomic crystals, and a single UC of cubic semiconductors has a
total of 4 atomic layers along the [1 0 0] family of directions. Therefore, if X, Y, and Z are
set to the [1 0 0], [0 1 0], and [0 0 1] directions, respectively, a system matrix describing a
nanostructure having a single X-UC is composed of 4 × 4 sub-matrices, and the size of
these sub-matrices is determined by the YZ-UC. Consequently, the computational burden
of step 3 sharply increases as the size of a nanostructure increases.
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Figure 2. The cost of the sub-matrix multiplication that must be paid according to the X-Y-Z size of the nanostructure to
be simulated. (a) The nanowire structure that is subjected to quantum transport simulations consists of multiple atomic
unitcells (UCs), and the transport happens along the X-direction. The computing cost sharply increases as the nanowire gets
larger, so (b) the number of off-diagonal sub-matrices is proportional to (X-UC)2 and (c) the size of a sub-matrix increases in
proportion to (YZ-UC)2, where X-UC and YZ-UC are the number of unitcells along the X-direction and on the YZ-plane of
the nanowire, respectively.

2.2. Strategies for Performance Enhancement

This sub-section presents a detailed description of the four technical strategies that
are employed to accelerate the RGF computation (particularly step 3 that involves a large
number of sub-matrix multiplications) with the aid of manycore computing. We note that
the multi-channel DRAM (MCDRAM), the high bandwidth memory on KNL processors
(16 GB per node), has been utilized with the memkind library [18] only during the process
of sub-matrix multiplication: if a sub-matrix multiplication needs to be conducted, the two
source arrays are moved from DDR4 to MCDRAM. The result is then moved back to DDR4
and data in MCDRAM are deleted immediately after the multiplication is completed.

2.2.1. Data-Restructuring for SIMD and SIMT Operations

As mentioned in the Section 2.1, the core numerical operation of the RGF method
is the multiplication of two sub-matrices. Even though a large number of sub-matrix
multiplications are conducted in step 3, steps 1 and 4 also involve some multiplications.
The first strategy we adopt to enhance the multiplication speed is data restructuring of
complex sub-matrices. In many cases, a complex number (a single element of sub-matrices)
is represented with a structure that has a real (r) and an imaginary number (i) as member
variables as shown in Figure 3a. In this case, the matrix is constructed with the array of
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structures (AoS) [19], and r’s and the i’s of matrix elements are lined up next to each other
in turn in the memory. If multiplication is conducted with AoS-type matrices as shown in
the code snapshot given in Figure 3b, the access to matrix elements cannot be continuous in
terms of memory address, but must happen with a stride of 2. Obviously, this type of data
arrangement is not desirable for fetching multiple data due to the poor locality, and the
single instruction multiple data (SIMD) or the single instruction multiple threads (SIMT)
operations, which are the focal strength of manycore computing and are based the process
of fetching multiple data, would lose their efficiency in handling multiplication.

Figure 3. Matrix multiplication with single instruction multiple data (SIMD) (or single instruction multiple threads (SIMT))
where two complex matrices are constructed with arrays of structures. (a) A real and an imaginary number are grouped
into a structure to describe a single complex number, and arrays of structures are used to represent matrices. (b) During
multiplication of two complex matrices, elements are accessed with a stride = 2, so the multiplication process cannot fully
exploit the benefit of SIMD (or SIMT).

Consequently, we need to change the data structure of complex matrices to the struc-
ture of arrays (SoA) [19] as shown in Figure 4, since the original QAND code adopted
an AoS-type data structure to construct matrices. In the SoA-type data structure, a single
complex matrix can be represented with a structure that has two arrays, where one has real
numbers and the other has imaginary numbers for matrix elements (it should be noted
that if the size of each array is 1, the structure represents a complex number). In SoA-type
complex matrices, r and i arrays are stored continuously in the memory as illustrated in
Figure 4a. When multiplication of SoA-type complex matrices is conducted as the code
snapshot in Figure 4b shows, the access to matrix elements can happen continuously in
the memory, and therefore the performance of matrix multiplication can be enhanced with
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SIMD or SIMT operations using vector processing units (VPUs) in a KNL processor or
GPU devices.

Figure 4. Matrix multiplication with SIMD (or SIMT) where two complex matrices are constructed with structures of arrays.
(a) Matrix elements are constructed with two arrays that store real and imaginary numbers. (b) During multiplication of
two complex matrices, elements can be accessed continuously (stride = 1), so the benefit of SIMD (or SIMT) can be fully
exploited and multiplication can be done more efficiently than the case discussed in Figure 3.

2.2.2. Blocked (Tiled) Matrix Multiplication

Utilization of blocked matrices or matrix blocking, which is the second strategy we
adopt, is well known as one of the sound techniques for enhancing the performance of
dense matrix multiplication, since it helps increase the cache hit ratio during the multi-
plication process [20]. The major question here is how to determine the block size with
which target matrices subjected to multiplication are decomposed. For determination of
the optimal block size, it is essential to consider the size of the cache memory available
in computing resources where multiplication will be conducted. In KNL manycore pro-
cessors, each CPU core has a 32 kB L1 cache and two CPU cores (a tile) sharing 1 MB L2
cache [12], and therefore the block size per physical core (equivalent to a single thread
unless hyper-threading is enabled) must be smaller than 32 kB (32 × 1024 bytes). In a
problem of A × B = C where A, B, and C are SoA-type complex matrices, the continuous
data access occurs in the two matrices B and C (see the code snapshot in Figure 4b). In
KNL systems, therefore, it is desirable to control the size of a single block-matrix so as
not to exceed 16 kB. In GPU computing, the above-mentioned technique (“blocked matrix
multiplication”) is commonly referred to as “tiled matrix multiplication” [21]. In computing
systems with KNL processors or traditional multicore processors, we cannot but change the
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pattern of data access with estimation of the block size because data in the cache memory
cannot be directly controlled. In the case of GPU devices, however, users can manage the
shared memory that acts like the L1 cache in the host processors, so the data that need to
be accessed quickly can be stored to the shared memory at users’ convenience.

In this study, the size of a single block (tile) matrix is set to 32 × 32 since a
32 × 32 block matrix stores 1024 complex numbers and therefore uses 16 kB memory
(16 bytes for a single complex number that consists of two 8-byte double-precision numbers
representing a real and an imaginary number). As addressed, the continuous data access
happens in two block matrices in the multiplication process, so the block size of 32 × 32
would be suitable to a 32 kB cache memory that is the case of the L1 cache of a single
KNL processor. In the case of GPU devices, users are able to set the size of the shared
memory, and its maximum size depends on the device model. Although the NVIDIA
Quadro GV100 devices that we use in this study allow users to increase the size of the
shared memory up to 96 kB [21], here we set it to 32 kB to fully exploit the power of GPU
resources. Then, a total of 1024 threads are generated per GPU device to let a single thread
handle a single element of complex block matrices (1024 = 32 × 32). Further details of the
resource occupancy of GPU devices will be covered in the Results and Discussion section.

2.2.3. Thread Scheduling for Execution of Nested Loops

As already addressed, all of the computing load of complex matrix multiplication in
the RGF steps is parallelized with multiple threads. While the technique of blocked (tiled)
matrix multiplication can help increase the cache hit ratio and improve data locality, a
load imbalance among threads can happen depending on the size of sub-matrices and the
number of employed threads, which would deteriorate the efficiency of thread-utilization.
This issue is clearly described in Figure 5 with an exemplary condition whose details are
summarized as below.

• The cubic semiconductor nanostructure has 2 unitcells along the X([1 0 0])-direction.
The system matrix consists of 8 × 8 sub-matrices since a single [1 0 0] unitcell has 4
atomic layers.

• The nanostructure has 8 × 16 unitcells on the YZ([0 1 0] and [0 0 1])-plane. Since we
use a 10-band tight-binding model and a single [1 0 0] unitcell has 2 atoms per atomic
layer, the size of a sub-matrix becomes 2560 × 2560 (= 16 × 8 × 2 × 10).

• The block size is 32 × 32 and is equal to the L1 cache size of a KNL processor.
• The number of threads used in a single MPI process is 32, since a single KNL node we

use has 64 physical cores and 2 MPI processes are employed for RGF computation.
• We focus on the moment of processing the 6th iteration of i-loop (i = 1 and

j = 7→6→5→4→3→2).

When the multiplication process is conducted in parallel with no use of the blocked
matrix multiplication technique (as shown in the upper side of Figure 5a), the entire 2560
rows of a sub-matrix are processed with 32 threads, and each thread then takes equal
computing load processing 80 rows evenly. When the technique of blocked matrix mul-
tiplication is applied, however, the branch unit of the for-loop becomes the block size
(= 32) rather than the element size (= 1), and the target of the matrix multiplication is
changed to an 80 × 80 block matrix instead of a 2560 × 2560 matrix (as shown in the lower
side of Figure 5a). Consequently, the problem becomes “to process 80 rows (of blocks)
with 32 threads” and we have an issue of load imbalance since the quotient between the
number of rows and threads is not an integer. In other words, the workload is not evenly
distributed among 32 threads. In this case, more specifically, half of the 32 threads (group
A) process 48 rows of blocks (3 rows per thread) and the other half takes 32 rows (2 rows
per thread). So, to complete the task, 32 threads need to run 3 cycles but only 80 threads
(= 32 × 2 + 16) are actually participating in the computation. The efficiency of thread uti-
lization therefore becomes 80/96 = ∼83%. To resolve this issue and improve the efficiency
of thread utilization, we revise a policy of thread scheduling with the following processes:
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1. Decompose j-loop by 2n iterations to determine the number of threads participating
in the parallelization of each decomposed loop (NthrA).

2. Adjust the number of threads participating in matrix multiplication (the subroutine
cMat_mul) (NthrB) in each decomposed loop. NthrA × NthrB should be always equal
to the number of threads that belong to a single MPI process (32 in this case).

Figure 5. Effects of blocked (tiled) matrix multiplication and thread scheduling that are described with a 2560 × 2560
sub-matrix. (a) With no blocked matrix multiplication, the entire 2560 rows are processed in parallel with 32 threads (per
MPI process). If multiplication is performed in the unit of a 32 × 32 matrix, data locality improves but 80 (block) rows
are processed with 32 threads so we have the issue of load imbalance. (b) This load imbalance (left) can be resolved by
processing both j-loop and matrix multiplication (subroutine cMat_mul) in parallel (right), where we split total threads
into two groups to process the j-loop in parallel, resolving the issue of load imbalance from cMat_mul. Note that here the
simulated structure has 2 unitcells and 8 atomic layers along the X-direction since a single [100] unitcell has 4 atomic layers.
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The following example presents a more detailed description of how the above-
mentioned policy of thereat scheduling can help reduce the issue of load imbalance when
the technique of blocked matrix multiplication is applied.

1. Decompose the number of iterations of j-loop (6) into 4 and 2 (6 = 22 + 21) as shown
in the right side of Figure 5b.

2. The 4 iterations of j-loop (j = 7→6→5→4) are executed simultaneously with 4 threads,
and cMat_mul is processed with 8 threads (32/4 = 8). In this case, all the 32 (4 × 8)
threads execute matrix multiplication simultaneously, and the issue of load imbalance
does not exist since 80 rows are processed in parallel with 8 threads.

3. Once the above 4 iterations are completed, we reschedule threads such that the re-
maining 2 iterations (j = 3→2) are executed with 2 threads, and cMat_mul is processed
with 16 threads (32/2 = 16). This case does not have the issue of load imbalance either
since each of the 16 threads can process 5 rows.

When the proposed policy of thread scheduling is applied, the efficiency of thread
utilization obviously becomes 100% on average for the exemplary case ((100× 4 + 100× 2)/6).
Since the above-mentioned example only describes the case when i = 1, we calculated
the efficiency at other iterations of i-loop and summarized the results in Table 1, which
indicates that the efficiency of thread utilization becomes 96.01% on average in step 3 of RGF
computation when the technique of thread scheduling is applied, and the efficiency has
been improved by roughly 13% compared to the result obtained with no thread scheduling
(83%). It should be noted that, with the proposed technique, a 100% efficiency can be always
achieved if the number of iterations of j-loop is even. Even if the number of iterations of
j-loop is odd, the efficiency generally increases from ∼83.33% (the lowest value) to ∼100%
as the number of iterations of j-loop increases, or equivalently, the nanostructure becomes
longer along the X-direction.

Table 1. Efficiency of thread utilization obtained with the policy of thread scheduling proposed in
this work.

Number of Iterations of j-loop Efficiency of Thread Utilization

1 80/96
(j = 7) = ∼83.33%

2 2×(80/(16×5))/2
(j = 7,6) = 100.00%

3 (2×(80/(16×5)) + 80/96)/3
(j = 7,6,5) = ∼94.44%

4 (4×(80/(8×10)))/4
(j = 7,6,5,4) = 100.00%

5 (4×(80/(8×10)) + 80/96)/5
(j = 7,6,5,4,3) = ∼96.67%

6 (4×(80/(8×10)) + 2×(80/(16×5)))/6
(j = 7,6,5,4,3,2) = 100%

7 (4×(80/(8×10)) + 2×(80/(16×5)) + 80/96)/7
(j = 7,6,5,4,3,2,1) = ∼97.62%

Average efficiency ∼96.01%
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2.2.4. Offload Computing with GPU Accelerators

In spite of their excellent hardware performance as computing resources, GPU acceler-
ators must involve communications with host processors through the PCI-E channel, and
this communication overhead sometimes serves as one of the bottlenecks for performance
enhancement. In general, workload offloading to GPU devices is done with the following
three steps:

1. Transfer the data to be computed in GPU devices from the host memory to the device
memory. Here, host CPU cores control GPU devices using streaming, so each host
sends block matrices to a physical GPU device using their own GPU stream.

2. Conduct computation in GPU devices. Computation can be conducted simultaneously
in both host and GPU devices, but GPU-only computation would be more preferable
in terms of the speed as the hardware performance of GPU devices becomes better.

3. Transfer the results of the computation from the device memory back to the host
memory.

Accordingly, if data transfer between host processors and GPU devices occurs more
frequently than computation, the strength driven with GPU devices for acceleration of
workloads would be reduced. As the last strategy for performance improvement of RGF
computation, we design a scheme of offload computing that can exploit the strength
of GPU devices by reducing data transfer as much as possible. As addressed in the
Section 2.1, step 3 of the RGF method is the most time-consuming step, and we there-
fore offload it to GPU devices to drive huge acceleration of sub-matrix multiplication. Step
3 of the RGF computation can be categorized into two parts. One is the process of diagonal
sub-matrices (backward sweep) and the other is the process of off-diagonal sub-matrices,
as indicated with red and orange arrows, respectively, in the bottom-left sub-figure of
Figure 1.

As illustrated in Figure 6, computation in step 3 is processed in the unit of (sub-matrix)
columns, and the workload of a single column is executed in parallel with the aid of a large
number of threads and blocks available in GPU devices (detailed conditions will be pre-
sented in Section 3.1). Computation of sub-matrices at a specific columns is conducted with
several sub-matrices that are either calculated in the previous column or newly transferred
from the host (three or four sub-matrices must be transferred per column). Data transfer
from device to host only happens in the last column. Since the number of sub-matrices that
must be transferred between the host and the devices is almost linearly proportional to X-
UC, while the number of sub-matrices subjected to multiplication increases approximately
with (X-UC)2 (Figure 2), the proposed scheme of offload computing would become more
beneficial in terms of computing speed as the nanostructure becomes longer along the
transport direction (X-direction). For example, when X-UC of the nanostructure is 2, each
MPI process must handle three columns of sub-matrices (Figure 6) since the system matrix
is decomposed with 2 MPI processes. In this case, per MPI process, the host must send 10
sub-matrices (4 + 3 + 3) to GPU devices, and each GPU device must send 4 sub-matrices to
the host (a total of 14 sub-matrices). If X-UC increases to 100, the number of sub-matrices
that must be transferred between the host and the GPU devices becomes 798 (host-to-device:
4 + 3 × 198, device-to-host: 200) per MPI process. However, the number of sub-matrices
that involve the multiplication process per MPI process increases from 9 (X-UC = 2) to
20,999 (X-UC = 100), so it is obvious that the pure computational burden relative to the
PCI-E communication burden in step 3 becomes much larger when X-UC = 100 than when
X-UC = 2.
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Figure 6. The scheme of offload computing for RGF step 3 is described by the case when the nanostructure has a single
unitcell along the X-direction (X-UC = 1). Half of the off-diagonal sub-matrices of the inverse matrix are evaluated with
the consecutive multiplication of sub-matrices, whose computational flow is shown with large black arrows. Sub-matrices
needed for computation at each column are either transferred from the host or derived from the calculation at the previous
column. The performance gain derived with offload computing becomes larger as the nanostructure has more X-UCs, since
the increase in the number of matrix multiplications is much bigger than the increase in the number of sub-matrices that
must be transferred from the host.

3. Results and Discussion
3.1. Utilization Efficiency of GPU Devices for Offload Computing

NVIDIA provides the CUDA Occupancy Calculator [22] as a tool that enables devel-
opers to examine the efficiency of utilization of GPU resources for their own kernel codes.
By providing the information of computing capability and using -Xptxas -v as options
when compiling the GPU kernel code, we can check the detailed usage of GPU computing
resources and, being fed by this information, the CUDA Occupancy Calculator returns the
exact percentile value that shows how much GPU devices are well exploited. Since details
of available computing resources vary depending on the GPU computing capability, it is
critical to have a precise understanding of the architecture and the hardware specification
of GPU devices that will be utilized to accelerate the kernel code. As addressed, 1024
threads are utilized to parallelize a single 32 × 32 complex block matrix. Since the NVIDIA
Quadro GV100 device (computing capability 7.0) allows mapping of up to 2048 threads
per streaming multiprocessor (SM), a total of two thread blocks are utilized per SM. Since
a single block matrix requires 16 kB to store all of its complex elements and continuous
memory access happens in two block matrices during the multiplication process, the size
of the shared memory per single thread-block and the L1 cache per SM is set to 32 and 64
kB, respectively, and, with this condition, we observe that 100% occupancy of GPU devices
can be achieved.
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3.2. Performance of End-To-End Simulations

The performance of end-to-end simulations was investigated with rigorous tests that
were conducted with a focus on (1) the speed in a single computing node and (2) the strong
scalability in large-scale computing environment. The main purpose of the single-node
performance tests was to understand and verify the efficiency of the optimization strategies
(discussed in the Section 2.2) for acceleration of RGF computational processes (Figure 1).
Therefore, simulations were conducted for a single energy point and in the NINJA devel-
oper platform (KNL, Xeon Phi 7210) equipped with two NVIDIA Quadro GV100 GPU de-
vices. Since typical simulations of quantum transport include more than hundreds of energy
points, the multi-node tests aim to explore the scalability of realistic simulations in super-
computers, where the MPI processes are grouped into two levels such as high-level and low-
level and are used to parallelize energy points and RGF computation, respectively. The scal-
ability tests were conducted with simulations of 2048 energy points in the NURION super-
computer [14], which has a total of 8305 KNL (Xeon Phi 7250) nodes and was ranked 21st
in the TOP500 site as of November 2020. The target structure of simulations was a silicon
nanowire, where the transport (X-) direction was [100] and the channel was grown along
the [001] direction. X-UC and YZ-UC of the nanowire were 100 and 8 × 16, respectively.
Since a single [100] unitcell of cubic semiconductors has 8 atoms, the nanowire structure
has a total of 102,400 atoms (= 100× 8× 16× 8), and the size of the system matrix becomes
1,024,000 × 1,024,000, since a set of 10 localized bases is employed to describe a single
silicon atom.

Table 2 shows the details of the computing environment where single-node perfor-
mance tests were conducted. For precise examination of the effects driven by the optimiza-
tion strategies discussed in Section 2.2, single-node performance tests were conducted in
the five cases as shown in Table 3, where strategies were applied selectively in each test case
(MPI and OpenMP parallelization and utilization of MCDRAM were applied in default).
Table 4 shows the details of the computing environment where the multi-node tests were
conducted. In this case, unlike the case for the single-node tests, a single MPI process was
used per computing node so two nodes were in charge of RGF computation for a single
energy point. All the optimization techniques except offload computing were used for
the multi-node tests since the NURION supercomputer does not support GPU devices.
In addition, MCDRAM was used as a last-level (L3) cache memory (cache mode) as the
memkind library is not supported.

Table 2. Computing environment for single-node performance tests.

Host CPU Intel Xeon Phi 7210 1.3 GHz, 64 cores

Host memory DDR4 96GB, MCDRAM 16GB

GPU device NVIDIA Quadro GV100 × 2

GPU memory HBM2 32GB

Compiler Intel Parallel Studio 2018,
NVIDIA CUDA toolkit 9.0

Configuration of
parallel execution

2 MPI processes per host CPU,
32 threads and 1 GPU per MPI process,
2 thread-blocks per SM,
1024 threads per thread-block

Target problem A silicon nanowire consisting of 100 × 8 × 16
[100] unitcells (102,400 atoms) / 1 energy point



Electronics 2021, 10, 253 13 of 17

Table 3. Cases of single-node performance tests and techniques used in each case.

Optimization Technique Case 1 Case 2 Case 3 Case 4 Case 5

MPI/OpenMP parallelization YES YES YES YES YES& MCDRAM utilization

Data-restructuring NO YES YES YES YES

Blocked matrix multiplication NO NO YES YES YES

Thread-scheduling NO NO NO YES YES

Offload computing (RGF step 3) NO NO NO NO YES

Table 4. Computing environment for multi-node scalability tests.

Host CPU Intel Xeon Phi 7250 1.4 GHz, 68 cores

Host memory DDR4 96GB (MCDRAM is not used)

Compiler Intel Parallel Studio 2018
(No offload computing)

Configuration of
parallel execution

1 MPI processes per host CPU,
68 threads per MPI process

Target problem A silicon nanowire consisting of 100 × 8 × 16
[100] unitcells (102,400 atoms) / 2048 energy points

Figure 7 shows the results of the single-node performance tests. With only MPI and
OpenMP parallelization and MCDRAM utilization (Case 1), the end-to-end simulation per
energy point took slightly longer than 21 h, and we observe that almost 95% of the total
wall-time (∼20 h) was occupied by step 3. When the data restructuring (AoS→SoA) was
applied to the system matrix (Case 2), the overall performance of the RGF computation
improved by a factor of ∼1.56 compared to the result for Case 1, and this was clearly
due to acceleration of the sub-matrix multiplication, which supports that the AVX-512
SIMD operation, one of the unique features of KNL processors, works more efficiently
with SoA-type than AoS-type data structures. By applying the technique of blocked matrix
multiplication (Case 3), we were able to drive additional performance improvements,
where the simulation became faster by factors of 2.72 and 1.75 with respect to the results
for Cases 1 and 2, respectively. Again, the major contribution of speed-up here can be
found from step 3, and it can be concluded that the performance of RGF computation is
remarkably affected by the locality of sub-matrix elements.

We also observed that the technique of thread-scheduling is helpful for accelerating
RGF computation. With this technique (Case 4), the wall-time of the overall computation
was reduced by factors of 3.14 and 1.15 (3.27 and 1.17 for step 3) compared to the results
of Cases 1 and 3, respectively. It must be noted that a 17% reduction of the wall-time of
step 3, which was solely driven with thread scheduling, is closely related to the improved
efficiency of thread utilization. In Section 2.2, we explained how scheduling can help
increase efficiency (83.3%→ 96%) with an exemplary nanostructure that has an X-UC of 2.
In the case of our target structure (a silicon nanowire that has a total of 100 unitcells along
the X-direction), the utilization efficiency reached 99.7% with the scheduling technique,
showing a 16.4% improvement with respect to the result obtained with no thread scheduling
(83.3%). Finally, in Case 5 where the computational load of step 3 was offloaded to GPU
devices as described in Section 2.2 and Figure 6, the largest performance gain was obtained
and the total execution time was reduced by a factor of 6.17 compared to Case 4, which
is the best result obtainable with a single KNL node. The acceleration driven with GPU
computing was more remarkable in step 3, whose wall-time turned out to be reduced by
a factor of 14.83 compared to Case 4. The results of the single-node performance tests
clearly demonstrate that all four performance optimization techniques (data restructuring,
blocked matrix multiplication, thread scheduling, and offload computing) contributed
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significantly to enhancing the speed of RGF simulations (particularly step 3). Overall,
when all four techniques are used, the entire computation can be completed in about 1 h.
With no optimization techniques (Case 1), step 3 took almost 95% of the total wall-time.
However, in Case 5, where all the techniques were used, this ratio dropped to ∼37.5% and
the most time-consuming part was step 1 (∼47% of the total wall-time).

Figure 7. Results of single-node performance tests. The wall-time of the entire RGF process is split into the 4 components
that indicate the time taken to complete the 4 steps described in Figure 1. In the five test cases, the computation was
conducted with one or more performance optimization enhancement techniques, according to the plan summarized in
Table 3. Compared to the unoptimized case (Case 1 in Table 3), the performance of the entire computation and step 3 were
improved by factors of 19.35 and 48.57, respectively, when all four optimization techniques were used.

Figure 8a shows the results of the scalability test for the RGF calculation that was
conducted with 2048 energy points in 512–2048 computing nodes of the NURION super-
computer. The time needed to complete end-to-end simulation was measured as ∼30.30
h when 512 computing nodes were used, and the time dropped to ∼15.20 and ∼7.63 h
when 1024 and 2048 nodes were employed, respectively. Since the time taken for MPI
communication, which only happens between every two nodes (in steps 2 and 4 of the
RGF computation—see Figure 1) that are in charge of the computation for a single energy
point, was smaller than 1000 s for all the three cases, the scalability was good and showed a
∼99% parallel efficiency on average as a ∼3.97× speed-up was achieved with 4x increased
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computing nodes (512 → 2048). The transmission coefficient (TR) and local density of
states (LDOS), which were obtained as a function of energy from the simulation, are shown
in Figure 8b,c, respectively. Representing the energy-dependent ballistic quantum conduc-
tance and electron density, the TR and LDOS profile were utilized to calculate the current
and charge distribution in the nanowire, and were nonzero only at the energy range above
the conduction band minimum of the nanowire (∼1.16 eV) where the path of electron
conduction exists. Note that the results of the scalability tests here clearly indicate that
simulations of large-scale atomic structures involving a large number of energy points,
which are critical for a precise modeling of quantum transport behaviors of realistically
sized nanoscale devices, can be completed in several hours with the aid of supercomputers.

Figure 8. (a) Results of multi-node scalability tests. A silicon nanowire consisting of 102,400 atoms was simulated with 2048
energy points in 512–2048 computing nodes of the NURION supercomputer. Since the MPI communication happens only
between two nodes that are in charge of RGF computation for a single energy point, the communication time turned out to
be less than 1000 s for all the three cases, and thus the scalability was good, supporting the supercomputer-driven feasibility
of handling quantum transport simulations that normally involve more than several hundreds of energy points. (b) The
transmission coefficient and (c) local density of states that are obtained with simulations show ballistic conductance and
channel electron density as a function of energy.

4. Conclusions

In this study we proposed and discussed technical strategies to accelerate quantum
transport simulations with manycore computing. The four optimization techniques, which
are data restructuring, matrix tiling, thread scheduling, and offload computing, were
applied in our in-house code package that employs the recursive Green’s function (RGF)
as a backbone algorithm and uses atomistic tight-binding models to describe electronic
structures of nanoscale devices. The effects of the optimization techniques on end-to-end
simulations were elaborately examined through rigorous tests in the computing resources
of Intel Xeon Phi Knights Landing (KNL) processors and NVIDIA general-purpose graphics
processing unit devices. By applying the four techniques, we observed that the wall-time
of the entire RGF computational processes could be reduced by up to a factor of 19.3×
compared to the unoptimized case, which was due to the dramatic acceleration (up to 48.6×)
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of the core numerical step where multiplication of dense complex matrices is repeatedly
conducted in a recursive manner. End-to-end simulations involving a large number of
energy points, which are essential for a precise prediction of transport characteristics, were
also conducted in a world-class supercomputer, and good scalability was observed up
to 2048 KNL nodes. Even though we focused on a specific algorithm, the details of the
optimization techniques that this work has delivered are universal and practical since they
are used for the multiplication of dense complex matrices, which is one of the most basic
operations that is frequently used in a large variety of numerical problems.

Author Contributions: Conceptualization, H.R.; methodology, Y.J. and H.R.; formal analysis, Y.J. and
H.R.; investigation, Y.J. and H.R.; writing—original draft preparation, J.Y. and H.R.; writing—review
and editing, J.Y. and H.R.; supervision, H.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was carried out as the Intel Parallel Computing Center (IPCC) project supported
by the Intel Corporation, USA, and was also supported by the grant from the National Research
Foundation of Korea (NRF-2020M3H6A1084853) funded by the Korean government (MSIP).

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Acknowledgments: The NURION high-performance computing resource was extensively utilized
for performance tests of large-scale simulations

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Datta, S. Nanoscale device modeling: The Green’s function method. Superlattices Microstruct. 2000, 28, 253–278. [CrossRef]
2. Abadi, R.M.I.; Saremi, M. A Resonant Tunneling Nanowire Field Effect Transistor with Physical Contractions: A Negative

Differential Resistance Device for Low Power Very Large Scale Integration Applications. J. Electron. Mater. 2018, 47, 1091–1098.
[CrossRef]

3. Naser, M.A.; Deen, M.J.; Thompson, D.A. Photocurrent Modeling and Detectivity Optimization in a Resonant-Tunneling
Quantum-Dot Infrared Photodetector. IEEE Trans. Quantum Electron. 2010, 46, 849–859. [CrossRef]

4. Quhe, R.; Li, Q.; Zhang, Q.; Wang, Y.; Zhang, H.; Li, J.; Zhang, X.; Chen, D.; Liu, K.; Ye, Y.; et al. Simulations of Quantum
Transport in Sub-5-nm Monolayer Phosphorene Transistors. Phys. Rev. Appl. 2018, 10, 024022. [CrossRef]

5. Jancu, J.M.; Scholz, R.; Beltram, F.; Bassani, F. Empirical spds∗ tight-binding calculation for cubic semiconductors: General
method and material parameters. Phys. Rev. B 1998, 57, 6493. [CrossRef]

6. Cauley, S.; Jain, J.; Koh, C.K.; Balakrishnan, V. A scalable distributed method for quantum-scale device simulation. J. Appl. Phys.
2007, 101, 123715. [CrossRef]

7. Ryu, H.; Jeong, Y.; Kang, J.H.; Cho, K.N. Time-efficient simulations of tight-binding electronic structures with Intel Xeon Phi™
many-core processors. Comput. Phys. Commun. 2016, 209, 79–87. [CrossRef]

8. Ryu, H.; Kwon, O.K. Fast, energy-efficient electronic structure simulations for multi-million atomic systems with GPU devices. J.
Comput. Electron. 2018, 17, 698–706. [CrossRef]

9. Vogl, P.; Hjalmarson, H.P.; Dow, J.D. A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys.
Chem. Solids 1983, 44, 365–378. [CrossRef]

10. Ryu, H.; Hong, S.; Kim, H.S.; Hong, K.H. Role of Quantum Confinement in 10 nm Scale Perovskite Optoelectronics. J. Phys.
Chem. Lett. 2019, 10, 2745–2752. [CrossRef] [PubMed]

11. Ryu, H.; Kim, J.; Hong, K.H. Atomistic study on dopant-distributions in realistically sized, highly p-doped si nanowires. Nano
Lett. 2015, 15, 450–456. [CrossRef] [PubMed]

12. Sodani, A. Knights landing (KNL): 2nd generation Intel® Xeon Phi processor. In Proceedings of the 2015 IEEE Hot Chips 27
Symposium (HCS), Cupertino, CA, USA, 22–25 August 2015; pp. 1–24. [CrossRef]

13. NVIDIA Quadro GV100 GPU Device. Available online: https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf (accessed
on 21 January 2021).

14. The NURION Supercomputer. Available online: https://www.top500.org/system/179421/ (accessed on 21 January 2021).
15. Walker, D.; Dongarra, J. MPI: A standard message passing interface. Supercomputer 1996, 12, 56–68.
16. Dagum, L.; Menon, R. OpenMP: An industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 1998,

5, 46–55. [CrossRef]
17. Kirk, D. NVIDIA CUDA software and GPU parallel computing architecture. In Proceedings of the 6th International Symposium

on Memory Management (ISMM), Montreal, QC, Canada, 21–22 October 2007; pp. 103–104. [CrossRef]

http://dx.doi.org/10.1006/spmi.2000.0920
http://dx.doi.org/10.1007/s11664-017-5823-z
http://dx.doi.org/10.1109/JQE.2010.2040245
http://dx.doi.org/10.1103/PhysRevApplied.10.024022
http://dx.doi.org/10.1103/PhysRevB.57.6493
http://dx.doi.org/10.1063/1.2748621
http://dx.doi.org/10.1016/j.cpc.2016.08.015
http://dx.doi.org/10.1007/s10825-018-1138-4
http://dx.doi.org/10.1016/0022-3697(83)90064-1
http://dx.doi.org/10.1021/acs.jpclett.9b00645
http://www.ncbi.nlm.nih.gov/pubmed/31082242
http://dx.doi.org/10.1021/nl503770z
http://www.ncbi.nlm.nih.gov/pubmed/25555203
http://dx.doi.org/10.1109/HOTCHIPS.2015.7477467
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf
https://www.top500.org/system/179421/
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1145/1296907.1296909


Electronics 2021, 10, 253 17 of 17

18. Cantalupo, C.; Venkatesan, V.; Hammond, J.; Czurlyo, K.; Hammond, S.D. Memkind: An Extensible Heap Memory Manager for
Heterogeneous Memory Platforms and Mixed Memory Policies; Technical Report; Sandia National Laboratories: Albuquerque, NM,
USA, 2015.

19. Strzodka, R. Abstraction for AoS and SoA layout in C++. In GPU Computing Gems Jade Edition; Elsevier: Amsterdam, The
Netherlands, 2012; Volume 31, pp. 429–441.

20. Lam, M.D.; Rothberg, E.E.; Wolf, M.E. The cache performance and optimizations of blocked algorithms. ACM SIGOPS Oper. Syst.
Rev. 1991, 25, 63–74. [CrossRef]

21. Park, N.; Hong, B.; Prasanna, V.K. Tiling, block data layout, and memory hierarchy performance. IEEE Trans. Parallel Distrib.
Syst. 2003, 14, 640–654. [CrossRef]

22. CUDA Occupancy Calculator. Available online: https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
(accessed on 21 January 2021).

http://dx.doi.org/10.1145/106974.106981
http://dx.doi.org/10.1109/TPDS.2003.1214317
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html

	Introduction
	Methods
	Processes of RGF Computation
	Strategies for Performance Enhancement
	Data-Restructuring for SIMD and SIMT Operations
	Blocked (Tiled) Matrix Multiplication
	Thread Scheduling for Execution of Nested Loops
	Offload Computing with GPU Accelerators


	Results and Discussion
	Utilization Efficiency of GPU Devices for Offload Computing
	Performance of End-To-End Simulations

	Conclusions
	References

