
electronics

Article

Two-Stage Hybrid Network Clustering Using Multi-Agent
Reinforcement Learning

Joohyun Kim 1 , Dongkwan Ryu 1,2, Juyeon Kim 1,2 and Jae-Hoon Kim 1,2,*

����������
�������

Citation: Kim, J.; Ryu, D.; Kim, J.;

Kim, J.-H. Two-Stage Hybrid

Network Clustering Using

Multi-Agent Reinforcement Learning.

Electronics 2021, 10, 232. https://

doi.org/10.3390/electronics10030232

Academic Editor: Yoichi Hayashi

Received: 22 November 2020

Accepted: 18 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial Engineering, Ajou University, Suwon 16499, Korea; sjames94@ajou.ac.kr (J.K.);
youdk15@ajou.ac.kr (D.R.); jooyeon96@ajou.ac.kr (J.K.)

2 Department of AI Convergence Network, Ajou University, Suwon 16499, Korea
* Correspondence: jayhoon@ajou.ac.kr

Abstract: In the Internet-of-Things (IoT) environments, the publish (pub)/subscribe (sub)-operated
communication is widely employed. The use of pub/sub operation as a lightweight communication
protocol facilitates communication among IoTs. The protocol consists of network nodes functioning
as publishers, subscribers, and brokers, wherein brokers transfer messages from publishers to
subscribers. Thus, the communication capability of the broker is a critical factor in the overall
communication performance. In this study, multi-agent reinforcement learning (MARL) is applied
to find the best combination of broker nodes. MARL goes through various combinations of broker
nodes to find the best combination. However, MARL is inefficient to perform with an excessive
number of broker nodes. Delaunay triangulation selects candidate broker nodes among the pool
of broker nodes. The selection process operates as a preprocessing of the MARL. The suggested
Delaunay triangulation is improved by the custom deletion method. Consequently, the two-stage
hybrid approach outperforms any methods employing single-agent reinforcement learning (SARL).
The MARL eliminates the performance fluctuation of the SARL caused by the iterative selection of
broker nodes. Furthermore, the proposed approach requires a fewer number of candidate broker
nodes and converges faster.

Keywords: broker allocation; pub/sub operation; Delaunay triangulation; multi-agent reinforcement
learning; internet of things

1. Introduction

The publish (pub)/subscribe (sub)-operated communication protocol is commonly
used in the Internet-of-Things (IoT) environment. The protocol consists of network nodes
functioning as publishers, subscribers, and brokers. The broker transfers messages from
publishers to subscribers according to the topic of each message [1]. Although the broker
is the essence of the overall communication, it is also a potential hindrance in the pub/sub-
operated communication system. The distribution (i.e., number and position) of brokers
affects the overall performance of communication networks. A well-organized distribution
of brokers affords significant advantages to network operations, i.e., it requires a rela-
tively small amount of transmission energy and the round-trip delay of messages is low.
The objective of this research is to develop an effective management scheme for broker
distributions in the pub/sub-operated communication among IoT environments.

Effective clustering methods can assign acceptable broker nodes in the IoT environ-
ment using the pub/sub communication protocol. The clusters group the communicating
nodes, and the centroid nodes of each cluster are acceptable candidate broker nodes.
The k-means clustering algorithm is a commonly used clustering method that can be em-
ployed for broker assignment [2]. Although k-means clustering can group network nodes
and determine the centroid of each cluster, it requires prior knowledge of the number of
expected clusters (k).

Electronics 2021, 10, 232. https://doi.org/10.3390/electronics10030232 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2123-7093
https://doi.org/10.3390/electronics10030232
https://doi.org/10.3390/electronics10030232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10030232
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/3/232?type=check_update&version=3

Electronics 2021, 10, 232 2 of 15

It is proposed that multi-agent reinforcement learning (MARL) finds the best positions
and the suitable number of brokers in the IoT communication network. With regard to the
network nodes as agents in typical reinforcement learning, each agent learns whether or not
it is to be assigned as a broker. The suggested reinforcement learning explores all candidate
broker nodes. An agent generates a reward value at each iteration of the reinforcement
learning. This reward value estimates the benefit of the broker assignment for the agent.
At the end of learning, the best broker assignment among the candidate broker nodes can
be found. The MARL expands reinforcement learning to find multiple brokers among
multiple clusters. It estimates the individuals and aggregated reward values for available
broker node combinations (Figure 1).

Electronics 2021, 10, x FOR PEER REVIEW 2 of 16

nodes and determine the centroid of each cluster, it requires prior knowledge of the

number of expected clusters (k).

It is proposed that multi-agent reinforcement learning (MARL) finds the best posi-

tions and the suitable number of brokers in the IoT communication network. With re-

gard to the network nodes as agents in typical reinforcement learning, each agent learns

whether or not it is to be assigned as a broker. The suggested reinforcement learning ex-

plores all candidate broker nodes. An agent generates a reward value at each iteration of

the reinforcement learning. This reward value estimates the benefit of the broker as-

signment for the agent. At the end of learning, the best broker assignment among the

candidate broker nodes can be found. The MARL expands reinforcement learning to

find multiple brokers among multiple clusters. It estimates the individuals and aggre-

gated reward values for available broker node combinations (Figure 1).

Figure 1. Overall process of two-stage hybrid clustering.

The number of available combinations to learn in MARL is 2𝑛, where n is the

number of candidate broker nodes. A successful MARL explores all available combina-

tions; however, further explorations require excessive resources. In addition, all agents

must learn to find the best broker node combination based on experience. The exponen-

tial increase in available combinations makes it considerably problematic to explore all

combinations. A small number of available combinations reduces the burden of reward

calculation and guarantees a complete feasibility check of all combinations. An effective

method to reduce the number of available combinations while maintaining the MARL

performance is to use a separate preprocessing stage to reduce the number of candidate

broker nodes. Accordingly, the Delaunay triangulation and deletion methods are ap-

plied.

Delaunay triangulation reduces the solution space. Delaunay triangulation finds the

center heads from the given candidate broker nodes. The center heads save the required

resources to activate MARL. The suggested deletion method extends the selection pro-

cess of Delaunay triangulation by deleting the unnecessary components and recovering

the possible information loss. The consecutive and repeated use of the foregoing meth-

ods makes it possible to select the best candidate broker nodes from a given set of IoT

network nodes.

In this research, the first stage includes the consecutive implementation of the De-

launay triangulation and deletion methods. In the second stage, the MARL is applied to

find the best broker assignment in the IoT environment. Using the suggested two-stage

hybrid method, effective IoT node clusters for the given pub/sub-operated communica-

tion environment can be built. As one of the advanced artificial intelligence (AI) tech-

niques, the MARL performs practical broker assignments without manual computations;

this proposed method outperforms typical k-means clustering. Note that single-agent

Figure 1. Overall process of two-stage hybrid clustering.

The number of available combinations to learn in MARL is 2n, where n is the number of
candidate broker nodes. A successful MARL explores all available combinations; however,
further explorations require excessive resources. In addition, all agents must learn to
find the best broker node combination based on experience. The exponential increase in
available combinations makes it considerably problematic to explore all combinations.
A small number of available combinations reduces the burden of reward calculation
and guarantees a complete feasibility check of all combinations. An effective method to
reduce the number of available combinations while maintaining the MARL performance
is to use a separate preprocessing stage to reduce the number of candidate broker nodes.
Accordingly, the Delaunay triangulation and deletion methods are applied.

Delaunay triangulation reduces the solution space. Delaunay triangulation finds the
center heads from the given candidate broker nodes. The center heads save the required
resources to activate MARL. The suggested deletion method extends the selection process of
Delaunay triangulation by deleting the unnecessary components and recovering the possible
information loss. The consecutive and repeated use of the foregoing methods makes it
possible to select the best candidate broker nodes from a given set of IoT network nodes.

In this research, the first stage includes the consecutive implementation of the Delaunay
triangulation and deletion methods. In the second stage, the MARL is applied to find the best
broker assignment in the IoT environment. Using the suggested two-stage hybrid method,
effective IoT node clusters for the given pub/sub-operated communication environment
can be built. As one of the advanced artificial intelligence (AI) techniques, the MARL
performs practical broker assignments without manual computations; this proposed method
outperforms typical k-means clustering. Note that single-agent reinforcement learning
(SARL) is added to the typical k-means clustering for comparison with the proposed two-
stage hybrid clustering method. Moreover, the SARL is employed with k-means clustering
because the latter cannot determine the appropriate number of brokers alone [3,4].

Our main contributions are summarized as follows:

Electronics 2021, 10, 232 3 of 15

• We propose a network clustering algorithm that consists of a preprocessing stage
and learning stage to find the best combination of brokers in pub/sub-operated
communication protocol.

• We design a custom deletion method to implement Delaunay triangulation prior to MARL.
• We compare the proposed algorithm with three different algorithms: swarm intelligence-

based algorithm, k-means clustering implemented SARL with and without preprocess-
ing stage. The results show the superiority of the proposed two-stage hybrid network
clustering algorithm compared with other algorithms.

2. Related Works

The proposed two-stage hybrid network clustering algorithm is mainly divided into
two stages with different tasks: preprocessing and learning. The main method of the
preprocessing stage is Delaunay triangulation which aligns with the Voronoi diagram.
The proposed algorithm uses MARL in the learning stage. We use the clustering method
to find the best broker combination. The clustering method is applied in various fields and
the effective clustering algorithms differ on the task in each field.

2.1. Delaunay Triangulation and Voronoi Diagram

The Voronoi diagram is a set of dataspace partitions; each partition is called a Voronoi
cell, which contains points. Each point in the cell is closest to the seed point than the points
in other cells [5]. The Delaunay triangulation is an approach used to find the Voronoi
diagram in the dataspace as well as superior seed points.

One of the applications of the Voronoi diagram is the location assignment of facilities,
such as police stations or fire stations. These facilities should be located considering the
shortest path to anywhere that the facility covers [6]. Thus, the seed points of Voronoi cells
are potentially the best locations of facilities. Similarly, the brokers in pub/sub-operated
communication should be located at the seed points of Voronoi cells to facilitate message
transmission between publishers and subscribers.

2.2. Multi-Agent Reinforcement Learning (MARL)

The SARL can be effectively applied to the IoT environment [7,8]. When an independent
pub/sub-operated communication within a single cluster is assumed, the single broker in a
single cluster acts as a single agent. However, this simplification underestimates the effect of
dynamic interactions among network nodes. The SARL has insufficient capability to model
the states, actions, and rewards of the actual IoT environment; it requires a long time to
converge and necessitates in-depth explorations of candidate broker nodes. Many network
nodes cooperate and compete in IoT environments. The multiple network nodes in these
environments act as multiple agents, which exert a complex influence on the evaluation
of the IoT communication environment [9]. The MARL learns under the cooperative or
competitive relationships among IoT network nodes. Each agent repeatedly updates its state
and action to enhance the overall communication performance [10–12]. Wang et al. [13] used
deep reinforcement learning to learn pattern formations for multi-robot systems. Pattern-RL
uses an autoencoder to preprocess the large observation space. The deep reinforcement
learning in Pattern-RL learns the strategy model to adapt to the pattern changes with the
feedback of multiple agents. Yang et al. [14] used k-means clustering to classify the states
into different clusters and solved the curse of the dimensionality problem in MARL.

The MARL is implemented in this study to find the best combination of the given
candidate broker nodes. The candidate broker nodes act as agents in the MARL, learning
whether they are to be fixed as the actual broker nodes. The initial candidate broker nodes
are chosen randomly or based on experience. The reward function in the MARL evaluates
the expected performance of the selected broker node combination.

Electronics 2021, 10, 232 4 of 15

2.3. Clustering Applications in Wireless Sensor Networks

The scaling network is an important research topic in the pub/sub-operated com-
munication system, and message dissemination is a general method for solving network
scaling problems. Longo et al. [15] introduced the message queuing telemetry transport-
spanning tree (MQTT-ST) protocol for interconnecting distributed pub/sub-operated bro-
kers. They aimed at horizontal clustering, focusing on network load balancing. Each broker
belongs to different network clusters to minimize the network load difference among them.
Moreover, Jutadhamakorn et al. [16] studied load balancing and dynamically allocated
brokers in terms of network load status. Koziolek et al. [17] evaluated the usability of mes-
sage queuing telemetry transport (MQTT) brokers for distributed IoT edge computing. The
number of network nodes determined the arrangement of MQTT brokers in the clusters.

Considering only the network loads is not sufficient for practical network manage-
ment. In this regard, geometric scalability is another important factor for effective network
clustering. In particular, the pub/sub-operated communication framework necessitates
effective geometrical clustering over a relatively big area. Clustering algorithms use
distance data to determine the distribution (i.e., number and position) of brokers; cluster
heads obtained by the clustering algorithm can be potential brokers. In wireless sensor
networks, the clustering algorithms focus on enhancing reliability, reducing energy con-
sumption, or strengthening security, aiming to group the network nodes. The network
nodes are clustered in terms of the distance between adjacent network nodes, data similar-
ity, or performance metrics, such as energy consumption. Lin et al. [18] studied clustering
vehicles according to the data correlation of vehicles. Khediri et al. [19] proposed a k-means
clustering application to find cluster heads in multiple network node clusters. The cluster
heads served as brokers for the pub/sub-operated communication system. They also used
energy consumption to evaluate the performance of the proposed clustering method. Ally
et al. [20] employed the k-means clustering method to group devices for data offloading;
data offloading contributed to the reduction in energy consumption. Nasser et al. [21] used
a spectral clustering technique to detect and delete insecure sensors in a communication
system. Yang et al. [22] used deep reinforcement learning to cluster in dynamic characteris-
tics of the network in time. Yang et al. proposes a deep reinforcement learning algorithm
based on device business priorities maximizing uplink throughput in a smart grid.

2.4. Clustering Applications in Other Studies

The clustering approach is adopted in various fields. Narayanan et al. [23] stud-
ied a clustering approach for computer-aided detection of lung nodules. The approach
combines the sequential forward selection (SFS) and the Fisher linear discriminant (FLD)
classifiers. SFS and FLD are applied with k-means clustering to select and cluster features
from a large number of potential nodule candidates. Messay-Kebede et al. [24] imple-
mented PCA (Principal Component Analysis) to process three-dimensional input. Fine
k-nearest neighbor classifiers are used to train a deep learning algorithm. The deep learning
algorithm detects malware from the given input data. Chang et al. [25] designed a deep
k-means cluster in spatial autoencoder and temporal autoencoder in video frames to get
motion information from the video.

2.5. Clustering with Swarm Intelligence-Based Algorithms

Swarm intelligence (SI)-based computation is a bio-inspired computation used to solve
real-world problems [26,27]. The inspirations derive from the collective behavior of some
birds, amphibious, animals, or insects. The SI-based computations expand behaviors of
interaction between individuals into group-level behavior. SI algorithms based on insects
such as ants, bees, or fireflies adopt behaviors on how the insects build colonies or are
attracted into groups. The colony-building SI algorithms are ways of clustering.

The Firefly Optimization algorithm and Glow Worm Optimization algorithm of the
SI-based algorithms are applied for clustering problems. We adopt the idea of the Firefly

Electronics 2021, 10, 232 5 of 15

Optimization algorithm and modify the algorithm to use in the network clustering problem.
More specific ideas of the modified Firefly algorithm are described in Section 4.

2.6. Broker Assignment

Broker assignment is essential in the pub/sub-operated environments. Cheung
et al. [28] and Zhao et al. [29] focus on assigning clients to the brokers. They studied
the best mapping of clients and brokers. Cheung et al. studied the client placement in
a fixed environment. Zhao et al. proposed the similarity-based client placement that
considers the dynamics of the clients’ subscriptions and broker loads. The proposed two-
stage hybrid network clustering algorithm focuses more on broker positioning. The best
broker positions can minimize the energy consumption between brokers and clients. The
minimized energy consumption between the clients and brokers gains more importance
where the network nodes are widely distributed. The basic assumption is that all messages
are possibly delivered to any of the nodes in the network. Thus, we focus on delivering the
published messages fast to the brokers without considering other factors such as topics in
pub/sub-operated communication.

A successful broker assignment helps to fairly allocate messages to brokers. Jiang
et al. [30] proposed a heuristic and a min-heap-based optimal algorithm to increase fairness
in assigning transactions to different blocks in a blockchain network. The relationship
between blocks and transactions is identical to the relationship between brokers and
network nodes. Jiang et al. focused on distributing transactions to different blocks. The
two-stage hybrid algorithm focuses on finding blocks to allocate network nodes.

3. Design of the Two-Stage Hybrid Network Clustering Model

In this study, a two-stage hybrid network clustering method is proposed. A naive
approach to implementing a k-means clustering combined with SARL, which finds the
value of k, is insufficient for large-scale IoT networks with frequent message publications
and multiple brokers. A large-scale IoT network has complex factors; hence, it is difficult
for the SARL to find the appropriate k value quickly. The MARL in the proposed clustering
technique can overcome the complexities of large-scale IoT networks.

The proposed clustering method consists of two stages:

1. First Stage: apply the Delaunay triangulation and deleting methods to fix the candi-
date broker nodes;

2. Second Stage: employ the MARL to find the best combination of broker nodes.

Figure 2 depicts the conceptual model of the two-stage hybrid network clustering.
The first stage consists of Delaunay triangulation and deletion methods. The proposed
clustering method repeats the candidate broker node selection in the first stage and iterates
the MARL to find the best broker node combination in the second stage.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 16

Figure 2. Conceptual model of two-stage hybrid network clustering.

3.1. Delaunay Triangulation and Deletion Methods for Fixing Candidate Broker Nodes

The objective of the first stage is to find candidate broker nodes from the given

network nodes using the position data and number of message publications of each

network node. Although typical clustering only considers positions, our proposed

method also uses the number of message publications. The broker must be located close

to talkative network nodes (i.e., nodes with frequent message publications).

The first stage is divided into two successive modules of iterative processes: the

Delaunay triangulation and deletion methods (Figure 3). The Delaunay triangulation

produces candidate broker nodes from network nodes. Considering the number of mes-

sage publications, three-dimensional or four-dimensional vectors are employed as input

data to find the candidate brokers nodes. Assuming that the network node is located in a

plane, the position data and final input data for selecting candidate broker nodes have

two and three dimensions, respectively. When we expand the data from plane to space, a

four-dimensional vector form represents the input data for selecting candidate broker

nodes. The centers of Delaunay triangles, which are constructed using the vertices of

circum-hyperspheres, indicate the nearest points of candidate brokers. The typical De-

launay triangulation with two-dimensional input data (i.e., two-dimensional position

data are used) produces a relatively small number of centers from the network nodes.

However, three-dimensional or four-dimensional input data are used in this work, and

the number of centers produced exceeds that of the network nodes [31,32]; the use of

deletion methods is necessary to find the candidate broker nodes.

Figure 3. First stage: Delaunay triangulation and deleting methods.

Figure 2. Conceptual model of two-stage hybrid network clustering.

Electronics 2021, 10, 232 6 of 15

3.1. Delaunay Triangulation and Deletion Methods for Fixing Candidate Broker Nodes

The objective of the first stage is to find candidate broker nodes from the given network
nodes using the position data and number of message publications of each network node.
Although typical clustering only considers positions, our proposed method also uses the
number of message publications. The broker must be located close to talkative network
nodes (i.e., nodes with frequent message publications).

The first stage is divided into two successive modules of iterative processes: the
Delaunay triangulation and deletion methods (Figure 3). The Delaunay triangulation
produces candidate broker nodes from network nodes. Considering the number of mes-
sage publications, three-dimensional or four-dimensional vectors are employed as input
data to find the candidate brokers nodes. Assuming that the network node is located in
a plane, the position data and final input data for selecting candidate broker nodes have
two and three dimensions, respectively. When we expand the data from plane to space,
a four-dimensional vector form represents the input data for selecting candidate broker
nodes. The centers of Delaunay triangles, which are constructed using the vertices of
circum-hyperspheres, indicate the nearest points of candidate brokers. The typical Delau-
nay triangulation with two-dimensional input data (i.e., two-dimensional position data are
used) produces a relatively small number of centers from the network nodes. However,
three-dimensional or four-dimensional input data are used in this work, and the number
of centers produced exceeds that of the network nodes [31,32]; the use of deletion methods
is necessary to find the candidate broker nodes.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 16

Figure 2. Conceptual model of two-stage hybrid network clustering.

3.1. Delaunay Triangulation and Deletion Methods for Fixing Candidate Broker Nodes

The objective of the first stage is to find candidate broker nodes from the given

network nodes using the position data and number of message publications of each

network node. Although typical clustering only considers positions, our proposed

method also uses the number of message publications. The broker must be located close

to talkative network nodes (i.e., nodes with frequent message publications).

The first stage is divided into two successive modules of iterative processes: the

Delaunay triangulation and deletion methods (Figure 3). The Delaunay triangulation

produces candidate broker nodes from network nodes. Considering the number of mes-

sage publications, three-dimensional or four-dimensional vectors are employed as input

data to find the candidate brokers nodes. Assuming that the network node is located in a

plane, the position data and final input data for selecting candidate broker nodes have

two and three dimensions, respectively. When we expand the data from plane to space, a

four-dimensional vector form represents the input data for selecting candidate broker

nodes. The centers of Delaunay triangles, which are constructed using the vertices of

circum-hyperspheres, indicate the nearest points of candidate brokers. The typical De-

launay triangulation with two-dimensional input data (i.e., two-dimensional position

data are used) produces a relatively small number of centers from the network nodes.

However, three-dimensional or four-dimensional input data are used in this work, and

the number of centers produced exceeds that of the network nodes [31,32]; the use of

deletion methods is necessary to find the candidate broker nodes.

Figure 3. First stage: Delaunay triangulation and deleting methods. Figure 3. First stage: Delaunay triangulation and deleting methods.

The deleting methods include three parts: Del_Angle, Del_Area, and Drop_in (Figure 3).

• Del_Angle is the part where all obtuse triangles are discarded. The centers of these
triangles are outside the triangles and cannot be used as candidate brokers.

• Del_Area is the part where p% of the largest triangles is discarded. After applying
Del_Angle, all the remaining triangles are acute. However, when a candidate broker
node is assigned near the center of a large triangle, the candidate broker node must
have broad coverage, which is inefficient for network clustering. The network nodes
must be included with the nearest broker node.

• Drop_in recovers the centers obtained from Delaunay triangulation. After applying
Del_Angle and Del_Area, the triangles may have been reduced more than necessary.
Drop_in also recovers some of the initial center points of Delaunay triangles and
prevents excessive information loss in the repeated sequence of Delaunay triangulation
and deleting methods.

3.2. Best Broker Node Combination by MARL

The candidate broker nodes produced in the first stage are not unique in the clusters.
The Delaunay triangulation and deletion methods only filter out sufficient network nodes
that may be employed as brokers. The proposed MARL evaluates all candidate brokers
and creates the best broker combination for the entire communication network. It accepts
the output of the first stage as input data, and each candidate broker acts as a MARL

Electronics 2021, 10, 232 7 of 15

agent. Each agent has two states, 1 and 0, which indicate that the candidate broker node
is included and not included in the broker node combination, respectively. In each of the
MARL steps, each agent chooses to be a member of the broker node combination; then, the
combination is evaluated by the reward function of MARL. This reward function measures
the communication performance of the combination with the network nodes and other
broker node combinations. The network nodes are assigned to the closest brokers which are
a member of the broker node combination. The iterative process of MARL yields the best
broker combination through the efficient exploration of available broker node combinations
(Figure 4).

Electronics 2021, 10, x FOR PEER REVIEW 7 of 16

The deleting methods include three parts: Del_Angle, Del_Area, and Drop_in (Figure

3).

 Del_Angle is the part where all obtuse triangles are discarded. The centers of these

triangles are outside the triangles and cannot be used as candidate brokers.

 Del_Area is the part where p% of the largest triangles is discarded. After applying

Del_Angle, all the remaining triangles are acute. However, when a candidate broker

node is assigned near the center of a large triangle, the candidate broker node must

have broad coverage, which is inefficient for network clustering. The network nodes

must be included with the nearest broker node.

 Drop_in recovers the centers obtained from Delaunay triangulation. After applying

Del_Angle and Del_Area, the triangles may have been reduced more than necessary.

Drop_in also recovers some of the initial center points of Delaunay triangles and

prevents excessive information loss in the repeated sequence of Delaunay triangu-

lation and deleting methods.

3.2. Best Broker Node Combination by MARL

The candidate broker nodes produced in the first stage are not unique in the clusters.

The Delaunay triangulation and deletion methods only filter out sufficient network

nodes that may be employed as brokers. The proposed MARL evaluates all candidate

brokers and creates the best broker combination for the entire communication network. It

accepts the output of the first stage as input data, and each candidate broker acts as a

MARL agent. Each agent has two states, 1 and 0, which indicate that the candidate broker

node is included and not included in the broker node combination, respectively. In each

of the MARL steps, each agent chooses to be a member of the broker node combination;

then, the combination is evaluated by the reward function of MARL. This reward func-

tion measures the communication performance of the combination with the network

nodes and other broker node combinations. The network nodes are assigned to the clos-

est brokers which are a member of the broker node combination. The iterative process of

MARL yields the best broker combination through the efficient exploration of available

broker node combinations (Figure 4).

Figure 4. Description of multi-agent reinforcement learning (MARL)-level iteration.

4. Design of Experiments

Experiments are designed to evaluate the performance of the proposed two-stage

hybrid clustering. The proposed two-stage hybrid algorithm is compared with two algo-

rithms; k-means clustering with SARL and k-Firefly algorithm with SARL. For compari-

son, k-means clustering, which is unable to determine the value of k alone, is combined

with SARL. To find the value of k, the network nodes perform k-means clustering

through the iteration process of SARL; then, the results are evaluated to find the best

value of k. Similarly, the k-Firefly algorithm, which adopts the idea of the Firefly Opti-

Figure 4. Description of multi-agent reinforcement learning (MARL)-level iteration.

4. Design of Experiments

Experiments are designed to evaluate the performance of the proposed two-stage
hybrid clustering. The proposed two-stage hybrid algorithm is compared with two algo-
rithms; k-means clustering with SARL and k-Firefly algorithm with SARL. For comparison,
k-means clustering, which is unable to determine the value of k alone, is combined with
SARL. To find the value of k, the network nodes perform k-means clustering through the
iteration process of SARL; then, the results are evaluated to find the best value of k. Simi-
larly, the k-Firefly algorithm, which adopts the idea of the Firefly Optimization algorithm,
has SARL to determine the value of k. The experiments are performed on Jupyter notebook
using python language. Jupyter notebook is implemented on a computer using Intel®

Core™ i7-9700F CPU (Intel Corporation, Santa Clara, CA, USA) and 32 GB RAM. Figure 5
depicts the flow of the three clustering methods.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 16

mization algorithm, has SARL to determine the value of k. The experiments are per-

formed on Jupyter notebook using python language. Jupyter notebook is implemented

on a computer using Intel® Core™ i7-9700F CPU (Intel Corporation, Santa Clara, CA,

USA) and 32 GB RAM. Figure 5 depicts the flow of the three clustering methods.

(a) (b) (c)

Figure 5. Learning flow: (a) Algorithm 1: two-stage hybrid network clustering using MARL; (b) Algorithm 2: naive

k-means clustering algorithm with single-agent reinforcement learning (SARL); (c) Algorithm 3: k-Firefly algorithm with

SARL.

4.1. Algorithm 1: Two-Stage Hybrid Network Clustering Using MARL

The parameters of the proposed two-stage hybrid clustering method are defined as

follows:

 min_k: stopping threshold of the first stage. The introduction of Delaunay triangu-

lation and deletion methods generates at least 𝑚𝑖𝑛_𝑘 candidate broker nodes;

 area_ratio: discarding ratio of large triangles in Del_Area;

 dropin_ratio: reinstatement ratio of initial center points in Drop_in;

 angle_crit: determinant for obtuse triangles in Del_Angle. To control the discarding

ratio of obtuse triangles, angle_crit can be increased or decreased.

The first stage repeats the consecutive processes of the Delaunay triangulation and

deletion methods. The iterations stop when the number of candidate broker nodes is less

than min_k, which is determined by Equation (1).

𝑚𝑖𝑛_𝑘 = 𝑟𝑜𝑢𝑛𝑑𝑢𝑝(3 × ∑ 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑖

∀𝑖

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑝𝑜𝑤𝑒𝑟⁄) (1)

where i is the index of message publishers (i.e., network nodes); 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑖 is the num-

ber of messages published by message publisher i within an hour; 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑝𝑜𝑤𝑒𝑟 is

the average number of messages that the broker can process within an hour. The Delau-

nay triangulation and deletion methods generate candidate broker nodes numbering at

least three times more than the minimum number of brokers required in the network.

Note that in the actual experiments, the area_ratio is set as 0.1, which indicates that

the top 10% of large triangles are to be deleted. The dropin_ratio is set as 0.5, which indi-

cates that 50% of the center points in the Delaunay triangulation are to be reinstated. The

magnitude of angle_crit is determined to be 90°; all obtuse triangles are deleted in the first

stage.

Figure 5. Learning flow: (a) Algorithm 1: two-stage hybrid network clustering using MARL; (b) Algorithm 2: naive k-means
clustering algorithm with single-agent reinforcement learning (SARL); (c) Algorithm 3: k-Firefly algorithm with SARL.

Electronics 2021, 10, 232 8 of 15

4.1. Algorithm 1: Two-Stage Hybrid Network Clustering Using MARL

The parameters of the proposed two-stage hybrid clustering method are defined as follows:

• min_k: stopping threshold of the first stage. The introduction of Delaunay triangulation
and deletion methods generates at least min_k candidate broker nodes;

• area_ratio: discarding ratio of large triangles in Del_Area;
• dropin_ratio: reinstatement ratio of initial center points in Drop_in;
• angle_crit: determinant for obtuse triangles in Del_Angle. To control the discarding

ratio of obtuse triangles, angle_crit can be increased or decreased.

The first stage repeats the consecutive processes of the Delaunay triangulation and
deletion methods. The iterations stop when the number of candidate broker nodes is less
than min_k, which is determined by Equation (1).

min_k = roundup

(
3×∑

∀i
messagei/processing_power

)
(1)

where i is the index of message publishers (i.e., network nodes); messagei is the number
of messages published by message publisher i within an hour; processing_power is the
average number of messages that the broker can process within an hour. The Delaunay
triangulation and deletion methods generate candidate broker nodes numbering at least
three times more than the minimum number of brokers required in the network.

Note that in the actual experiments, the area_ratio is set as 0.1, which indicates that the
top 10% of large triangles are to be deleted. The dropin_ratio is set as 0.5, which indicates that
50% of the center points in the Delaunay triangulation are to be reinstated. The magnitude
of angle_crit is determined to be 90◦; all obtuse triangles are deleted in the first stage.

The performance of each agent i determines the best broker node combination, which
is presumed to exhaust the combination’s power for message pub/sub processing. It is
observed that extra processing power remains in the broker node combination. In view of
this, it is assumed that the combination does not reach the optimal status. The performance
of candidate broker i that is achieved in the available broker node combination j is given
by Equation (2):

per f ormanceij = −α×
(processed messageij

total processable messagesi
− 1
)2

+ 1 (2)

The ratio of the processed messages to the total processable messages of agent
i determines the current performance of this agent in the available broker node com-
bination j. Equation (2) implies that the foregoing ratio should approach 1. Moreover,
α indicates the strictness of processing the power evaluation: if α is large, then the differ-
ence between the number of processed messages and the maximum number of processable
messages is evaluated more strictly. In Equation (2), 1 is added to the equation for it to yield
a performance value, i.e., per f ormanceij, of less than 1; the highest expected performance
is 1. Note that α = 8 in the experiment.

For the iterative MARL process (the updating of available broker combinations is shown
in Algorithm 1), agent i remembers the best performance, max_per f ormancei, it experienced.
The reward of agent i in broker node combination j is the sum of the average broker per-

formance for combination j (i.e., ∑i per f ormanceij
o f candidate broker nodes) and the maximum performance

(i.e., max_per f ormancei) of each individual. The agent is likely to be selected in the best
broker node combination if it has exhibited acceptable performance in any of the explored
combinations. The reward of agent i of broker node combination j is shown in Equation (3):

rewardij =
∑i per f ormanceij

o f candidate broker nodes
+ max_per f ormancei. (3)

Electronics 2021, 10, 232 9 of 15

Then, the reward of broker combination j is calculated as the sum of individual broker
rewards (Equation (4)):

combination_rewardj = ∑
i

rewardij (4)

Algorithm 1 Two-Stage Hybrid Network Clustering using MARL

Input: initial network nodes, N0
01: initialize candidate broker nodes, CN← N0
02: while number of CN > min_k
03: apply Delaunay triangulation to CN and obtain seed point (SCN), vertices of Delaunay triangles (VCN)
04: delete elements of SCN that are centers of p% of the largest triangles made of VCN
05: delete elements of SCN that are centers of obtuse triangles made of VCN
06: use Drop_in with SCN and CN to obtain CN′

07: CN← CN′

08: end while
09: let each element of CN be agent i of MARL
10: initialize action—value function (Qij), combination (Sj), and max_rewardi = 0 for all agent i
11: for all episodes do
12: for combination j = 1, M do
13: for all agent i do
14: choose action ai with Qij or randomly by exploration policy
15: execute action ai and obtain Sj

′

16: obtain per f ormanceij

17: max_rewardi ← max
(

max_rewardi, per f ormanceij

)
18: Sj ← Sj

′

19: end for
20: obtain rewardij
21: update Qij with rewardij for all agent i
22: end for
23: end for
24: obtain best broker node combination and its positions with Qij for all agent i

In Algorithm 1, Qij is the action-value function of agent i in combination j; action ai is
the randomly selected or directional action of agent i determined by Qij. If ai = 0, then the
action chooses to maintain the state of agent i in combination j; if ai = 1, the action chooses
to change the state.

4.2. Algorithm 2: Naive k-Means Clustering Algorithm with SARL

Moreover, to compare with the proposed two-stage hybrid approach, an algorithm that
uses k-means clustering with SARL is introduced. The SARL explores the value of k from 0
to min_k and finds the optimum number of k, which is also the optimum number of brokers
in the given IoT environment. Except for the number of k, k-means clustering requires no
prior knowledge of SARL. In each iteration of SARL, k-means clustering is performed with
the given network nodes, and the centers of k clusters are obtained as brokers. Then, the
SARL evaluates each explored value of k. By applying k-means clustering to the network
nodes using the best number of brokers derived from SARL, the best positions of brokers
for k network clusters are obtained (Algorithm 2).

The action-value function in SARL is denoted as Q; action a is the randomly selected
action or the argmax action of Q at state S. The state, S, indicates the number of clusters in
k-means clustering. If a = 0, then the number of clusters is increased by 1; if a = 1, then the
current number of clusters is maintained. If a = 2, then the number of clusters is reduced by 1.

The basic process involved in the clustering algorithm is to group network nodes into
different clusters. The k-means clustering algorithm computes the distances among the
network nodes (N0) and builds k number of clusters. The hybrid algorithm computes the
distance between network nodes and selected candidate brokers in the combination. The

Electronics 2021, 10, 232 10 of 15

two-stage hybrid clustering algorithm has the same time complexity when the number of
selected candidate brokers is k. The k-means clustering algorithm is an iterative process;
thus, k-means clustering with SARL requires additional iterations to find the optimal
value of k and compared with the proposed two-stage hybrid method, it requires extra
computational time to build clusters.

Algorithm 2 k-means clustering with SARL to find k value

Input: initial network nodes, N0
01: initialize action-value function (Q) and state (S)
02: S← 2
03: for all episodes do
04: for all steps do
05: choose action a with Q or randomly by exploration policy
06: execute action a and obtain S′

07: perform k-means clustering using value of S′ as k
08: obtain reward r
09: update Q with reward r
10: end for
11: end for
12: obtain best k with Q
13: obtain best broker positions by performing k-means clustering with best k

4.3. Algorithm 3: k-Firefly Algorithm with SARL

In Algorithm 3, the process of the k-Firefly algorithm with SARL is introduced. We
adopt the idea of luminosity from the original firefly algorithm. The k number of fireflies
is located in randomly selected clients. The k-Firefly algorithm assumes that the brokers
should be allocated close to talkative network nodes (i.e., nodes with frequent message
publications). The fireflies try to find the most talkative network node within their reach-
able bounds. messagei, where i is the index of message publishers (i.e., network nodes),
is considered luminosity in the k-Firefly algorithm. The firefly flies from the starting node
to the most talkative network node it can seek.

Algorithm 3 k-Firefly Algorithm with SARL to find k value

Input: initial network nodes, N0
01: initialize action-value function (Q) and state (S)
02: S← 2
03: for all agent i do
04: luminosityi ← messagei
05: for all episodes do
06: for all steps do
07: choose action a with Q or randomly by exploration policy
08: execute action a and obtain S′

09: perform k-Firefly using value of S′ as k
10: obtain reward r
11: update Q with reward r
12: end for
13: end for
14: obtain best k with Q
15: obtain best broker positions by performing k-Firefly with best k

5. Results

The three clustering methods with 50, 100, 200, and 300 candidate broker nodes are
compared. The number of published messages and the position information for each
candidate broker node are randomly generated. We added reproducibility for comparison
between algorithms. Table 1 summarizes the values of min_k for the number of network
nodes; min_k is set as approximately 1/4 of the number of network nodes.

Electronics 2021, 10, 232 11 of 15

Table 1. Values of min_k for each number of network nodes.

Number of Network Nodes 50 100 200 300

min_k 13 22 49 76

The reinforcement learning of the algorithms has 200 episodes, each of which has
50 steps. The states are reset at the beginning of each episode, while the previously learned
experience is maintained. In each step, the two-stage hybrid clustering generates a broker
combination and evaluates the combination. In addition, the SARL algorithm yields the
value of k; then, k-means clustering, or k-Firefly algorithm is activated with the provided k.
The simple and effective action-value function of SARL (i.e., the SARL has only two actions:
increase k←k + 1 and decrease k←k − 1). The action space of single agent is restricted
on single axis (i.e., k-value). The search action over the single axis converges relatively
fast. There are 50 steps in every episode, and the probability of exploring reinforcement
learning decays throughout the episode; the learning rate is set as 0.3.

The processing times of the two-stage hybrid clustering, naive k-means clustering
method and k-Firefly method with the same number of selected brokers are compared
(Figure 6). The processing time is the overall running time of each algorithm. The two-stage
hybrid clustering requires a considerably shorter time to converge. With 300 network nodes,
the two-stage hybrid clustering algorithm only requires 11.6% and 5.9% of the processing
time compared with k-means clustering with SARL and k-Firefly with SARL, respectively.
The processing time of k-Firefly increases more rapidly. The processing time of k-Firefly
is greater than that of the naive k-means clustering due to the weak stopping condition.
The k-means clustering has a strong stopping condition (i.e., it stop the calculation when it
reaches the stable status). The fireflies in k-Firefly normally results in flying between two
network nodes. The fireflies themselves cannot determine which of the network nodes
will be a better one. Note that, all candidate broker nodes are agents in two-stage hybrid
clustering. Each candidate broker node needs to learn to change or maintain the current
state: to be the broker or not. The candidate broker nodes are sufficiently evaluated by the
two-stage hybrid clustering.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 16

The processing times of the two-stage hybrid clustering, naive k-means clustering

method and k-Firefly method with the same number of selected brokers are compared

(Figure 6). The processing time is the overall running time of each algorithm. The

two-stage hybrid clustering requires a considerably shorter time to converge. With 300

network nodes, the two-stage hybrid clustering algorithm only requires 11.6% and 5.9%

of the processing time compared with k-means clustering with SARL and k-Firefly with

SARL, respectively. The processing time of k-Firefly increases more rapidly. The pro-

cessing time of k-Firefly is greater than that of the naive k-means clustering due to the

weak stopping condition. The k-means clustering has a strong stopping condition (i.e., it

stop the calculation when it reaches the stable status). The fireflies in k-Firefly normally

results in flying between two network nodes. The fireflies themselves cannot determine

which of the network nodes will be a better one. Note that, all candidate broker nodes

are agents in two-stage hybrid clustering. Each candidate broker node needs to learn to

change or maintain the current state: to be the broker or not. The candidate broker nodes

are sufficiently evaluated by the two-stage hybrid clustering.

Figure 6. Processing times of algorithms for different numbers of network nodes.

The number of selected brokers presents the performance of each algorithm. We

conducted experiments on each algorithm for comparison (see the Table 2). The pro-

posed two-stage hybrid algorithm (Algorithm 1) shows better results in the conducted

experiment. The smaller number of brokers guarantees the higher utilization of brokers.

Algorithm 1 and Algorithm 2 show similar results with sufficient exploration. However,

Algorithm 1 shows higher performance in terms of processing time (see the Figure 6).

Table 2. Number of selected brokers for each number of network nodes.

Number of Network Nodes 50 100 200 300

Algorithm 1 3 10 23 35

Algorithm 2 5 11 21 41

Algorithm 3 9 24 43 53

Table 3 summarizes the results of the proposed two-stage hybrid clustering includ-

ing the first stage. Without the first stage, it is necessary to apply the MARL to all net-

work nodes and extra processing time is required. We conducted an experiment on

k-means clustering with SARL to show the effectiveness of the preprocessing stage. The

number of inputs for the clustering decreases with the preprocessing stage. The prepro-

cessing stage shows more effectiveness in the experiment with k-means clustering. The

processing time reduced by 15~20% with preprocessing stage. We found that the pro-

cessing time decreases regardless of the clustering algorithm of the second stage.

Figure 6. Processing times of algorithms for different numbers of network nodes.

The number of selected brokers presents the performance of each algorithm. We con-
ducted experiments on each algorithm for comparison (see the Table 2). The proposed
two-stage hybrid algorithm (Algorithm 1) shows better results in the conducted experiment.
The smaller number of brokers guarantees the higher utilization of brokers. Algorithm 1
and Algorithm 2 show similar results with sufficient exploration. However, Algorithm 1
shows higher performance in terms of processing time (see the Figure 6).

Electronics 2021, 10, 232 12 of 15

Table 2. Number of selected brokers for each number of network nodes.

Number of Network Nodes 50 100 200 300

Algorithm 1 3 10 23 35
Algorithm 2 5 11 21 41
Algorithm 3 9 24 43 53

Table 3 summarizes the results of the proposed two-stage hybrid clustering including
the first stage. Without the first stage, it is necessary to apply the MARL to all network
nodes and extra processing time is required. We conducted an experiment on k-means
clustering with SARL to show the effectiveness of the preprocessing stage. The number of
inputs for the clustering decreases with the preprocessing stage. The preprocessing stage
shows more effectiveness in the experiment with k-means clustering. The processing time
reduced by 15~20% with preprocessing stage. We found that the processing time decreases
regardless of the clustering algorithm of the second stage.

Table 3. Two-stage hybrid clustering with and without preprocessing stage (first stage).

Number of
Network Nodes

Number of Candidate
Broker Nodes min_k Number of

Selected Brokers
Processing

Time (s)

Two-stage hybrid clustering

50 16 13 3 72

100 42 22 10 353

200 70 49 23 1303

300 121 76 35 2927

Two-stage hybrid clustering
without first stage

50 - 13 13 111

100 - 22 31 417

200 - 49 56 1680

300 - 76 73 3918

Figure 7 shows a visual example of the two-stage hybrid clustering within a 200 m× 200 m
square area. A total of 30 network nodes are located in the test area. The green bars denote the
message publishing for each network node. The yellow points denote the best broker positions
identified by the proposed two-stage hybrid clustering algorithm. The network nodes nearest to
the yellow points are assigned as actual brokers.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 16

Table 3. Two-stage hybrid clustering with and without preprocessing stage (first stage).

Number of

Network Nodes

Number of Candidate

Broker Nodes
min_k

Number of Selected

Brokers

Processing Time

(s)

Two-stage hybrid

clustering

50 16 13 3 72

100 42 22 10 353

200 70 49 23 1303

300 121 76 35 2927

Two-stage hybrid

clustering without

first stage

50 - 13 13 111

100 - 22 31 417

200 - 49 56 1680

300 - 76 73 3918

Figure 7 shows a visual example of the two-stage hybrid clustering within a 200 m ×

200 m square area. A total of 30 network nodes are located in the test area. The green

bars denote the message publishing for each network node. The yellow points denote

the best broker positions identified by the proposed two-stage hybrid clustering algo-

rithm. The network nodes nearest to the yellow points are assigned as actual brokers.

Figure 7. Diagram of two-stage hybrid clustering with 30 network nodes.

6. Conclusions

In this paper, we introduce a two-stage hybrid network clustering algorithm. The

proposed two-stage hybrid algorithm consists of preprocessing stage and MARL stage.

Leveraging the proposed algorithm, the best broker node combination can be found in

the pub/sub-operated communication network.

6.1. Contribution of the Proposed Work

A two-stage hybrid clustering method determines the optimal distribution (i.e.,

number and position) of brokers in a pub/sub-operated communications system. The

proposed MARL for each network node is designed so that the node learns whether or

not to be a broker. The two-stage hybrid clustering employing MARL uses

three-dimensional data (i.e., number of message publications and positions). The MARL

combines three-dimensional Delaunay triangles and generates dynamic network clus-

tering. We expand the Delaunay triangulation to utilize higher-dimensional data, and the

position data of network nodes can be expanded from a plane to space.

The robustness of the proposed clustering method is proved in the dynamic IoT en-

vironments. It continuously configures communication clusters while the information in

the communication networks (i.e., number of message publications and positions of

network nodes) highly fluctuates. The two-stage hybrid clustering generates proper

clusters using rapid performance estimation and applies the fast-converging action-value

Figure 7. Diagram of two-stage hybrid clustering with 30 network nodes.

Electronics 2021, 10, 232 13 of 15

6. Conclusions

In this paper, we introduce a two-stage hybrid network clustering algorithm. The pro-
posed two-stage hybrid algorithm consists of preprocessing stage and MARL stage. Lever-
aging the proposed algorithm, the best broker node combination can be found in the
pub/sub-operated communication network.

6.1. Contribution of the Proposed Work

A two-stage hybrid clustering method determines the optimal distribution (i.e., num-
ber and position) of brokers in a pub/sub-operated communications system. The proposed
MARL for each network node is designed so that the node learns whether or not to be a bro-
ker. The two-stage hybrid clustering employing MARL uses three-dimensional data (i.e.,
number of message publications and positions). The MARL combines three-dimensional
Delaunay triangles and generates dynamic network clustering. We expand the Delaunay
triangulation to utilize higher-dimensional data, and the position data of network nodes
can be expanded from a plane to space.

The robustness of the proposed clustering method is proved in the dynamic IoT
environments. It continuously configures communication clusters while the information
in the communication networks (i.e., number of message publications and positions of
network nodes) highly fluctuates. The two-stage hybrid clustering generates proper
clusters using rapid performance estimation and applies the fast-converging action-value
function of multiple agents. Even under highly unstable conditions, IoT networks can
achieve optimum resilience using the proposed fast-converging MARL. The typical SARL
is observed to be unable to find the optimal number of brokers within a limited period of
time and number of explorations. Compared with a naive k-means clustering and k-Firefly
implemented SARL, the two-stage hybrid clustering has a great advantage in clustering
performance with fast converging time.

6.2. Threats of Validity

The dynamic communication environment may limit the practical applicability of
the two-stage hybrid clustering. The IoT nodes move place to place and the message
publication rate changes in real-time fashion. The proposed algorithm has a limitation to
the real-time learning. The two-stage hybrid clustering assumes a fixed message publication
rate and a static node distribution. The learning mechanism should be enhanced to be
applicable to the dynamic communication environment. One planned future enhancement
is to apply a knowledge transfer method. The a priori learned knowledge can be useful
for the dynamic network environment. To extend the previously learned knowledge,
a higher-level time-series learning method can be suggested. The proposed two-stage
hybrid algorithm only uses distribution (i.e., number and position) data and the volume
of message publications. However, general communication environments can use more
information to provide an improved communication experience: resource availability,
connection failure, encryptions, etc. Methods such as Principal Component Analysis
(PCA) and k-nearest neighbor classifiers can be applied in the preprocessing steps of
our proposed two-stage hybrid clustering. The added preprocessing with the selected
additional information can expand our approach to general communication environments.

In reality, the proposed MARL cannot guarantee the finding of optimal broker combi-
nations for every communication environment. To provide the strict guarantee of optimal
combination, we must build a mathematical model for broker positioning. All commu-
nication behaviors of network nodes should be modeled to a static form. The complete
understanding and abstracted presentations are the basic requirement for the mathematical
modeling. However, we cannot find an effective model to describe node behaviors such
as pub/sub operations and node position data. The complexity of representing the node
behaviors limits the development of a mathematical model and the application to obtain
the optimal combination. The proposed learning-based approaches have the flexibility to

Electronics 2021, 10, 232 14 of 15

describe the network environment and node behaviors. We expect that a future advanced
learning structure may achieve the completeness of mathematical modeling.

Author Contributions: Conceptualization, J.K. (Joohyun Kim), D.R., J.K. (Juyeon Kim) and J.-H.K.
(Jae-Hoon Kim); methodology, J.K. (Joohyun Kim), D.R. and J.K. (Juyeon Kim); experiment, J.K.
(Joohyun Kim), D.R. and J.K. (Juyeon Kim); validation, J.K. (Joohyun Kim) and J.-H.K. (Jae-Hoon
Kim); writing—original draft preparation, J.K. (Joohyun Kim); writing—review and editing, J.K.
(Joohyun Kim) and J.-H.K. (Jae-Hoon Kim). All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded in part by a grant from the Institute for Information and Communi-
cations Technology Promotion (IITP) supported by the Korean Government (Ministry of Science and
Information Technology) (Versatile Network System Architecture for Multi-Dimensional Diversity)
under Grant 2016000160, and in part by the National Research Foundation of Korea (NRF) grant
supported by the Korean Government (Ministry of Science and Information Technology) under Grant
2020R1F1A1049553.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yassein, M.B.; Shatnawi, M.Q.; Aljwarneh, S.; Al-Hatmi, R. Internet of Things: Survey and open issues of MQTT protocol.

In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS), Monastir, Tunisia, 8–10 May 2017; pp. 1–6.
2. Coates, A.; Ng, A.Y. Learning Feature Representations with K-Means. In Mining Data for Financial Applications; Springer Nature:

Boston, MA, USA, 2012; Volume 7700, pp. 561–580.
3. Yuan, C.; Yang, H. Research on K-Value Selection Method of K-Means Clustering Algorithm. J 2019, 2, 226–235. [CrossRef]
4. Hamerly, G.; Elkan, C. Learning the k in k-means. In Proceedings of the 16th International Conference on Neural Information

Processing Systems (NIPS’03), Bangkok, Thailand, 1–5 December 2003.
5. Klein, R. Voronoi Diagrams and Delaunay Triangulations. In Encyclopedia of Algorithms; Springer Nature: New York, NY, USA,

2016; pp. 2340–2344.
6. Okabe, A.; Suzuki, A. Locational optimization problems solved through Voronoi diagrams. Eur. J. Oper. Res. 1997, 98, 445–456. [CrossRef]
7. Jiang, N.; Deng, Y.; Nallanathan, A.; Chambers, J.A. Reinforcement Learning for Real-Time Optimization in NB-IoT Networks.

IEEE J. Sel. Areas Commun. 2019, 37, 1424–1440. [CrossRef]
8. Chu, M.; Li, H.; Liao, X.; Cui, S. Reinforcement Learning-Based Multiaccess Control and Battery Prediction With Energy

Harvesting in IoT Systems. IEEE Internet Things J. 2019, 6, 2009–2020. [CrossRef]
9. Leong, P.; Lu, L. Multiagent Web for the Internet of Things. In Proceedings of the 2014 International Conference on Information

Science & Applications (ICISA), Seoul, Korea, 6–9 May 2014; pp. 1–4.
10. De Oliveira, T.B.F.; Bazzan, A.L.C.; Da Silva, B.C.; Grunitzki, R. Comparing Multi-Armed Bandit Algorithms and Q-learning for

Multiagent Action Selection: A Case Study in Route Choice. In Proceedings of the 2018 International Joint Conference on Neural
Networks (IJCNN), Rio, Brazil, 8–13 July 2018; pp. 1–8.

11. Sanyam, K. Multi-Agent Reinforcement Learning: A Report on Challenges and Approaches. Available online: https://arxiv.org/
abs/1807.09427v1 (accessed on 25 July 2018).

12. Shahrampour, S.; Rakhlin, A.; Jadbabaie, A. Multi-armed bandits in multi-agent networks. In Proceedings of the 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2786–2790.

13. Wang, J.; Cao, J.; Stojmenovic, M.; Zhao, M.; Chen, J.; Jiang, S. Pattern-RL: Multi-robot Cooperative Pattern Formation via Deep
Reinforcement Learning. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning and Applications
(ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 210–215.

14. Liu, C.; Liu, F.; Liu, C.Y.; Wu, H. Multi-Agent Reinforcement Learning Based on K-Means Clustering in Multi-Robot Cooperative
Systems. Adv. Mater. Res. 2011, 216, 75–80. [CrossRef]

15. Longo, E.; Redondi, A.E.; Cesana, M.; Arcia-Moret, A.; Manzoni, P. MQTT-ST: A Spanning Tree Protocol for Distributed MQTT
Brokers. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland,
7–11 June 2020; pp. 1–6.

16. Jutadhamakorn, P.; Pillavas, T.; Visoottiviseth, V.; Takano, R.; Haga, J.; Kobayashi, D. A scalable and low-cost MQTT broker
clustering system. In Proceedings of the 2017 2nd International Conference on Information Technology (INCIT), Nakhon Pathom,
Thailand, 2–3 November 2017; pp. 1–5.

17. Koziolek, H.; Grüner, S.; Rückert, J. A Comparison of MQTT Brokers for Distributed IoT Edge Computing. In Mining Data for
Financial Applications; Springer: Cham, Switzerland, 2020; Volume 12292, pp. 352–368.

18. Lin, K.; Xia, F.; Fortino, G. Data-driven clustering for multimedia communication in Internet of vehicles. Future Gener. Comput. Syst.
2019, 94, 610–619. [CrossRef]

19. Ally, J.S.; Asif, M.; Ma, Q. Energy-Efficient MTC Data Offloading in Wireless Networks Based on K-Means Grouping Technique.
J. Comput. Commun. 2019, 7, 47–61. [CrossRef]

http://doi.org/10.3390/j2020016
http://doi.org/10.1016/S0377-2217(97)80001-X
http://doi.org/10.1109/JSAC.2019.2904366
http://doi.org/10.1109/JIOT.2018.2872440
https://arxiv.org/abs/1807.09427v1
https://arxiv.org/abs/1807.09427v1
http://doi.org/10.4028/www.scientific.net/AMR.216.75
http://doi.org/10.1016/j.future.2018.12.045
http://doi.org/10.4236/jcc.2019.72004

Electronics 2021, 10, 232 15 of 15

20. El Khrdiri, S.; Fakhet, W.; Moulahi, T.; Khan, R.; Thaljaoui, A.; Kachouri, A. Improved node localization using K-means clustering
for Wireless Sensor Networks. Comput. Sci. Rev. 2020, 37, 100284. [CrossRef]

21. Nasser, A.M.T.; Pawar, V.P. Machine learning approach for sensors validation and clustering. In Proceedings of the 2015
International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), Mandya, India,
17–19 December 2015; pp. 370–375.

22. Yang, Z.; Feng, L.; Chang, Z.; Lu, J.; Liu, R.; Kadoch, M.; Cheriet, M. Prioritized Uplink Resource Allocation in Smart Grid
Backscatter Communication Networks via Deep Reinforcement Learning. Electron. 2020, 9, 622. [CrossRef]

23. Narayanan, B.N.; Hardie, R.C.; Kebede, T.M.; Sprague, M.J. Optimized feature selection-based clustering approach for computer-
aided detection of lung nodules in different modalities. Pattern Anal. Appl. 2017, 22, 559–571. [CrossRef]

24. Messay-Kebede, T.; Narayanan, B.N.; Djaneye-Boundjou, O. Combination of Traditional and Deep Learning based Architectures
to Overcome Class Imbalance and its Application to Malware Classification. In Proceedings of the NAECON 2018—IEEE National
Aerospace and Electronics Conference, Dayton, OH, USA, 23–26 July 2018; pp. 73–77.

25. Chang, Y.; Tu, Z.; Xie, W.; Yuan, J. Clustering Driven Deep Autoencoder for Video Anomaly Detection. Min. Data Financ. Appl.
2020, 329–345. [CrossRef]

26. Zedadra, O.; Guerrieri, A.; Jouandeau, N.; Spezzano, G.; Seridi, H.; Fortino, G. Swarm intelligence-based algorithms within
IoT-based systems: A review. J. Parallel Distrib. Comput. 2018, 122, 173–187. [CrossRef]

27. Sun, W.; Tang, M.; Zhang, L.; Huo, Z.; Shu, L. A Survey of Using Swarm Intelligence Algorithms in IoT. Sensors 2020, 20, 1420.
[CrossRef] [PubMed]

28. Cheung, A.K.Y.; Jacobsen, H.-A. Publisher Placement Algorithms in Content-Based Publish/Subscribe. In Proceedings of the
2010 IEEE 30th International Conference on Distributed Computing Systems, Genova, Italy, 21–25 June 2010; pp. 653–664.

29. Zhao, Y.; Kim, K.; Venkatasubramanian, N. DYNATOPS: A dynamic topic-based publish/subscribe architecture. In Proceedings
of the 7th ACM International Conference on Distributed Event-Based Systems, Arlington, TX, USA, 29–30 June 2013; pp. 75–86.

30. Jiang, S.; Cao, J.; Wu, H.; Yang, Y. Fairness-based Packing of Industrial IoT Data in Permissioned Blockchains. IEEE Trans. Ind. Inform.
2020, 1. [CrossRef]

31. Bohler, C.; Cheilaris, P.; Klein, R.; Liu, C.-H.; Papadopoulou, E.; Zavershynskyi, M. On the Complexity of Higher Order Abstract Voronoi
Diagrams. Available online: https://www.sciencedirect.com/science/article/pii/S0925772115000346 (accessed on 5 May 2015).

32. Fortune, S. Voronoi diagrams and Delaunay triangulations. Computing in Euclidean Geometry; World Scientific: Singapore, 1995; pp. 225–265.

http://doi.org/10.1016/j.cosrev.2020.100284
http://doi.org/10.3390/electronics9040622
http://doi.org/10.1007/s10044-017-0653-4
http://doi.org/10.1007/978-3-030-58555-6_20
http://doi.org/10.1016/j.jpdc.2018.08.007
http://doi.org/10.3390/s20051420
http://www.ncbi.nlm.nih.gov/pubmed/32150912
http://doi.org/10.1109/tii.2020.3046129
https://www.sciencedirect.com/science/article/pii/S0925772115000346

	Introduction
	Related Works
	Delaunay Triangulation and Voronoi Diagram
	Multi-Agent Reinforcement Learning (MARL)
	Clustering Applications in Wireless Sensor Networks
	Clustering Applications in Other Studies
	Clustering with Swarm Intelligence-Based Algorithms
	Broker Assignment

	Design of the Two-Stage Hybrid Network Clustering Model
	Delaunay Triangulation and Deletion Methods for Fixing Candidate Broker Nodes
	Best Broker Node Combination by MARL

	Design of Experiments
	Algorithm 1: Two-Stage Hybrid Network Clustering Using MARL
	Algorithm 2: Naive k-Means Clustering Algorithm with SARL
	Algorithm 3: k-Firefly Algorithm with SARL

	Results
	Conclusions
	Contribution of the Proposed Work
	Threats of Validity

	References

