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Abstract: Plagiarism of integrated-circuit (IC) layout is a problem encountered both in academia and
in industry. A procedure was proposed that compares IC layouts based on the physical representation
of particular electrical nets, i.e., on the shape of the features drawn on conducting layers (metals and
polysilicon). At the heart of this method is the Needleman–Wunsch algorithm, used for decades
in tools aligning sequences of amino acids or nucleotides. Here, it is used to quantify the visual
similarity of nets within the pair of layouts being compared. The method was implemented in
Python and successfully used to identify clusters of similar layouts within two pools of designs: one
composed of logic gates and one containing operational transconductance amplifiers.

Keywords: plagiarism detection; copyright protection; microelectronics education; integrated circuit;
layout; Needleman–Wunsch algorithm

1. Introduction

Software tools are used to detect plagiarism in many fields. The most mature and
widespread is software analyzing natural language in the search of plagiarism in student
essays, theses, and other bodies of text [1]. In addition, gaining in popularity are tools for
comparing source code files—see [2] for an overview and [3,4] for an example of latest
advances. On the other hand, much less work seems to have been dedicated to creating
equivalent systems for comparing integrated circuit (IC) layouts. One of the few exceptions
is described in the series of publications [5–8]. A methodology for IC layout comparison
is proposed in [5], while software based on this methodology is described in [6–8]. The
procedures presented there are mostly based on comparing statistical parameters of layouts
such as the number of metal layers used, cumulative area of shapes on each layer, or
number of devices and other shapes. As such, this methodology is mostly relevant to
large VLSI systems. The comparison on the level of individual cells is limited to XOR-
ing the cells’ layouts to detect similarly shaped and placed components. This approach
surely works for cases of downright plagiarism of VLSI circuits, where the copied design
is synthesized either using standard cells from the same provider as the original or using
(nearly) exact copies of those standard cells. However, cases where the layout of one circuit
is just “heavily inspired” by another may go undetected.

The method proposed earlier by the authors of this paper in [9,10] was dedicated
specifically to the quantification of similarity between the layouts of relatively simple
building blocks. That effort was motivated by cases of plagiarism encountered by one of
the authors during his teaching career. Students participating in a microelectronics course
lack both experience and time, which vastly restricts the complexity of circuits that can
be used as assignments. Thus, simple blocks such as logic gates, flip-flops, or amplifiers
are used over and over as assignments. This repeatability makes copying a very tempting
choice for students. Indeed, cases of plagiarism were frequently observed by the authors.
Of course, the visual similarity of the two layouts is not a proof of cheating, and each case
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must be analyzed individually. Still, a tool screening a large pool of designs in search or
pairs (or larger clusters) of similar-looking solutions would be welcome.

The two most obvious criteria that can be used to compare two layouts are location of
devices (transistors, diodes, and passives) and the shape of interconnects (“wires”) linking
those devices. The transistor-based approach has been exhaustively described in [9,10].
One might argue, however, that the network of interconnects is a better “fingerprint” of a
circuit layout than the transistor placement. Even if the location of individual transistors
was fixed, various designers may still choose different ways to route wires between them.
The opposite is not true, since the shape of the interconnect network largely determines the
location of transistors. Moreover, if the definition of “interconnect” is extended to include
transistor gates, the shapes of interconnects provide almost the complete information about
the layout appearance.

2. Methods

The method presented in this paper compares IC layouts based on the shapes of
their nets. A net is defined here as the set of electrically connected shapes on conducting
layers, i.e., polysilicon and metal layers. All the polygons drawn on those layers are
extracted from the original layout. Subsequently, nets are formed by identifying subsets
of polygons connected by vias or contacts. Finally, all the polygons within each net are
merged (flattened) to remove superfluous vertices. The layout of a logic gate along with its
nets extracted this way are shown in Figure 1.

metal 1

poly

pdiff

ndiff

nwell

metal 2
poly

+
metal 1

+
metal 2

(a) (b)

Figure 1. One of the logic gates analyzed in this work: (a) its full layout and (b) its nets after merging.

The merging stage transforms a layout from a large set of relatively simple shapes
into a smaller set of polygons that are more complex and thus more distinct. Inclusion of
polysilicon features, being mostly MOSFET gates, makes this method sensitive not only to
the shapes of interconnects but also to the size and orientation of MOSFETs.

The proposed method of plagiarism detection has two main components: identifi-
cation of corresponding nets in a given pair of layouts and quantification of the visual
similarity between corresponding nets. These two stages are described below.

2.1. Identification of Corresponding Nets

As shown in the next subsection, the cost of comparing two nets (i.e., quantifying
their visual similarity) is approximately quadratic in their size. This relatively high com-
putational complexity makes it impractical to compare all the possible net pairs in two
layouts in the search for the best match. Thus, some other way must be found to identify
the corresponding nets in the layouts being compared. If the circuit diagrams of these
designs were guaranteed to be identical, one could try analyzing their topologies to find
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corresponding nets. However, this assumption is not always met. Therefore, a more flexible
approach is proposed that pairs nets based on the shape of their convex hulls.

First, the centroid of every net is shifted to (0, 0), and the net’s convex hull H is built
(see Figure 2a). Then, for every possible pair of nets in the two designs, the intersection
and union of their convex hulls are found (Figure 2b). Subsequently, for every pair of nets,
say m and n, the following expression is calculated:

S(Hm ∩ Hn)

S(Hm ∪ Hn)
, (1)

where S(·) denotes the surface area of a given polygon. The net that maximizes this ratio
for a given net in the other layout is considered its counterpart. Please note that overlapping
convex hulls of nets instead of the nets themselves makes the method more robust against
slight differences in net shapes. The union of the hulls is used in the denominator to
prevent the largest nets from being wrongly matched to some other nets just due to their
size. This method is not guaranteed to couple every net in one layout with exactly one
net in the other. This may be seen as an advantage, because if the number of nets differs
between the layouts being compared, no net is left without a counterpart.

H A∩HB

Net A Net B

(a)

(b)

H
A

H
B

H A∪HB

(0, 0) (0, 0)

(0, 0) (0, 0)

Figure 2. (a) Two nets A and B and their convex hulls HA and HB. The cross denotes the net’s
centroid after shifting to (0, 0). (b) Union HA ∪ HB and intersection HA ∩ HB of those hulls.

2.2. Comparison of Corresponding Net Shapes

The initial approach adopted in this work relied on comparing nets based on their
fundamental geometric properties. Those included the centroid, surface area, perimeter,
moment of inertia, and moment invariants. However, it soon turned out that a single
parameter, or even a linear combination of all the parameters listed above, is insufficient
to capture enough properties of a polygon to reliably express visual similarity between
two nets.

A better approach relies on representing the border (perimeter) of a polygon as a
sequence of fixed-length vectors. Since most shapes on IC layouts are aligned along one of
the two principal axes, those vectors point in one of four directions. Thus, each of them
can be encoded as one of the four cardinal directions, i.e., N, S, W, or E. This way, the
entire border of a polygon can be encoded as a string composed of those four symbols. The
application of this idea to the nets from Figure 2 is shown in Figure 3. The black dots mark
the initial point of the sequences.
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Figure 3. The nets from Figure 2 with their borders encoded as sequences of symbols starting from the
top-left corner (black dot).

Once two nets are encoded as strings, the dissimilarity between them may be expressed
in a quantitative manner. In the simplest case, it is defined as the edit distance or the
minimum number of basic operations necessary to align those strings, i.e., transform one
into the other. Two such transformations are possible:

• In the case of a mismatch between corresponding symbols in the two strings, a symbol
copied from one of them replaces its counterpart in the other.

• A symbol copied from one string is inserted into a gap made between symbols in the
other string. This is equivalent to deleting the symbol from the original string. Either
way, the length of one of the strings is modified.

Figure 4 shows one possible alignment of the strings describing nets A and B from
Figure 3.

Net A: EEEESEEEESWWW--WSSSWNNNNWWWN
Net B: EEEENEEEESWWWSWWSSSWNNN--WWN
Figure 4. One of the optimal alignments of strings representing the polygons from Figure 3. A
mismatch is marked in yellow, while insertions are marked in blue.

Aligning these strings requires inserting two “missing” symbols into the top string
and two other into the bottom string. The gaps made for the inserted symbols are denoted
as dashes and marked in blue. In spite of the four insertions, though, a mismatch between
letters S and N (marked in yellow) was unavoidable in the presented example. Other
solutions, i.e., different locations of insertions and mismatches, are possible for this example.
It can be easily shown, however, that the total number of those basic operations cannot be
less than five, which is the actual edit distance between those two strings.

If a negative (or zero) weight is assigned to each matching pair of letters while in-
sertions and mismatches carry positive weights, the best alignment between two strings
can be defined as one that minimizes the sum of those weights. Finding such an align-
ment becomes an optimization problem known as edit distance minimization (see, e.g., [11],
Chapter 6.3). This is the task performed, e.g., by spell checkers searching a dictionary
for the best match for a misspelled word. In the simplest formulation of this problem, a
mismatch and an insertion incur the same penalty. However, differentiating the cost of
these two transformations may be useful in the context of comparing polygons with respect
to their shape. An insertion is usually performed to match two identically oriented edges
of different lengths. The last two insertions in Figure 4, for instance, are necessary because
nets A and B differ in the length of the branches pointing left and down. Still, such a size
difference between two nets does not make them much different visually. A mismatch, on
the other hand, corresponds to a pair of similarly sized but differently oriented edges—see
the mismatch in Figure 4, corresponding to differently oriented “jogs” in the horizontal
parts of nets A and B. Differences in direction are easier to spot visually than differences in
length. More importantly, the presence of differently oriented edges may suggest that the
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two interconnects are routed into different parts of their respective cells, thus making the
entire cells look different. For these reasons, it seems reasonable to penalize mismatches
more heavily than insertions.

The best alignment between two sequences of symbols is usually found using dynamic
programming. In the case where the costs of insertions and mismatches are allowed to differ
from each other, the procedure of choice is the Needleman–Wunsch algorithm (NWA) [12].
This method was used for decades to align sequences of amino acids or nucleotides.
However, it has also found numerous applications outside biology and chemistry.

One of several possible formulations of the NWA uses a positive cost d of an insertion
as well as a function s(i, j), whose value depends on whether the i-th symbol in the first
string and the j-th symbol in the second string match or not. Comparing an m-letter
string with another, n-letter string, starts with building an m-by-n matrix F. Its entry (i,
j) corresponds to the cost of optimal alignment of the first i characters of the first string
with the first j characters of the second string. The strings are analyzed from left to right;
therefore, the matrix is filled out starting from the top-left corner (alignment of two empty
strings) until the bottom-right entry is inserted (cost of aligning the complete strings). The
matrix is initially empty with the exception of the first column and first row. The i-th entry
in the first column corresponds to the cost of aligning the first i characters in the first string
to an empty string. This task requires copying all the first i letters from the first string into
an empty sequence, with each such insertion entailing the cost d. Thus, subsequent entries
in the first column are d, 2d, . . . , md. Similarly, the j-th entry in the first row corresponds to
the cost of aligning the second string to an empty sequence, so this row is filled out in the
same way. The rest of matrix F is then filled out from left to right and from top to bottom,
which corresponds to aligning increasingly long subsequences of both strings starting from
the beginning. Every step must minimize the aggregate cost of such an alignment, i.e., the
cost including all the previous steps. Matching the i-th symbol in the first string with the
j-th symbol in the second one may be performed in one of three ways:

1. The i-th symbol is copied from the first string into the second one;
2. The j-th symbol is copied from the second string into the first one;
3. No modifications are made, and the cost of this step depends on whether or not the

symbols match.

Out of those three possibilities, the operation minimizing the aggregate cost is chosen.
Using the matrix notation, this choice can be written as:

F[i, j] = min


F[i− 1, j] + d 1©,

F[i, j− 1] + d 2©,

F[i− 1, j− 1] + s(i, j) 3©.

(2)

After filling out a row (or column), the procedure is performed for the next row (or
column) until the entire matrix is filled. The bottom-right entry is the last to be evaluated.
It contains the full cost of matching the entire strings.

The following example illustrates the determination of optimal alignment cost of
strings a = NESW and b = NEENW. The costs of single-symbol mismatch and match are
assumed here to be:

s(i, j) =

{
2, a[i] 6= b[j] (mismatch),

0, a[i] = b[j] (match),
(3)

while the insertion cost is d = 1. These values reflect the idea that, as previously stated, a
mismatch should be penalized more heavily than an insertion, while a match should entail
no cost. Figure 5 shows the matrix used to achieve the optimal alignment.
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– N E E N W

– 0 1 2 3 4 5

N 1 0 1 2 3 4

E 2 1 0 1 2 3

S 3 2 1 2 3 4

W 4 3 3 3 4 3

Figure 5. A matrix built with the Needleman–Wunsch algorithm for strings NESW and NEENW.

Arrows leaving a cell point to all the optimal alignments of strings that can be trans-
formed into the given string by making one of the basic operations. An upward-pointing
arrow leaving cell (i, j) means that the optimal choice is to copy the i-th symbol from NESW
into NEENW—case 1© in Formula (2). An insertion from NEENW into NESW (case 2©) is
indicated by a left-pointing arrow. A diagonal arrow means that matching the i-th character
of NESW with the j-th character of NEENW is the best choice (case 3©). Pursuing the path
from the bottom-right cell to the top-left one while performing the appropriate operation
at each step allows one to reconstruct the optimally aligned strings. In some cases, two or
three choices result in the same cost, which is reflected by two or three arrows leaving the
cell. The example at hand has several optimal solutions, two of which have been plotted as
colored paths. The solid orange line corresponds to string b being transformed into NE–SW,
while the dashed blue line corresponds to this string being transformed into NES–W. All
the optimal alignments have a cost of 3, which is the bottom-right entry in the matrix. The
actual transformations are of no interest in the context of IC layout comparison. What is
important to note, however, is that if both strings are encoded as sequences of a similar
length, say l characters, the entire procedure of filling the matrix takes O(l2) time.

The proportion between the number of errors, i.e. insertions and mismatches, and
the string length after the alignment (aligned strings have by definition identical lengths)
is used as a measure of distance between the nets represented by those strings. In the
case of strings in Figure 4, the distance is thus 5/28. On the level of entire layouts, the
distance ∆ between a pair of designs is defined as the average distance between all the pairs of
corresponding nets.

2.3. Algorithm Tuning

The procedure outlined above has several parameters, whose values affect both its
execution time and accuracy. Some suggestions are provided below as to the choice of
those values. This choice was validated using three benchmarks composed of operational
transconductance amplifiers (OTAs), NAND gates, and OR gates. Within each benchmark,
some layouts were considered “visually similar”. Table 1 sums up the composition of
each benchmark.

Table 1. Benchmarks used for tuning the parameters of the proposed algorithm. The symbols in
column “Circuits” correspond to layouts in Figures A1 and A2 in Appendix A.

Benchmark Circuits # Pairs # Similar Pairs

OTAs A, B, E, G, J, M, R, S 28 4
NANDs 1, 3, 4, 5, 6, 7 15 6
ORs 1, 2, 3, 4, 6, 7, 8 21 6
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The layouts of those circuits were designed for a legacy technology used at the authors’
university to teach microelectronic design basics. The minimum MOSFET gate length in
this technology is 1 µm. The logic cells had a height between 30 and 54 µm, while the OTA
layouts measured between 150 and 200 µm on a side.

One of the essential parameters to consider while encoding the nets as strings is the
symbol length λ, defined here as the length of a net edge to be encoded as a single symbol
(“character”) in a string. Intuitively, a smaller λ should provide better resolution, and hence
superior accuracy, at the expense of a longer running time. The minimum value worth
considering is the feature size of the target technology. Such a choice, however, would lead
to nets being encoded as very long strings, which in turn would negatively impact the
execution time. Therefore, the symbol length was tentatively chosen as 5µm, i.e., five times
the process feature size and approximately one-tenth the logic gate height. This choice is
justified later in this section.

Another important decision had to be taken regarding the encoding of edges shorter
than λ as well as the “remainders” of those edges whose lengths are not a multiple of λ.
Such edges and edge parts may be either encoded as symbols or ignored, as shown in
Figure 6a,b, respectively.

(a) (b)

N

N

S

E

N

N

N

S

E

E

S

λ

Figure 6. Two possible approaches to encoding polygon edges whose lengths are not a multiple of
the symbol length λ: (a) edges (and edge fragments) shorter than λ are encoded as symbols; (b) such
edges are ignored.

Solution (a) was used in this work, since it has been shown to consistently lead to
smaller errors at the expense of producing slightly longer strings. However, it was decided
to ignore any edges shorter than 0.75 µm. This serves to smooth out small “jogs” in
net borders.

As explained before, the insertion cost d used in the NWA is allowed to differ from the
mismatch cost. What matters is actually the ratio between those two quantities; therefore,
the mismatch cost was assumed to be unity. As for the insertion cost d, several values were
tested while running the proposed procedure on the benchmarks. The NAND and OR
gates were pooled together in this experiment in order to increase the sample size. OTAs
were analyzed separately because of their significantly larger dimensions. Within each of
those groups, all possible pairwise comparisons were performed. Statistical distributions
of distance ∆ obtained for several values of d were approximated using kernel density
estimations. The distributions were plotted in Figure 7 separately for visually similar pairs
(green) and for different ones (red). Since some differences in net shapes and sizes occur
even in “similar” designs, increasing the insertion cost inevitably translates into greater
values of ∆ both for different pairs and for similar ones. What matters, however, is not
the value of ∆ but the separation between the two distributions. Ideally, the “most similar
among the different” pairs should have a ∆ greater than the “most different among the
similar” ones. As regards OTAs, this is indeed the case irrespective of d. As for logic
gates (Figure 7b), the separation is never perfect, but it improves as d drops below unity.
Interestingly, reducing the insertion cost d further, below about 0.5, does not change the
distributions any more. This may be because insertions become so inexpensive that any
shape difference between nets can be canceled by inserting an appropriate number of
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symbols into one or both nets, without the need to accept a relatively expensive mismatch.
Based on the results of this experiment, the value d = 0.5 was chosen for the rest of
this work.
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Figure 7. Distribution of distance ∆ calculated for two benchmarks using various values of insertion
cost d: (a) benchmark composed of OTAs; (b) benchmark composed of NAND and OR gates.

The same experimental setup was used to validate the choice of symbol length. As
shown in Figure 8, the value λ = 5 µm used so far provides a better separation of “similar”
and “dissimilar” cases than λ = 10 µm. Further reduction of λ to 2 µm does not visibly
affect the distributions while producing longer symbol strings, which adversely affects the
computation time.

To conclude, the most reasonable settings for the proposed procedure seem to be:
symbol length λ about five times the minimum feature size and insertion cost d = 0.5.
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Figure 8. Distribution of distance ∆ calculated for two benchmarks using various values of symbol
length λ: (a) benchmark composed of OTAs; (b) benchmark composed of NAND and OR gates.

3. Results

The proposed method was implemented in Python. The third-party Polygon3 package
was used for operations such as polygon merging or determination of convex hulls [13].
After the identification of key parameter values as explained in Section 2.3, the program
was tested on student projects designed for the same 1 µm technology as the benchmark
circuits. A proprietary tool Excess [14], developed at the authors’ university, was used to
extract nets from the layouts.

The rest of this section is divided into two parts. Section 3.1 discusses the quality of
clustering, i.e., grouping layouts based on their similarity, achieved with the proposed
method. To facilitate the visual assessment of the obtained results, this analysis was per-
formed on relatively small samples of circuits of two types: 15 logic gates and 17 operational
transconductance amplifiers. The samples were built so as to contain circuit pairs with a
varying degree of similarity, ranging from nearly identical to definitely different.
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Section 3.2, on the other hand, shows how the performance of the proposed algorithm
is impacted by factors such as the average number of nets in a layout or the number of
symbols used to encode a single net. Analytical estimates are confirmed by an experiment
performed on a sample of 59 OTAs.

3.1. Accuracy

First, a set of 15 logic gates was analyzed, including 7 NAND- and 8 OR-gates. The
results of this pairwise comparison are presented in Figure 9a in the form of a dendro-
gram [15]. The layouts of all the gates are presented in Figure A1 in Appendix A. To make
visual inspection easier, these layouts are arranged in the same order as in the dendrogram.
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Figure 9. Application of the proposed method to the benchmarks: (a) benchmark composed of
NAND and OR gates analyzed together; (b) benchmark composed of OTAs.

In a dendrogram, the height of a link between two nodes (gate layouts in this case) or
node clusters corresponds to the distance ∆ between them. In the case of single layouts,
the distance between them is evaluated using the approach presented in Section 2. The
distance between entire clusters, however, may be defined in many alternative ways [15].
It may be as simple as the distance between the “most distant” or, conversely, the “nearest”
members of the two clusters. The former measure proved too restrictive for our needs,
while the latter tended to build oversized clusters. Hence, more complex approaches were
tried, exploiting the concept of weighted averaging or variance analysis. Among those
methods, the one minimizing the Ward variance yielded clusters that best reflected the
visual similarity between some layouts and difference between others [16]. This method
was chosen for use throughout the rest of the study.

In the first experiment the NAND and OR gates were deliberately analyzed together to
see if the proposed method can separate gates implementing those two logic functions just
based on the shapes of their nets. As shown in Figure 9a, such separation proved almost
perfect, with 6 out of the 7 NAND gates forming a separate cluster. Within the all-NAND
group, a cluster of four gates was identified (marked in green), whose distance from one
another is particularly small. As can be seen in Figure A1, each of those four gates (also
drawn in green) has a layout containing four C-shaped nets and one I-shaped net. Other
NAND gates were drawn differently, which also sets them apart in the dendrogram. A
group of four mutually similar layouts also exists among the OR gates (marked in orange).
Visual inspection of layouts in Figure A1 (also drawn in orange) makes evident both their
mutual similarity and their difference from other OR-gate designs.

A similar experiment was carried out with operational transconductance amplifiers
(OTAs). Those circuits exceed logic gates in terms of the size and complexity of their nets.
The dendrogram for a pool of 17 OTAs is shown in Figure 9b. The layouts themselves
are presented in Figure A2 in Appendix A, with the order and coloring the same as in
the dendrogram. Let us analyze layout pairs starting from those corresponding to the
bottom-most dendrogram links. The device placement in layouts G and M is identical, with
some interconnects routed differently in an attempt to conceal the cheating. However, since
MOSFET parts, i.e., polysilicon gates and metal regions covering the drain and source areas,
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constitute significant portions of nets analyzed in this work, the different interconnect
routing was not sufficient to blur the similarity of those two layouts. The same goes for pair
E-J and, to a lesser degree, F-K. The similarity of designs A and B results from the almost
identical, intricate networks of interconnects linking transistors in the left-hand side of the
design. This similarity was detected in spite of other parts of the designs being noticeably
different. In addition, the interconnect patterns in designs R and S were correctly classified
as similar in spite of substantially different aspect ratios of those two layouts. Other design
pairs are visibly distinct.

3.2. Performance

An estimate of the computational complexity of the proposed method is presented
below. Since comparison makes sense only for similarly complex layouts, we assume the
same number of nets n in each circuit. The number of vertices describing a given net is
denoted as p. After the net is transformed into a string of symbols, its length is denoted as
l. Since every edge in a polygon translates into at least one symbol, it is assumed that l ≥ p
for a given net.

The initial step, i.e., finding the convex hull for each net in each layout, takes O(p log p)
time per net [17]. Then, for each net in one layout, its convex hull is successively overlapped
with the hulls of all the nets in the other layout. Each such operation is followed by the
calculation of the intersection and union of the overlapped hulls. These operations take
O(p′ log p′) time per pair, where p′ is the total number of vertices in the pair of convex hulls.
One can assume that the convex hull of a net contains fewer vertices than the net itself, such
that p′ < p. Then, the surface area of the resulting intersection and union are calculated,
which takes O(p′). This takes place for each pair of nets in the two layouts, such that the
total complexity of identifying all the corresponding nets in a layout pair is bounded by
O(n2 p log p). Finally, the NWA is performed for each of the n pairs of corresponding nets
with a total time complexity of O(nl2).

For circuits the size of an operational amplifier, with about a dozen nets, most of them
encoded as strings of 60 to 300 symbols, the computation time seems dominated by the
NWA. To validate this claim, a pairwise comparison of 59 OTA layouts was run on a Linux
machine with an AMD Ryzen 5 4600H and 16 GB RAM. Figure 10 shows the relationship
between the layout comparison time and the string length. The running time was in each
case divided by the average number of nets in the pair of layouts being compared. In
addition, the string lengths were averaged over all the nets in both layouts. To confirm
the O(nl2) estimate of computation time, a power-law curve was fitted to the data. The
fit resulted in an exponent of 1.997, which agrees well with the assumption of a quadratic
relationship between the average string length and computation time per net. Attempts to
replace the average string length with the maximum or median length led to relationships
with much smaller coefficients of determination. Thus, the net count and the average
number of symbols used to encode a net in a given layout are sufficient to predict the
analysis time with good accuracy.

The convex hulls of the n nets in a layout can be found independently from one
another, just like the (approximately) n2 hull intersections and unions. Likewise, the NWA-
based computations of n distances between pairs of corresponding nets can be performed
concurrently. Therefore, the procedure of comparing two layouts can easily be parallelized.
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Figure 10. Computation time per net as a function of the average string length in the pair of OTA
layouts. A power-law fit is also shown. The coefficient of determination R2 ≈ 0.88.

4. Discussion

The procedure proposed in this paper, implemented in Python, proved successful in
detecting all the pairs and larger clusters of similar designs in two pools of layouts: logic
gates and OTAs. It is convenient to plot the analysis results as a dendrogram. The height
of the link between dendrogram nodes reflects accurately the visual dissimilarity of the
corresponding layouts. The user of the tool can subsequently inspect the designs visually,
working his or her way through pairs with increasing values of ∆ (e.g., pairs G-M, E-J etc.
in Figure 9b) until no similarity is noticed. Such inspection, limited to several layout pairs,
is relatively efficient. In the absence of the tool, a visual search for similar shapes within a
pool of dozens of layouts would be an overwhelming task.

The choice of symbol length λ is crucial to obtaining accurate results in a reasonable
time. The average number of symbols used for encoding a net has a relatively strong
(quadratic) impact on the total analysis time. The results obtained in this work suggest
that splitting the average net into about 100 to 200 symbols provides good accuracy even
for relatively large cells such as OTAs. For smaller cells with simpler nets, such as logic
gates, as few as 20 to 30 symbols per net proved sufficient. These numbers correspond to
the symbol length λ five times the minimum feature size used in the layouts.

Cell dimensions are not normalized in any way prior to the comparison. The reason
is that the size and aspect ratio are regarded as traits that make a cell unique. One might
argue that without size normalization the proposed approach is vulnerable to cases where
a substantially resized copy of the original cell is created just to make the two look different.
This scenario, however, is unlikely since the designer, whether a professional or a student,
is almost always forced to make the layout as compact as possible. This reasoning is true
as long as all the layouts being compared are designed for the same technology or at least
for technologies with the same minimum feature size. If this is not the case, some scaling
between the process nodes must be applied. Also, for every pair of cells, it might be worth
performing two comparisons, with the second one preceded by flipping one of the cells
horizontally. Vertical flipping seems to make less sense, especially in the case of logic cells
as long as some assumption is made as to the location of the ground and power rails.

The analysis of layouts in Figure A1 (see Appendix A) clearly demonstrates that, in
spite of the overall visual similarity of some layouts, the exact sizes, shapes, and locations
of their corresponding nets are far from identical. Hence, it is unlikely that simply XOR-ing
layout images would be enough to distinguish between similar and different layouts.
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The following abbreviations are used in this manuscript:

IC integrated circuit
NWA Needleman–Wunsch algorithm
OTA operational transconductance amplifier
VLSI very large-scale integration

Appendix A. Layouts

Presented at the end of this paper are designs, i.e., nets extracted from the layouts,
used in Section 3 for validating the proposed method. The ordering and coloring of the
designs are the same as in the corresponding dendrograms.

nand_6 nand_5

nand_3nand_4nand_1 nand_7

or_3 or_8 or_1 or_2

nand_2

or_5 or_7 or_4 or_6

Figure A1. Nets extracted from the pool of NAND and OR gates whose mutual similarity was shown
in the dendrogram in Figure 9a.
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Figure A2. Nets extracted from the 17 OTAs whose mutual similarity was shown in the dendrogram in Figure 9b.
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