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Abstract: Augmented reality has a high potential in interior design due to its capability of visualizing
numerous prospective designs directly in a target room. In this paper, we present our research
on utilization of augmented reality for interactive and personalized furnishing. We propose a
new algorithm for automated interior design which generates sensible and personalized furniture
configurations. This algorithm is combined with mobile augmented reality system to provide a user
with an interactive interior design try-out tool. Personalized design is achieved via a recommender
system which uses user preferences and room data as input. We conducted three user studies to
explore different aspects of our research. The first study investigated the user preference between
augmented reality and on-screen visualization for interactive interior design. In the second user
study, we studied the user preference between our algorithm for automated interior design and
optimization-based algorithm. Finally, the third study evaluated the probability of sensible design
generation by the compared algorithms. The main outcome of our research suggests that augmented
reality is viable technology for interactive home furnishing.

Keywords: interior design; augmented reality; 3D content generation; user study; personalized
recommender

1. Introduction

Home furnishing with new furniture is often a challenging task due to several pitfalls
between selection of furniture in a shop and its composition in a target room. One of these
pitfalls is the lack of imagination in relation to the target room and to other furniture when
an item is seen in the shop. Another problem in home furnishing is to ensure that selected
furniture has correct dimensions for the target room. Additionally, once the furniture is
purchased, a home owner may want to try multiple spatial configurations in the target room
which is physically demanding and time-consuming. These problems can be addressed by
utilizing augmented reality (AR) technology. AR allows visualizing the desired furniture
directly at home with correct dimensions. Therefore, AR supports imagination and aids
size measurements in the real space. The remaining problem in home furnishing in AR is
the missing advice about furniture composition and its spatial configuration. In an ideal
case, the user’s flat may be empty, but the complexity is significantly increased if the user
has some furniture items he might want to keep and just add a couple of new ones.

Professional interior design for home furnishing is an expensive and time-consuming
process. Due to this problem, numerous homes are designed by the owners themselves
without the professional interior design insight. We address this problem by mobile
interior design system which provides users with automatically generated interior design
configurations, tailored to personal user preferences. Additionally, our system uses AR
visualization to enable try-out of new furniture directly in the target room. Users can then
manually tweak the proposed position of items and delete or exchange the unwanted ones.
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Previous research demonstrated the successful utilization of AR for interior design
tasks [1,2]. However, these methods did not provide a personalized design and they uti-
lized optimization-based approaches which are prone to generation of unlivable furniture
configurations in some cases. In contrast to that, our algorithm is based on hierarchical
tree of procedural rules which generates sensible design with high probability. More-
over, our recommender service selects furniture based on user preferences leading to a
personalized design.

The methods for automated generation of furniture configurations may produce
interior designs which contain objects of different styles and colors that may not fit together.
We address this problem by utilizing automatic style classification based on deep learning
and by applying a color consistency metric to improve the fit of recommended objects.
Moreover, we propose to use the analysis of user’s room to improve the personalization
and style match with existing real furniture.

Our algorithm for automated interior design operates in the hierarchical space of pro-
cedural rules. The hierarchy of rules reflects the hierarchy of objects’ spatial relationships
in a given room. The variability of designs is achieved via multiple possible branches of
execution in the hierarchical tree. We address the problem of sensible design generation by
maintaining parent–child relationships in spatial and angular domains. These parent–child
relationships are created between the objects generated by the pair of parent–child rules in
our execution tree. The interior design guidelines, utilized by previous research [3,4], are in
our case directly encoded into the placement rules which can be designed and maintained
by interior designers.

The main goal of our research was to study various methods and techniques to find
the most favorable ones for automated interior design at home. Therefore, we conducted
three user studies to address different aspects of interior design assistance system: (1)
visualization, (2) design preference, and (3) design sensibility. In the first aspect, we
studied mobile visualization using AR and traditional on-screen visualization of furniture
configurations. Our results suggest that AR visualization is the preferred method for
displaying furniture configurations at home. In the second aspect, we focused on the user
preference of interior designs generated by our method and optimization-based method [5].
We selected optimization-based method due to its capability of generating rich and diverse
design configurations. Results diverged in this study and showed strong user preference
for optimization-based method in one scene and similar preference for both methods in
another scene. Finally, the third studied aspect was design sensibility (i.e., the rate of
producing sensible furniture layouts). In this third study, we measured the probability of
generating a sensible design for each of the compared algorithms. Our algorithm achieved
four times higher probability of generating sensible design than the compared optimization-
based method. The findings from our studies can be used as guidelines for future research
and development of AR for interior design.

The main contributions of this paper can be summarized as follows.

• Novel algorithm for automatic interior design based on hierarchical tree of procedural
rules.

• A system for interactive interior design in AR.
• Personalized objects selection utilizing recommender service.
• User studies addressing various aspects of interior design assistance technology.

This paper is organized as follows. Section 2 discusses the previous work in the
areas of automated furniture arrangement and AR interior design. Section 3 presents
our algorithms for automated interior design, personalized recommendation, and room
analysis. The application of these algorithms into AR scenario is then described in Section 4.
We conducted the study which investigates the usability of AR technology for interior
design. This study is described in Section 5. Additionally, we evaluated our system in
terms of user preference and sensibility of generated designs in a user study and an expert
study. The results of this evaluation can be found in Sections 6 and 7. Section 8 discusses
the main findings of our research and Section 9 concludes the paper.
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2. Related Work

Existing state-of-the-art methods for automatic interior design can be broadly cate-
gorized into three groups: procedural design methods, optimization-based methods, and
data-driven approaches.

2.1. Procedural Design Methods

Procedural approaches create scenes incrementally by applying a set of predefined
design rules. Usually these approaches are fast and interactive. However, sometimes the
complexity of the placement rules, or the required user interaction, necessitates an offline
generation. Xu et al. [6] define proximity, physical, and semantic rules to create large
complex scenes. Akazawa et al. [7] apply the contact constraint—each object has to touch
another object—in addition to no-overlapping and group placement rules. Germer and
Schwarz [8] represent objects as agents, such that each agent searches for a parent object,
then orients and aligns itself with respect to it. This method is capable of creating large
3D indoor scenes by generating only the rooms in the vicinity of the navigating user. In
the method of Chojnaki [9], scenes are generated through a series of adding and merging
nodes, improved with low-cost operations (shift and wall magnetism). Then, the proposed
scenes are evaluated with a scoring function. Tutenel et al. [10] place one object at a time
using a solver based on placement rules.

Our method also utilizes procedural generation of objects while our rules are orga-
nized in a hierarchical tree which mimics the hierarchy in spatial arrangement of objects.
This tree can be easily modified by artists. Moreover, we utilize recommender service and
automatic room analysis to provide a user with automated and personalized selection of
furniture items for a design.

2.2. Optimization Methods

The furniture of a scene can be arranged by minimizing a cost function which is based
on ergonomics, aesthetics, or other terms. To overcome the high computational complexity
of the problem, some methods use samplers to generate candidate layouts [3,11] and
others use genetic algorithms [4,12,13]. Akase and Okada [12] minimize the cost using
evolutionary computation, where each generation is evaluated by the user, until the user
is satisfied. The approach of Sanchez et al. [13] also uses a genetic algorithm to solve a
system of complex set of constraints. The genetic algorithm, used in the method of Kán and
Kaufmann [4], optimizes a cost function that mimics the principles used in professional
interior design practice. Yu et al. [14] optimize the cost function by simulated annealing
using a Metropolis-Hastings state search step. Merrell et al. [3] present an interactive design
system in which the user moves furniture pieces and the system suggests different layouts
based on these movements. The suggestions are sampled by a Markov chain Monte Carlo
sampler from a density function defined on a set of design guidelines, constrained by the
user movements. A Markov chain Monte Carlo sampler is also used by Yeh et al. [11] to
generate layouts from spaces with varying dimensionality. In their method, the number
of objects does not need to be set in advance. The disadvantage of optimization based
methods is their high computational cost. Moreover, these methods can finish in a local
minimum of cost function and therefore cannot guarantee the sensibility of design.

2.3. Data Driven Methods

Instead of hard-coded rules or constraints, a group of algorithms learn from pre-
designed scenes. Fisher et al. [15] train a probabilistic model on a set of user designed
scenes to synthesize new arrangements of clusters of objects. Guerrero et al. [16] convert
the example scenes into feature vectors, encoding geometric relationships between objects,
to train their model. Zhao et al. [17] introduce the space coverage feature to encode the
geometry of the open space around objects. Recent approaches model user activities (how
users alter the scenes). For instance, Fisher et al. [18] extend their previous approach [15]
to model activity, resulting in fewer relations and higher level semantics. Furthermore,
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Ma et al. [19] progressively generate scenes through a series of insert and relocate opera-
tions, based on actions sampled from an action graph. Fu et al. proposed an algorithm for
scene synthesis based on activity-associated object relation graphs [20]. Their method uses
labeled human positions and directions in the dataset of floor plans to detect the activity
relations between objects. It requires room shape and user-specified object categories as
the input. An interior scene synthesis method based on deep learning was presented by
Wang et al. [21]. The authors used deep convolutional network to predict spatial probabil-
ity distribution for each type of object from the top-down view of the room. Deep learning
was also utilized for indoor scene generation by Li et al. [22] who used variational recursive
autoencoders and by Ritchie et al. [23] who used deep convolutional generative models.

2.4. Interior Design in AR

Automatic interior design in augmented reality has also been studied in previous
research where virtual furniture is inserted in real rooms, mixed with real furniture.
Tang et al. [1] detect the supporting planes in the room using a depth camera, to help the
user realize how an inserted virtual object fits in the real environment. They also propose
an optimization based solution to arrange furniture objects on these planes. Gal et al. [24]
present a framework for generating object layouts in AR that considers scene consistency
(between components and the real room) along with self-consistency (between compo-
nents), in order to map the virtual elements into the real environment. The SnapToReality
techniques of Nuernberger et al. [25] align virtual objects to the real environment using
extracted 3D edge and planar surface constraints. Techniques for automatic placement of
3D models in AR with relation to real objects were presented by Breen et al. [26]. Finally,
several other methods focused on interior design in AR with manual composition of fur-
niture into the real room [2,27,28]. In contrast to previous research, our proposed system
enables fast and reliable generation of interior design into AR scene to speed up the process
of room furnishing.

3. Automatic Interior Design

Explaining our system from the user perspective, it can be seen as a mobile AR
application where a user is guided through a process of selecting multiple images to collect
input data such as style/object/color preference and choosing room type. A user then
enters the AR camera screen where she scans the room and adds the room edges with
the help of the underlying AR framework (Section 4). Then, the first interior design is
automatically generated and it appears in AR view of the user. User can modify this design
according to her needs by moving/exchanging the furniture or by requesting a completely
new design. From the system perspective, apart from the collection of the manual user
preference data, we collect the room data asynchronously in form of images and we send
it to our room analysis service (Section 3.3). The schematic diagram of our system can be
seen in Figure 1.

The core of our system for automatic interior design is based on a hierarchical ex-
ecution of procedural rules for object positioning (Section 3.1). To achieve variability
of generated designs the execution tree has multiple paths to leaves (i.e., there may
exist multiple children rules for a given rule and they can be either executed concur-
rently or individually). Our algorithm for furniture arrangement is further described
in Section 3.1. Additionally, the personalized selection of furniture objects is achieved by
using the recommender service. We also use room analysis based on deep learning to iden-
tify existing style and colors of the room. This information, together with the user design
preferences, is utilized in the recommender service to suggest furniture items individually
for different users. The automated furniture generation is running on a server while the
AR visualization is utilized in a client application. We deploy the server part on Amazon
servers to achieve high scalability in relation to the number of users.
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Figure 1. Schematic diagram of our system for interior design in augmented reality (AR). The server
generates interior design for the user with the help of the recommender and room analysis services.
This design is then visualized in AR in the client application. We use the database of procedural rules
for layout generation and database of furniture data for personalized recommendation. Pictures of
real scene, captured by a mobile device, are analyzed in our room analysis service to identify styles
and colors of the room and aid the recommendation. We utilized Representational State Transfer
(REST) architecture to design the services of our system and communication between them.

3.1. Hierarchical Tree of Procedural Rules

Our algorithm for automated furniture layout calculates the spatial relations of objects
by executing the procedural rules in a hierarchical order. These rules are stored in a
database and can be easily extended or altered by designers to achieve new furniture
configurations. The properties of our placement rules are depicted in Table 1.

At the beginning of design generation, the system selects all rules with no parent
which belong to the given room. One or more of these rules are executed by selecting
and positioning furniture in the room. The selection of the furniture is done by request
to our recommender service. The positioning is then done according to the positioning
properties of the selected rule (Table 1). After execution of specific rule, the algorithm
finds children rules of this rule and continues in the execution tree until it reaches its
leaves. During the furniture positioning we create spatial relationships between parent and
children objects (i.e., the objects generated by parent rule and children rules). The example
of our hierarchical procedural tree can be seen in Figure 2.
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Table 1. Properties of our procedural rules.

Property Description

ParentRule
Rule which is the parent of the current rule. This link to parent creates the
hierarchy in the execution tree. If the rule has no parent its parent is the
room itself.

Category Category of objects which is positioned by current rule
Room Type of room in which the rule can be applied
Count Number of objects to be positioned by current rule

Position Relative position of object with respect to parent object. The possible
values are: Front, back, side, left, right, top, bottom, ceiling, and random.

SideAlignment
The alignment of placed object on the contact side of its parent. The
possible values are Front, center, back, top, bottom, left, right, even (for
multiple objects), and random.

Distance Distance from the border of the current object to the border of the parent.

Rotation Relative rotation with respect to parent object. Possible values are Front,
back, alignToFront, and alignToBack.

WallSnap Boolean value which decides whether or not the object should be snapped
to the wall along the object’s back vector.

AngularOffset Additional rotation to the perpendicular rotations given in the Rotation
property

Probability Probability of execution for the current rule

NoCollision Boolean value which indicates if collision with other objects should be
calculated and avoided.

Concurrency and Avoidance Groups

In order to preserve a high degree of freedom for interior designers, we propose a
strategy for executing multiple rules concurrently or for avoiding concurrent execution.
This strategy uses the concept of concurrency and avoidance groups. These are the groups
which can group the rules for concurrent execution or for avoidance of concurrent execution.
There can be numerous concurrency and avoidance groups created in our system to achieve
concurrent execution on different levels of the tree. Concurrent execution in our method is
driven by three main principles: The first principle of this strategy is that if multiple rules
on the same level in the tree (and with the same parent) are not in concurrency group they
cannot be executed together. The second principle is that if multiple rules are in the same
concurrency group, they can be executed together (e.g., the plant on the one side of drawer
and a coffee table on the other side) unless they are in the same avoidance group. The
third principle of this strategy is using avoidance groups to avoid the concurrent execution
of rules even if they are in the same concurrency group. The reason of adding this third
principle is to avoid excessive generation of concurrency groups. To explain this more
in detail we consider an example of a bed in a bedroom. This bed can have night tables,
carpet, cabinet, and other objects as its children. To generalize, we consider a bed having n
concurrent rules as its children. Now, we add a rule for positioning a sofa near the bed.
This sofa however cannot coexist with the night tables because it is taking the same place
as one of them would take. However, the sofa can coexist with all other children. Using
solely concurrency groups such a relation would require adding new concurrency group
with n objects. Therefore, adding m new objects which cannot coexist with single other
object would require to create nm new relations. This case is depicted in Figure 2.

To address this problem of exponentially growing relations of objects, we introduce
the concept of avoidance groups. An avoidance group contains objects which are already
in a concurrency group but cannot coexist with each other. Nevertheless, they can coexist
with all other objects from concurrency groups. Now, the cost of adding a new object
which cannot coexist with another object from concurrency group is only constant. With
the concept of avoidance groups we can easily create new rules placing furniture on the
same place as others without the excessive growing of the number of concurrency groups.
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Figure 2. Hierarchical tree of procedural rules. The rules on the third level of the tree belong all to
one concurrency group. However, the red rules cannot coexist together; therefore, they are also in an
avoidance group. The red rules can still be executed concurrently with all green rules.

3.2. Personalized Recommender

The problem of diverging furniture styles and personalization for specific user in
a design is addressed via a recommender service. Every time a new furniture piece is
required for placement by hierarchical procedural rules, the recommender service is called.
This service is selecting furniture objects according to the style of already positioned items,
preference of the users, and the overall style of a user’s room (Section 3.3).

The style-related matching of furniture items is based on two main principles: (1) style
category and (2) color palette. We used eight categories of styles, and we developed a deep
learning-based classifier to identify these categories from images of products or rooms.
More details about style classification are provided in Section 3.3. Multiple categories can
be assigned to each furniture piece. Categories are then used as a filter during selection
of additional objects. Only the objects which belong to one of the target categories can
be recommended. For this purpose 3D objects in our database have manually labeled
categories. For color consistency a color palette is extracted from the image by the methods
proposed in previous research [4,29,30]. We use palettes consisting of three colors each. The
colors are represented in CIELab color space. As a result, a color palette can be described
by a vector of nine real numbers.

In order to prioritize the matching colors of furniture objects, the recommender
calculates score for each available object which passed the style and category filter. The
score s is calculated based on Euclidean distance between palette of main object pm in a
room and a palette of a new candidate object pn:

s = e(−|pm−pn |) (1)

Additionally, scores are normalized by dividing by the sum of all scores for selected
products. Finally, the products are recommended stochastically with a probability propor-
tional to the normalized scores of products.

Our recommender service also takes into account personal preferences of users, which
are initially registered through an on-boarding wizard screen full of room design pictures
tagged with a style name. In this wizard screen, a user can select all those room designs
which he/she likes. These data are then stored in a database where they can be later
accessed by the recommender service and then used as a filter for potential products
similarly to the furniture cross-style filtering for matching with other objects. The styles
data for the wizard screen were annotated by interior designers.

3.3. Room Analysis

In addition to personalized recommendation and consistent styles of objects in a
design, we aimed at matching the new generated design with existing furniture and colors
in a target room. For this purpose, our application collects images of the target room
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at start time of a design session and streams them to a server where they are analyzed
by our room analyzer service. The result of this analysis is then included in the final
recommendation by concatenating user-preferred styles from wizard with classified styles
from room analyzer. The room analysis is done asynchronously so the user has a seamless
experience. The core of the room analysis service is composed of three modules: (1) a
deep learning style classifier to recognize style of existing room design, (2) a color palette
extractor implemented by k-means clustering, and (3) an object instance segmentation by
deep learning model.

For the style classifier, we put in practice the concept of transfer learning [31] to retrain
three start-of-the-art deep learning image classifiers on a dataset of 19771 manually tagged
images of room designs. Specifically, we considered the following network architectures:
VGGNET-16 [32], ResNet-50 [33], and Inception-V3 [34], the latter being superior not only
in terms of accuracy, with 5.6% top-5 error in ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012 [35] and about 1.7% top-5 error in our dataset, but also in
performance [36]. Classifiers were trained to recognize eight distinct interior design styles:
Contemporary, eclectic, glam, industrial, mid-century, minimalist, Scandinavian, and
transitional.

To achieve object instance segmentation, we leveraged region-based convolutional
network with object mask prediction (MASK-RCNN) [37], pretrained on dataset of common
objects in context (COCO) [38]. We utilized transfer learning to extend the model detection
capabilities with additional decoration items like curtains, lamps, carpets, pillows, and
picture frames. In total, 2300 new images were manually tagged and added to the COCO
dataset.

The location of known objects in the scene can be used to combine existing furniture
objects with new design pieces. In combination with device tracking, new objects can be
correctly registered in 3D and seamlessly visualized in AR. In order to address the complex
issue of combining existing real furniture objects with new virtual design pieces mentioned
previously, we have limited this functionality to be only enabled if the underlying ARKit
framework was able to detect horizontal planes. We then match these planes with the
detected object types in 2D space. These data can then serve to position new generated
virtual objects in relation to the existing real furniture (e.g., a virtual vase on top of a
real table).

4. Augmented Reality

Our system provides a user with an augmented reality visualization which allows
one to explore the generated furniture design directly in the target room with live scale.
We use ARKit tracking to track the pose of a mobile device in real space. The system
first detects the ground plane and the user then indicates the position of the main wall
in space. Potentially, the user can also indicate the depth of the room (3rd dimension) by
marking the opposite corner of the room in AR view. We only used rectangular rooms in
our experiments. After the furniture configuration is generated by the server (Figure 1),
the 3D models are positioned in 3D space based on this generated configuration. The 3D
models are downloaded on-demand from the server.

In addition to AR, our system also allows non-AR visualization on the screen of
mobile device. In this case the furniture is positioned in 3D template room. We conducted
a user study which compares the user preferences between AR and non-AR visualization
of interior design (Section 5).

Our AR application runs on mobile devices which support ARKit framework. We
used iPhone 6S during our experiments and user studies. The server part of our system is
deployed on Amazon servers. In this configuration, the average duration of interior design
generation is 3.87 s.
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5. User Study of AR Visualization

Research and development of augmented reality in interior design can strongly benefit
from knowledge of user perception in this field. Therefore, we conducted a user study to
investigate if users prefer augmented reality for visualization of furniture compositions
during interactive furnishing or not. We compared the user preferences between AR
visualization and non-AR visualization. The non-AR visualization used 3D template room
on the screen of mobile device to show the generated interior designs. In this template
room (non-AR condition), a generated interior design was rendered from camera position
fixed at human height, looking at the main wall. Users could not interact with the camera
view but they could move furniture objects or request generation of new design, similarly
as in the AR visualization. The main hypotheses in this study were the following.

H1: Augmented reality visualization is more preferred for interactive furnishing than non-AR
visualization.

H2: Augmented reality is judged by the users as more useful than non-AR visualization.

5.1. Design and Methods

A within-group design was used to compare user preferences and usability between
our two conditions: AR visualization and non-AR visualization (Figure 3). The order of
visualization modes was alternated between the subsequent users. Users experimented
with both visualizations, and we used two quantitative metrics to evaluate their perception:

1. In the first metric, we used a subjective, two-alternative, forced-choice preference
approach similar to the work in [39]. The users were asked which of the two visu-
alization modes (AR/non-AR) would they prefer for interactive furnishing of their
home. The answers to this question were analyzed by Chi-square nonparametric
analysis in order to investigate the hypothesis H1.

2. In second metric, the users were asked to rate the usefulness of each visualization for
interior design at home on a scale from 1 to 7, where 1 means that visualization is not
useful at all and 7 means that it is very useful for interior design. These answers were
later analyzed by Wilcoxon signed-rank test. This subjectively reported usefulness
was used to study the hypothesis H2.

Figure 3. Two visualization modes in our interior design system: (left) Augmented reality visualiza-
tion and (right) non-AR visualization in template 3D room.

Each of the visualizations was used to interactively furnish two rooms by the user:
living room and bedroom. The experiment was conducted on two places: The first one was
empty laboratory where new furniture was positioned in AR as into a new yet unfurnished
room. The second place was a single room in a house with already existing furniture. In
this case the AR visualization superimposed 3D furniture models over the real furniture.
At the end of the study, we included an open question for qualitative analysis. In this
question, we asked users to explain the choice of their preference of visualization mode.
The user from our user study, using AR visualization, can be seen in Figure 4.
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Figure 4. (Left) Augmented reality visualization in our system for automated interior design. (Right)
A user exploring an interior design space on a mobile device using AR. Markers on the floor were
used only to provide additional features for ARKit tracking.

5.2. Procedure

The experiment was conducted in the form of interactive try-out of both studied
visualization modes by each participant. At the beginning, each participant was informed
about the study and the procedure. Each user was asked to fill in the consent form and
demography questionnaire. The participant then used our interior design system on a
mobile phone to furnish both rooms (living room and bedroom) with the first visualization
mode. The users could interact with the application as long as needed to explore the
visualization mode and its potential for furnishing. After the first condition, the user was
asked to answer the usability question. Then, the second visualization mode was tried by
the participant to again furnish both target rooms. When finished, the user again answered
the usability question about the second visualization mode. Finally, the user was asked
to select the preferred visualization mode for interactive furnishing and to explain this
preference in an open question.

5.3. Results

Eighteen users participated in our study (12 females and 6 males in the age from 23 to
60 years, M = 36.1, SD = 11.1). Nine participants finished the study in the empty laboratory
and 9 in the furnished room of the house. None of the participants had professional
experiences in interior design.

In our first metric, forced-choice preference, we used Chi-square analysis to assess sta-
tistical significance. The frequencies of user preferences between two visualization modes
and the results of Chi-square analysis are shown in Figure 5. Chi-square analysis indicates
significance of user preferences towards AR. This result supports our hypothesis H1.

15 3

AR nonAR
χ2 p

8 0.005

Figure 5. Frequencies of user preferences for two compared visualization modes AR and non-AR.
Right side shows the results of Chi-square analysis. The results indicate that the measured preference
of AR is statistically significant.

Additionally, we investigated if the preference frequencies vary in relation to gender
and to the location of the study (furnished or unfurnished room). In gender-related analysis,
we can see that AR was preferred by 100% of males and by 75% of females. For both genders
Chi-square analysis indicates statistical significance of the AR preference. In room-related
analysis, the AR condition was preferred by 89% participants from laboratory and by 78%
participants from furnished home. In both cases, the result was statistically significant
towards AR preference.
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The result of our second metric, the paired comparison of usefulness ratings, indicates
that AR visualization is considered more useful by the users than nonAR visualization.
Wilcoxon test indicates statistical significance of this result (Z = −2.57, p = 0.01). Mean
values of usefulness ratings are shown in Figure 6. This result supports our hypothesis H2.

6.22

4.89

1

2

3

4

5

6

7

AR nonAR

Figure 6. Mean values of usefulness of each visualization mode for interior design at home. Standard
deviation is 0.97 for AR and 1.59 for non-AR visualization.

In addition to investigation of our research hypotheses, we aimed at qualitative
analysis of user preferences to discover new findings in relation to perception of AR interior
design. For this purpose, we asked users to explain their preference of visualization mode
in an open question. To analyze the answers to this question, we collected the main codes
from responses in an open coding [40] and we calculated the frequency of occurrence for
each of them. This frequency corresponds to the number of users who mentioned the code
in their answers. The codes in our analysis represents the preference reasons of users. The
results of the qualitative analysis can be seen in Table 2. The preference reasons are ordered
from the most frequent one to the least frequent one. Note that the last two reasons in
Table 2 are negative about AR. All other comments are positive towards AR interior design.

Table 2. Qualitative analysis of user preferences. Codes were collected from users’ preference
explanations (preference reasons). Frequency indicates the number of users who mentioned given
code. The preference reasons are ordered according the frequency of occurrence.

Code Preference Reason Frequency

Imagination AR supports imagination 6
Real walking AR allows walking in a room 6
Spatial awareness AR supports perception of space 5
Own apartment AR allows to see furniture in my own apartment 4
Real feeling AR provides real feeling 3
Multiple visualizations Both visualizations are needed 3
View angles AR offers more view angles than non-AR 2
More fun AR is more fun 1
Field of view AR has limited field of view 1
Usefulness non-AR was more useful 1

6. Design Preference Study
6.1. Design and Methods

In order to assess the quality of interior designs generated by our algorithm, we
compared them to the results of recent optimization-based method for automated interior
design [5] in a second user study. This user study was conducted online via web ques-
tionnaire. The questionnaire contained four questions, each comparing two images of
interior designs (Figure 7). One of these two interior images was generated by our method,
and the other one by the compared optimization-based method (only sensible results of
generation were used). Fifty-four furniture objects were used by both algorithms to furnish
the target rooms. The order of images was randomized. Two of the comparisons were
done for a living room scene and the other two for a bedroom scene. We used subjective,



Electronics 2021, 10, 245 12 of 17

two-alternative, forced-choice preference approach to measure the preference frequencies
between two compared methods. The users were asked to select their preference of interior
design among the two presented images for each question. The preference answers were
used to study the following hypothesis.

H3: The resulting interior designs of our algorithm, based on hierarchical procedural rules, are more
preferred by users than the interior designs generated by the compared optimization-based method.

Greedy optimizationOur method

Figure 7. Automatically generated interior designs from our design preference study. Left column shows designs generated by our
method while right column shows designs generated by compared optimization approach [5]. Interior designs were generated for
two room types: living room and bedroom. In addition to these images, the users in our study saw an additional image per each
furnished room, rendered from the opposite corner. This second image was used to provide a user with better overview and spatial
understanding of the generated layout. Here, the second image is omitted for clarity.
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6.2. Results

Fifty-two users, in age from 19 to 54 years (M = 34.0, SD = 8.7), participated in our
preference study (25 males, 27 females). We used Chi-square nonparametric analysis to
assess the statistical significance from frequencies of user preferences. The Chi-square
analysis in one-dimension was used for each room separately. Each room contained 104
preference answers, thus the frequencies of preferences were compared to an expected
52/52 result. The Chi-square values were computed and tested for significance. The results
of this analysis and measured frequencies of user preferences are shown in Figure 8. For
the living room scene, our method achieved higher preference than the optimization-based
method. Chi-square analysis suggest that this difference of preferences is not statistically
significant. In the bedroom scene, the optimization-based method significantly outper-
formed our method in terms of user preferences. The possible reasons of this diversity
between rooms and possible sources of bias are discussed in Section 8. As our method
achieved slightly higher preference for one of the two scenes we may consider it capable
of achieving similar quality of interior design than compared method for some types of
scenes. However, our hypothesis H3 was not supported by the results.

24

58

80

46

Bedroom

Living room

Our method Greedy op�miza�on χ2 p

1.39 0.239

30.15 <0.001

Figure 8. Frequencies of user preferences in our study. All displayed conditions show the pref-
erences among answers of 52 participants (104 answers per room). The results of the Chi-square
analysis are indicated on the right side. Values in boldface indicate significant difference (level of
significance = 0.05).

We also investigated the differences of preference frequencies between male and
female participants. This investigation draws interesting findings about gender-dependent
differences of design preferences. The results (Figure 9) suggest that males have stronger
preferences towards the results of optimization-based method. Chi-square analysis reports
statistical significance of the design preference of males (p < 0.001). On the other hand, the
responses of females show only very minor difference of preference frequencies between
two compared methods (p = 0.56).

31

51

69

57

Males

Females

Our method Greedy op�miza�on
χ p

0.333 0.564

14.44 <0.001

2

Figure 9. Frequencies of user preferences categorized by gender.

7. Design Sensibility Study
7.1. Design and Methods

In our third study, we investigated the capability of our furniture arrangement al-
gorithm to generate sensible furniture layouts. We also compared the sensibility results
with the optimization-based method [5]. While an algorithm can generate very good
design in one of several runs, it might not guarantee the generation of sensible design in
all subsequent executions. Our third study was focused exactly on the capability of an
algorithm to always generate a good design (i.e., the probability of a generated design being
sensible). This investigation was done via expert study. In order to assess the capability of
generating sensible layouts we used each algorithm to generate 30 designs in a row for two
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target rooms. Having two algorithms and two rooms therefore leads to the total number
of 120 images which represent the results from subsequent design generations of both
algorithms. These 120 images were then showed to the group of five professional interior
designers. Each designer had a task to assess the sensibility of furniture layout in each
image. We can judge the furniture layout as sensible if it is functional and appropriate for
activities in this room. Interior designers had a binary option (yes/no) of answer to judge if
each layout was sensible or not. After the design assessment by professionals, we counted
the number of layouts marked as sensible for each algorithm across all designers. Then,
we divided this number by the total number of judgments (designers * number of images
per algorithm). The resulting number indicates the probability of generating a sensible
furniture layout (Figure 10).

72%
80%

14%
25%

0%

20%

40%

60%

80%

100%

Bedroom Living room

Our method Greedy optimization

Figure 10. Results of our design sensibility study. The results indicate the probability of each
algorithm to generate sensible furniture layout. Our algorithm achieves higher sensibility score in
both rooms.

7.2. Results

The results in Figure 10 suggest that our algorithm outperforms the compared algo-
rithm by having a fourfold greater sensibility score. On average, our algorithm achieved
76% chance of generating a sensible layout while the compared algorithm achieved only
19.7%.

While the results of compared optimization algorithm was rated better in the user
preference study, our algorithm outperformed the optimization in terms of probability of
generating a sensible result. The resulting designs in the user preference study contained
only selected sensible layouts generated by both algorithms. On the other hand, the design
sensibility study was investigating the capability of each algorithm to generate sensible
design on each execution. As our method achieved higher probability of generating sensible
design, it is more suitable for real-time design generation for the user than the compared
optimization approach.

8. Discussion

The results of our AR visualization study support our hypotheses H1 and H2 that
AR visualization is more preferred by users and more useful for interactive interior design
task. There were minor differences between preferences of males and females and between
furnished and unfurnished rooms. However, in all cases AR was preferred significantly
higher than non-AR. Additionally, our qualitative analysis revealed important reasons
for user preference of specific visualization for interactive room furnishing (Table 2). This
analysis suggests that AR is preferred because it offers broader possibilities for imagination,
real walking, perception of space, and direct visualization in the target room. Additionally,
an interesting observation from open question was that several users would like to use
both visualizations: First, furnish the room in non-AR and then try this design in AR in
their own apartment. According to the users, the most valuable benefit of AR visualization
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was the help with imagination of specific design in their room in terms of dimensional and
aesthetic fit.

The second user study, comparing user preferences of our algorithm (procedural) and
optimization-based algorithm, showed very diverse results for two room types. In the living
room, our method achieved higher preference, while in the bedroom optimization-based
algorithm achieved significantly higher preference. We hypothesize that this diversity of
results may be caused by configuration of algorithms by distinct set of rules/capabilities.
For example, the optimization-based method was able to position multiple cabinets in
the bedroom, while the rule for cabinet placement was missing in the rule set of our
algorithm. During configuration, we tried to develop as similar conditions as possible for
both algorithms for comparison; however, some minor differences could bias the study.
Nevertheless, as our algorithm succeeded in one of the two tested rooms we can consider it
comparable to the optimization-based method for certain types of rooms. Additionally, we
plan to conduct future user studies to deeper investigate the capabilities of both methods
and their combination. Finally, we observed interesting gender-related differences in the
answers of preference study. As indicated in Figure 9, males have significant preference
towards the results of optimization-based method while females liked both methods with
very similar frequency. This gender-related difference of design preference is an important
finding which can support future research in this direction. In summary, the results of our
user preference study suggest that both compared methods are preferred in certain types
of scenes while interior design preference also depends on the gender of a user and type of
a designed room.

The results of our expert study about furniture layout sensibility suggest that proce-
dural methods can generate sensible designs with higher rate than optimization-based
methods. Our method achieved the probability of generating a sensible layout 76%, while
the compared algorithm achieved only 19.7%. This result indicates that our method is
suitable for interactive furniture design in home environment.

Limitations

Despite the high reliability of our method, indicated in the expert study, procedural
furniture arrangement has several limitations. One of them is the limited adaptability of
procedural methods to various and non-standard room shapes. In case of special room
shapes and dimensions, optimization-based methods can better utilize the space in these
rooms. On the other hand, our method suits better for the most common cases of standard
rectangular rooms. Additionally, optimization-based methods typically achieve higher
diversity of all possible generated designs for a given room. Our method is constrained by
the predefined generative rules. Nevertheless, this constraint also makes it more reliable.

9. Conclusions

In this paper, we have presented a novel system for interior design in augmented
reality. A new algorithm for automated furniture arrangement based on hierarchical
tree of procedural rules was presented and integrated into our interior design system.
The combination of automatic interior design suggestions together with AR visualization
provides a powerful tool for aiding home furnishing. Additionally, our system provides
personalized design recommendations of furniture in the generated interior design. The
results of our evaluation suggest that our algorithm for furniture arrangement achieves
comparable results to the optimization-based method in user preferences for certain types
of a room and it outperforms the compared method in terms of probability of sensible
layout generation. Finally, we investigated the preferences of AR utilization for interior
design in a user study. The results of this study provide useful guidelines for future
research and development of augmented reality for interior design.
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