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Abstract: In this study, a model based on the improved grey wolf optimizer (GWO) for optimizing
RVFL is proposed to enable the problem of poor accuracy of Oil layer prediction due to the random-
ness of the parameters present in the random vector function link (RVFL) model to be addressed.
Firstly, GWO is improved based on the advantages of chaos theory and the marine predator algorithm
(MPA) to overcome the problem of low convergence accuracy in the optimization process of the
GWO optimization algorithm. The improved GWO algorithm was then used to optimize the input
weights and implicit layer biases of the RVFL network model so that the problem of inaccurate and
unstable classification of RVFL due to the randomness of the parameters was avoided. MPA-GWO
was used for comparison with algorithms of the same type under a function of 15 standard tests.
From the results, it was concluded that it outperformed the algorithms of its type in terms of search
accuracy and search speed. At the same time, the MPA-GWO-RVFL model was applied to the field
of Oil layer prediction. From the comparison tests, it is concluded that the prediction accuracy of
the MPA-GWO-RVFL model is on average 2.9%, 3.04%, 2.27%, 8.74%, 1.47% and 10.41% better than
that of the MPA-RVFL, GWO-RVFL, PSO-RVFL, WOA-RVFL, GWFOA-RVFL and RVFL algorithms,
respectively, and its practical applications are significant.

Keywords: grey wolf optimizer; marine predators algorithm; random vector functional link network;
oil layer prediction

1. Introduction

Petroleum exploration is a complex system that involves a wide range of activities and
high-risk values. In logging technology, the approach to petroleum reservoir delineation
usually involves the following. Firstly, the raw logging data is used for the correction of
non-stratigraphic factors such as environmental influences and for the standardization
of the logging data. The models and methods provided by the logs are then used to
perform calculations of porosity, permeability and oil saturation (or water saturation).
Finally, reservoir categories are determined based on upper and lower criteria for the
electrical properties of these reservoir parameters and other logging indicators. Although
this method has some advantages, an accurate mathematical model needs to be developed.
At the same time, it is subject to strict conditions. Such a structured approach to semi-
structured and unstructured problems makes it difficult to achieve satisfactory results.
From a mathematical point of view, it follows that the logging interpretation problem
actually refers to the solution of a mapping problem. When the hypothetical model matches
the actual distribution of the samples, high prediction accuracy is obtained. Nassan et al. [1]
simulated the two-phase immiscible flow of water and heavy oil on the famous inverted
five-point model. The comparison between the simulation and the actual results showed
that the model was in good agreement. Roman et al. [2] analyzed and assessed the mining-
geological and mining-technical conditions of the open pit “Severny” using mathematical
models. The technical and economic indexes of open-pit mining were effectively improved.
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Sun et al. [3] established the mathematical model of the variation of dynamic liquid level
height with time in intermittent shutdown periods and intermittent pumping periods and
proved that the model has better oil production efficiency and higher economic benefits.

Neural networks have the ability to approximate arbitrary non-linear mappings by
learning. When they are applied to pattern recognition and prediction, they are not limited
by the constraints of the non-linear mapping model. Therefore, neural networks are
necessary to solve the Oil layer prediction problem.

The adoption of an appropriate neural network model becomes critical to the accuracy
of the prediction. Chen et al. [4] developed a method to invert the logging tool signals from
formation parameters by artificial neural networks, which provided a reliable basis for Oil
layer prediction. Pan et al. [5] used an improved BP (backpropagation) neural network for
the dynamic prediction of oil reservoir parameters and the better results that they achieve.
Osman et al. [6] developed an ANN (artificial neural network) model based on the fluid
properties of petroleum reservoirs, which accurately predicted the formation volume factor.
However, it has been found over the past decades that the inappropriate learning step size
of BP neural networks leads to a very slow convergence rate of the algorithm, which tends
to result in local minima. As a result, a large number of iterations are often required to
obtain a more satisfactory accuracy. This problem has been the main bottleneck limiting
its development in application areas for some time. Later, Huang et al. [7] proposed a
simple and efficient single hidden layer feedforward neural network (SLFN) algorithm,
which is also known as an extreme learning machine (ELM). ELM randomly selects the
input weights and hidden layer bias of the network and computes the output weights by
parsing. Its learning speed is extremely fast, and it effectively overcomes the shortcomings
of traditional BP neural networks.

The random vector function link (RVFL) network [8] is well known as a very effective
and fast prediction model. Tang et al. [9] proposed an ensemble empirical mode decomposi-
tion (EEMD) technique for the RVFL model to improve prediction accuracy. Bisoi et al. [10]
combined variational mode decomposition (VMD) with an RVFL neural network model to
improve both the running time and prediction accuracy of the code. Yu et al. [11] synthe-
sized the impact of five different strategies in the predictive performance of RVFL neural
network models from the perspective of the diversity of integration strategies. The results
show that the prediction accuracy of the integrated RVFL model with the combination of
multiple strategies is significantly improved compared to that of the single RVFL model.
Chai et al. [12] imported measurements obtained from the Hong Kong Observatory into
the RVFL model to form prediction intervals for solar irradiance time series, and their
results proved to be very effective in terms of reliability and clarity, and to be of significant
help in the generation of solar energy. Hailiang et al. [13] performed feature extraction on
face data and fed the feature set into the RVFL model for recognition, which led to a large
improvement in accuracy, sparsity and stability. Zhou [14] proposed a regularized random
vector function linkage (RRVFL) chromophore light estimation algorithm, which improved
the prediction accuracy of RVFL, but still did not fundamentally solve the parameter
randomness of RVFL caused by the algorithm instability problem.

In recent years, computer algorithm researchers have been inspired by the population
intelligence of natural organisms and proposed population intelligence algorithms [15],
which are widely used in many fields such as signal processing [16], image processing [17],
production scheduling [18], pattern recognition [19], automatic control [20] and mechanical
design [21]. Successive population intelligence algorithms include genetic algorithms (GA)
that mimic the evolutionary mechanisms of organisms in nature [22], differential evolu-
tion algorithms (DE) that optimize search through cooperation and competition among
individuals within a population [23], immune algorithms (IA) that simulate the learning
and cognitive functions of the biological immune system [24], ant colony algorithms (AS)
that simulate the collective path-finding behavior of ants [25], particle swarm algorithms
(PSO) that simulate the behavior of flocks of birds (PSO) [26], the simulated annealing
algorithm (SAA) [27], taboo search algorithms (TS) that simulate the human intellectual
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memory process [28], etc. They are mainly used to solve the problem of getting into
local optimal solutions, and their principles are simple and have good results in solving
non-linear problems.

The MPA [29] and GWO algorithms [30] are used in this study to simulate predator
hunting behavior, and both algorithms have the advantage of high search capability, as
demonstrated by multiple sets of experiments using multiple functions in the literature.
Because they show significant advantages in solving optimization problems, they are
widely used to solve continuous and engineering optimization problems. Sharma et al. [31]
applied the GWO algorithm to the problem of minimizing the operating cost under solar
cell constraints and demonstrated better performance. Barman et al. [32] combined GWO
with SVM to provide a solution for forecasting the electric load demand. Zhou et al. [33]
proposed A hybrid grey wolf optimizer optimized ELM model that effectively reduces jitter
in the sliding mode control of robotic manipulators. Abdel et al. [34] proposed a hybrid
COVID-19 detection model based on the improved marine predator algorithm (IMPA)
for X-ray image segmentation for effective detection and diagnosis of viral infections.
Bayoumi et al. [35] applied the marine predator algorithm (MPA) to extract the parameters
of the solar cell tri-photovoltaic model to improve the accuracy of the estimated values.
Chen et al. [36] proposed a support vector machine (MPA-SVM) technique based on the
MPA for rolling bearing fault diagnosis, and the results demonstrated the effectiveness
of the fault diagnosis method, which was able to diagnose bearing faults with 100%
accuracy. Aly et al. [37] used MPA to optimize the maximum power point tracking (MPPT)
model for fuel cells (FC) to achieve the lowest output power fluctuation with fast tracking
speed. Fan et al. [38] proposed a logical opposition-based learning (LOBL) mechanism to
improve the MPA model by adding new position update rules, inertia weight coefficients
and non-linear step control parameters to achieve the strategy of improving the MPA
performance in terms of accuracy, convergence speed and stability. Hoang et al. [39] used
MPA to identify a set of suitable SVM hyperparameters (including penalty coefficients
and kernel function parameters) to optimize the SVM training phase and applied the
improved SVM model to satellite remote sensing data for the purpose of identifying the
current state of urban green spaces. Liu et al. [40] used a sine and cosine algorithm with
the marine predator algorithm for random initialization population screening, and the
optimized model was used for color constancy assessment of dyed fabrics to achieve the
best assessment results. Houssein et al. [41] proposed a hybrid model based on the marine
predator algorithm (MPA) and convolutional neural network (CNN): MPA-CNN for the
ECG-type identification prediction problem, which showed better computational time and
accuracy in performance.

Inspired by the above literature, we develop an improved GWO algorithm optimized
RVFL model for Oil layer prediction. The main contributions are as follows.

(1) In the population intelligence optimization algorithm, because the quality of the initial
population affects the global convergence speed and the final solution quality of the
swarm optimization algorithm, a chaotic initialization strategy is introduced to make
the beginning distribution of the wolf population more random, the MPA algorithm
is used to optimize the GWO and the MPA-GWO algorithm is obtained, which is
experimentally compared with the current popular population intelligence algorithm
to verify its convergence speed and convergence. The superiority in convergence
speed and accuracy is verified.

(2) Since the input weights and deviations in RVFL are set randomly, the prediction
accuracy of the model is not high enough, and the stability is poor. In order to
overcome this problem, the MPA-GWO algorithm is used to optimize the RVFL to get
the optimal input weights and hidden layer deviations.

(3) For the first time, the optimized RVFL model is applied to Oil layer prediction, and
the convergence and stability of the algorithm are examined by convergence curves
and box plots, and the superiority of the MPA-GWO-RVFL model is demonstrated in
comparison with the same type of model.
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Part 2 of this paper introduces the MPA, GWO and RVFL algorithms. Part 3 uses the
MPA algorithm to improve the GWO algorithm and conducts experimental comparison
analysis. Part 4 describes the operation flow and specific process of the MPA-GWO-RVFL
model, illustrates the method of Oil layer prediction and verifies the improved prediction
model in terms of prediction accuracy, stability and convergence performance by analyzing
data processing, algorithm parameter setting and experimental results. Section 5 is the
conclusion of the paper.

2. Preparatory Knowledge
2.1. Random Vector Functional Link Network RVFL Algorithm

The backpropagation algorithm in ANN has the disadvantages of slow convergence
and long learning time. In contrast, the RVFL neural network randomly assigns input
weights and biases, uses least squares to train the output weights, does not perform the
connection of processing units in the same layer and the feedback connection between
different layers, which can make up for the ANN defects [42], has a good non-linear fitting
ability. Ren et al. [43] compared the application of RVFL with an ordinary artificial neural
network (ANN) in the field of wind power and found that RVFL has better performance.
Zhang et al. [44] proved that RVFL is superior to ELM through experiments and comparison
of 16 different benchmarks from different fields. Peng et al. [45] applied RVFL and ELM
to the emotion recognition task of EEG and found that RVFL was superior to ELM in
performance, while both showed excellent performance. The RVFL model structure is
shown in Figure 1.
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Figure 1. Structure of RVFL neural network.

In the following, each layer of the RVFL model is interpreted.

(1) Input layer

The main role of the input layer is to input a training set {(xn, yn)} with U training
samples u = 1, 2, . . . , U; x is an n dimensional input variable, x ∈ Rn; y is the desired output
variable, y ∈ RU . The analysis in this paper yields a training sample space of {(xτ , yτ)}U

τ=1,
xτ is the 5-dimensional input variable at τ time, xτ = (Tτ

ai
, Tτ

ei
, Tτ

wi
, Tτ

ai,in
, Tτ

ai,out
); yτ is the

output variable at τ time, yτ = Tτ+1
ei
− Tτ

ei
.

(2) Hidden layer

The implicit layer can establish the activation function h value of the output of each
implicit layer node, which is obtained in this paper by the sigmoid function h, which serves
to transform the input variables linearly and can be expressed as bellow.

h(x, w, b) =
1

1 + exp{−wTx + b}∗
(1)
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where w and b are the weights and biases from the input layer to the hidden layer, respec-
tively, independent of the training data and are determined before the learning process
begins. Ultimately, the implicit layer kernel mapping matrix H is calculated as follows for
the output layer component.

H =

 h1(x1) . . . hL(x1)
... . . .

...
h1(xU) . . . hL(xU)

 (2)

where L denotes the number of nodes in the hidden layer.

(3) Output layer

Calculating the weights from the hidden layer to the output layer β is a central part of
the learning process of the RVFL neural network and according to the standard regularized
least-squares principle to find β.

β∗ = argmin
β∈R

1
2
‖Hβ−Y‖2

2 +
λ

2
‖β‖2

2 λ> 0 (3)

where Y is a column vector yu consisting of the training sample space corresponding to xu;
λ denotes a constant. The final weights can be obtained β denoted as bellow.

β = (HT H + λI)
−1

HTY (4)

where I denotes the unit matrix. At this point, the learning process is complete, and the
test output of the RVFL model is obtained, denoted as below.

ˆ
y =

L

∑
l=1

βlh(x, ωl , bl) (5)

Although the RVFL model has a fast convergence speed and short learning time, its
input weights and hidden layer bias are randomly determined, which largely affects its
performance. Therefore, this paper uses an intelligent optimization algorithm to filter
out the best parameter values after iteration so as to ensure the accuracy and stability of
RVFL applications.

2.2. Grey Wolf Optimizer GWO

The basic idea of the GWO is to simulate the predatory behavior of a grey wolf pack
by finding a better location from the prey and moving in the direction closest to the prey
to achieve goal optimization. Grey wolves live mainly in packs, and usually, a grey wolf
pack contains 5 to 12 grey wolves. In a small pack, there is always only one top wolf,
and they are responsible for all decision-making matters of the entire pack, including
hunting, migration and foraging. The other, lower-level grey wolves are divided into three
classes, beyond which are the pups. In order to describe the hierarchy of grey wolves more
scientifically, the pack is divided into four levels from the highest to the lowest: α, β, δ and
θ, the first level is the wolf α, which is also known as the “head wolf”; β is the next level
of α wolf, which acts as the α wolf’s “assistant”; the common wolf δ is in the third level;
and the lowest level is called θ, representing the pack, which is responsible for following
the above three levels of wolves. Grey wolf optimizer is divided into three main steps:
hunting, rounding up and attacking.

2.2.1. Hunting Process

An important criterion for the grey wolf searching for prey is the distance between
them and the prey. The position of the grey wolf during the first t iteration of the search is
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set to X(t), and the position of the prey is XP(t), then the distance between the grey wolf
and the prey D can be expressed as:

D =
∣∣C · Xp(t)− X(t)

∣∣
C = 2r2
r2 = rand(0, 1)

(6)

where C denotes the random weight, which is a random number in [0, 2], and its ran-
domness helps the algorithm jump out when it falls into a local optimum, providing an
important role in avoiding local optima.

2.2.2. Roundup Process

In the process of grey wolf encircling prey, the relationship between grey wolf and
prey can be modeled by different step lengths and distances to achieve the purpose of
encircling prey. The formula is as follows.

Xd
i (t + 1) = Xd

P(t)− Ad
i · Dd

i
Dd

i =
∣∣∣Cd

i · Xd
p(t)− Xd

i (t)
∣∣∣

Ad
i = 2ar1 − a

Cd
i = 2r2

a = 2− t/tmax
r1 · r2 = rand(0, 1)

(7)

where Ad
i · Dd

i denotes the enclosing step; tmax denotes the maximum number of iterations;
t denotes the current number of iterations; parameter a denotes the convergence factor,
its value decreases linearly from 2 to 0 during the exploration process of the grey wolf.
Random initialization of Ad

i and Cd
i ensures that the grey wolf can easily reach the global

optimal position during the exploration process.

2.2.3. Attack Process

By updating the location information through the α, β, δ wolves, it is able to accu-
rately determine the location of the target prey and achieve an attack on it. The specific
mathematical relationship equation is as follows.

X1 = Xα − A1 · Dα

X2 = Xβ − A2 · Dβ

X3 = Xδ − A3 · Dδ

X = (X1 + X2 + X3)/3

(8)

where X1, X2, X3 denote the positions of the α, β, δ wolves; A1, A2, A3 denote the three
random numbers; A1 · Dα, A2 · Dβ, A3 · Dδ denote the prey encirclement steps of α, β, δ;
and X denote the final position of the θ wolf pack in the prey attack. The above equations
all use vectors and therefore apply to arbitrary dimensions.

GWO has the following advantages when compared with other optimization algo-
rithms: (1) It has faster convergence speed and stronger local search capability. (2) It has
lower space complexity. (3) The principle of GWO is simple, with few parameters, easy to
operate and implement. However, GWO has the shortcoming of insufficient global search-
ability. In a GWO calculation, the initialized three groups of head wolves are replaced
by individuals with better adaptation values in the iteration; that is, if all three fall into a
local optimum, the whole population cannot seek a better solution at this time. This can
be understood as follows: when the decision maker of the pack misjudges the location of
the prey emergence, then all the encirclement actions of the grey wolves will be ineffective.
Furthermore, experience shows that it may still face the difficulty of falling into a local
optimum in the face of highly complex functions. For this reason, the MPA algorithm is
used below to improve it and enhance the optimality finding ability.
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2.3. MPA Algorithm
2.3.1. Population Location Initialization Phase

Similar to most metaheuristic algorithms, MPA randomly initializes prey locations
within the search space to initiate the optimization process. The mathematical description
is as follows.

Xij = lb + rand(ub− lb) i = 0 . . . n, j = 0 . . . d (9)

where Xij denotes the j dimensional coordinates of the first i population, n is the size of the
population, d is the dimension, i.e., the dimension of the solution. ub and lb are the upper
and lower boundaries of the search space and rand is a random number between [0, 1].

2.3.2. Optimization Phase

At the beginning of the iteration, i.e., Iter < 1
3 Max_Iter, this phase is mainly used for

the global search of the solution space, which is mathematically described as follows. ste
→
p sizei =

→
RB ⊗ (E

→
l itei −

→
RB ⊗ Pr

→
e yi) i = 1, . . . n

Pr
→
e yi = Pr

→
e yi + P ·

→
R ⊗ ste

→
p sizei

(10)

where ste
→
p sizei is the step size of this stage; RB is a vector of random numbers generated by

the normal distribution of Brownian motion; ⊗ represents the term-by-term multiplicative
operator; P is the step control factor, a constant 0.5; R is a random uniformly distributed
value within [0, 1]; Iter is the current iteration number; Max_Iter is the maximum itera-
tion number.

In the middle of the iteration, i.e., 1
3 Max_Iter < Iter < 2

3 Max_Iter, this phase tran-
sitions from a global search of the solution space to a local search of the current optimal
solution position in the solution space. The position is updated by the following equation. ste

→
p sizei =

→
RL ⊗ (E

→
l itei −

→
RL ⊗ Pr

→
e yi) i = 1, . . . n/2

Pr
→
e yi = Pr

→
e yi + P ·

→
R ⊗ ste

→
p sizei

(11)

{
ste
→
p sizei =

→
RB ⊗ (E

→
l itei −

→
RB ⊗ Pr

→
e yi) i = n/2, . . . n

Pr
→
e yi = Pr

→
e yi + P · CF⊗ ste

→
p sizei

(12)

where CF = (1− Iter
Max_Iter

)
(2 Iter

Max_Iter )

(13)

where RL is a vector of random numbers generated during the Lévy flight phase; CF is an
adaptive parameter used to control the predator’s movement stride.

At the end of the iteration, i.e., Iter > 2
3 Max_Iter, this phase focuses on a local search

for the location of the current optimal solution in the solution space. It is mathematically
described as follows. ste

→
p sizei =

→
RL ⊗ (

→
RL ⊗ E

→
l itei − Pr

→
e yi) i = 1, . . . n

Pr
→
e yi = E

→
l itei + P · CF⊗ stepsizei

(14)

2.3.3. Vortex Formation and Fish Aggregation Device Effects (FADS)

Fish aggregation devices (FADs) or eddy effects typically alter the foraging behavior of
marine predators, a strategy that enables MPAs to overcome the early convergence problem
and escape local extremes during the search for an optimal value. It is mathematically
described as follows.

Pr
→
e yi =

{
Pr
→
e yi + CF[

→
Xmin +

→
R ⊗ (

→
Xmax −

→
Xmin)]⊗

→
U i f r ≤ FADS

Pr
→
e yi + [FADs(1− r) + r](P

→
r eyr1 − P

→
r eyr2) i f r > FADS

(15)
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where FADS denotes the probability of influencing the search process, which is usually set

to 0.2,
→
Xmax is the vector consisting of the maximum value of the searched boundary,

→
Xmin

is the vector consisting of the minimum value of the searched boundary and the subscripts
r1 and r2 denote the random indices consisting of the predator matrices, which are binary
vectors consisting of 0 and 1.

3. GWO Improved by MPA
3.1. GWO Improved by MPA

The problems with the GWO optimization algorithm are as below.

(1) The initial population individuals of the basic GWO algorithm are generated ran-
domly before the population evolves iteratively, which may lead to a poor diversity
of the population.

(2) From Equations (2)–(8), we can see that ω wolves update their positions under the
leadership of α wolves, β wolves and δ wolves, and when they are all in the local
optimum, each wolf in the pack may tend to be in the local optimum due to the
influence of these three wolves, and the global searchability is insufficient.

In this paper, to solve the above problems, the following improvements are made to
the GWO algorithm.

(1) Introduce a chaos strategy when initializing the population so that individuals are
distributed as evenly as possible in the search space.

(2) To further increase the merit-seeking capability, MPA is used to find three optimal
wolves α, β, δ to enhance the global exploration capability of the GWO algorithm.

3.2. Population Initialization Based on Chaos Theory

Chaos is a universal phenomenon, which is a highly unstable and unpredictable mo-
tion of a deterministic system in a finite phase space with characteristics such as periodicity,
randomness and regularity. In this paper, we will fully extract and capture the informa-
tion in the solution space through chaotic mapping. One of the widely used mapping
mechanisms in the study of chaos theory is logistic mapping; its mathematical iterative
equation is:

λt+1 = µ× λt(1− λt), t = 0, 1, 2, · · · , T (16)

where λt is a uniformly distributed random number on the interval [0, 1] and λ0 /∈
{0, 0.25, 0.5, 0.75, 1}T is required to be the predetermined maximum number of chaotic
iterations. µ is required to T ≥ D be the chaotic control parameter in this algorithm. When
µ = 4, the system will be in a fully chaotic state.

We use the chaotic variables generated λ by Equation (16), randomly selected data
among the elite predators for chaos processing, mapped to the chaotic interval [ fmin, fmax]
according to Equation (9). The chaos treatment allows for finding more random solutions
while maintaining the optimal information of the optimal solution. The expression is:

X j
i = fmin + λj × ( fmax − fmin) i = 0 . . . n, j = 0 . . . d (17)

where X j
i is the coordinate of the j-th dimension of the i-th search agent and λj is the

coordinate of the j-th dimension λ after internal random ordering.
Chaotic sequences are used to initialize each subpopulation so that the initialized

individuals can be uniformly distributed in the search space to improve the diversity of
the population.

3.3. MPA-GWO Algorithm Flow

The main process of the MPA-GWO algorithm is as follows.

(1) Parameter initialization. Initialization settings were made for the population NM
in the MPA algorithm, maximum number of Iter_Max iterations, fish aggregation
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device effect coefficients FADs, initialization P iterations, number of initialization iter-
ations iter, and population size NG in the GWO algorithm, total number of iterations
Iter_Max, constants ε, initialization a, C, A.

(2) Random population generation using chaotic strategies in the search space of the
problem to be solved.

(3) Calculate the prey location and construct the prey matrix.
(4) Calculate the fitness values, search for the best in the population, and construct the

elite matrix.
(5) Computational updates of prey locations from the beginning, middle and end of

the iteration; updates of prey locations based on FADS; and completion of memory
storage and updates of elite locations based on prey locations.

(6) Whether the current number of iterations iter is equal to the maximum number of
iterations Iter_Max, if satisfied, the three elite matrices are output, and the optimal
solution is assigned to wolf − a, the 2nd ranked optimal solution is given to wolf − b
and the third optimal path is given to wolf − c. Position X1, X2, X3 of the grey wolf α,
β, δ being composed.

(7) Calculate the fitness value of each individual {f (XI), i = 1 . . . N} and rank them, and
record the top three individuals in terms of fitness value as α, β and δ respectively,
and record their positions as Xα, Xβ and Xδ.

(8) Update the location of individual grey wolves to find the optimal solution.
(9) The maximum number of GWO iterations is reached, and the optimal result is saved

and output.

The MPA-GWO algorithm flow is shown in Figure 2.

3.4. Experimental Comparison Numerical Optimization Experiments

In this study, five other optimization algorithms are set up for comparison experiments
with the proposed MPA-GWO-RVFL algorithm, including MPA-GWO, WOA, MPA, GWO,
PSO and GWFOA [46]. The experimental environment is a PC with the following configu-
ration: Windows 10 64-bit, Intel Core I5-3210M2.50 GHz, 8 G RAM, MATLAB R2012a.

3.4.1. Experimental Settings and Algorithm Parameters

Fifteen standard test functions were selected to test the algorithms to verify their per-
formance. They were shown in Table 1. Since the results of each algorithm are randomized
during the run, in order to obtain a fair comparison, each comparison algorithm will be
run 30 times independently across all test functions with a population size of 50 and a
maximum number of iterations set to 1000, and then the resulting data will be averaged
and standard deviated.

3.4.2. Benchmark Test Functions

The parameter settings of these 15 standard test functions have been widely used in
verifying the validity of metaheuristics. It is known that it is difficult for an algorithm to
fit all the test functions. Therefore, the 15 test functions are selected with diversity so that
the experimental results obtained can reflect the algorithm’s merit-seeking ability more
objectively and comprehensively.

Five high-dimensional single-peaked test functions (F1(x)~F5(x)), which have only
one global optimum but no local optimum, can be used to test the local searchability and
convergence speed of the algorithm. Three high-dimensional multi-peaked test functions
(F6(x)~F8(x)) have multiple local optima, in contrast to high-dimensional single-peaked
functions, which makes it more difficult for the algorithm to solve high-dimensional multi-
peaked test functions than to solve single-peaked functions. Therefore, such a function
can be used to test the detection ability of the algorithm, i.e., global searchability. The
fixed-dimensional multimodal function (F9(x)~F15(x)) has multiple local optima like the
high-dimensional multimodal test function but differs in that it has a lower number of
dimensions than the high-dimensional multimodal function, and therefore, a relatively
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smaller number of local optima. Then, like the high-dimensional multimodal test function,
the fixed-dimensional multimodal test function can also be used to test the global search
performance of the algorithm. The table Dim refers to the dimensionality of the standard
test function, fmin refers to the theoretical optimum of the standard test function and Range
is the range of the search space.
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3.4.3. Experimental Results and Analyses

In this subsection, comparative numerical optimization experiments are performed
for MPA-GWO, WOA, MPA, GWO, PSO and GWFOA. The convergence curves are shown
in Figure A1.
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Table 1. Description of unimodal benchmark functions.

Function Dim Range fmin

F1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−10, 10] 0

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30 [−100, 100] 0

F4(x) = max
i
{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =
n
∑

i=1
ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

F6(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30 [−5.12, 5.12] 0

F7(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

30 [−32, 32] 0

F8(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] −418.9829

F 9 (x) =

(
1

500 +
25
∑

j=1

1
j+∑2

i=1(xi−aij)
6

)−1
2 [−65, 65] 1

F10(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.00030

F11(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2
2 [−5, 5] −1.0316

F12(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2] 3

F13(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij

(
xj − pij

)2
)

3 [1, 3] −3.86

F14(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij

(
xj − pij

)2
)

6 [0, 1] −3.32

F15(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363

From Figure A1, it can be seen that on F1(x)~F5(x), MPA-GWO converges significantly
faster than other algorithms as well as has better convergence accuracy. On the F5(x) upper,
all functions converge more slowly, and MPA-GWO converges to the best value, which
reflects that MPA-GWO is not easily trapped in a local optimum overall. In the test of
high-dimensional single-peaked functions, the MPA-GWO algorithm shows its superior
and stable performance, which indicates that it is effective and feasible in solving high-
dimensional space problems. The MPA-GWO convergence speed on F6(x)~F8(x) is the
fastest, and there is also better convergence accuracy, which shows that MPA-GWO is
better than other algorithms in jumping out of the local optimum and finding better
solutions. The overall reflects that the MPA-GWO algorithm is significantly superior and
stable in performance than other algorithms in solving Kor-dimensional multi-peaked test
functions, which verifies its strong global search capability. From F9(x)~F15(x), on the first
five functions, MPA-GWO reflects the fastest convergence speed and higher convergence
accuracy. Although MPA-GWO on F15(x) converges slowly, it jumps out of the local
optimum at a later stage and finds the optimal value closer to theory. In general, on
the fixed-dimensional multimodal functions, MPA-GWO’s ability to jump out of the local
optimum is better than other algorithms, and the stability and effectiveness of the algorithm
are verified.
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The test results for the single-peak function, the high-dimensional multi-peak function
and the fixed-dimensional multi-peak function are listed in Table A1. Ave and Std denote
the average solution over 30 independent experiments and the standard deviation of the
results over 30 runs, respectively. Due to the stochastic nature of the swarm intelligence
algorithm, such statistical experiments are necessary to ensure the validity of the data.

For these five high-dimensional single-peak test functions F1(x)~F5(x), it can be seen
from Table A1 that the MPA-GWO algorithm exhibits superior performance over other
algorithms on these five test functions. In these five test functions, it is clearly shown
that MPA-GWO obtains better results than other algorithms in both mean and standard
deviation, and the convergence accuracy is substantially improved compared with other
algorithms. More noteworthy, in four of the functions tested, IEO takes the ideal optimal
value of 0 every time. The variance of the MPA-GWO algorithm is much smaller than other
algorithms, which fully illustrates the stability of the MPA-GWO algorithm’s stability.

For the high-dimensional multi-peak test function F6(x)~F8(x), it can be seen from
Table A1 that MPA-GWO performs significantly better than the other algorithms on these
three standard test functions. Compared with other algorithms, it can be seen that MPA-
GWO performs optimally and most consistently, as evidenced by being the smallest in
both mean and standard deviation. Notably, the theoretical optimum of zero is achieved
on both F6(x), F8(x).

For the fixed-dimensional multimodal function (F9(x)~F15(x)), Table A1 shows the
data comparison of all algorithms to optimize the fixed-dimensional multimodal function.
According to the comparison of mean and standard deviation in the table, MPA-GWO
achieves better mean and standard deviation for the F9(x), F12(x) and F13(x) test functions;
in medium F10(x), MPA achieves the optimal mean and standard deviation, MPA-GWO is
second; in medium F11(x), MPA-GWO has the same mean and less standard deviation than
the four functions GWO, WOA and GWFOA; in medium F14(x), GWFOA achieves the
optimal mean and MPA-GWO is the next best; in F15(x), MPA-GWO achieved the optimal
mean and standard deviation together with MPA. The overall reflects that MPA-GWO has
stronger global searchability among the fixed-dimensional multimodal functions.

4. RVFL Based on MPA-GWO for Oil Reservoir Prediction
4.1. Design of Oil Layer Recognition System

As mentioned above, the prediction performance of RVFL is mainly affected by the
input weights and the hidden layer bias, which directly affect the prediction effect of the
model. To this end, we propose an improved MPA-GWO-RVFL model, whose main idea is
to optimize the two-parameter pairings of RVFL by using the good optimizing ability of the
above optimization algorithm, and after a certain number of iterations, the best parameter
values are filtered out, so as to improve the RVFL prediction capability. Then, we apply
MPA-GWO-RVFL to oil logging and verify the effectiveness of this algorithm by using oil
data provided by an oil field.

The block diagram of the MPA-GWO-RVFL-based Oil layer prediction system is
shown in Figure 3.

4.2. RVFL Model Optimization

The steps of the MPA-GWO-RVFL model are as follows.

1. Data acquisition and pre-processing

The oil logging data in this paper is obtained from the actual data measured by
logging tools in an oil field in China (Xinjiang). The data pre-processing mainly focuses
on denoising. In addition, because the attributes have different magnitudes and value
ranges, these data need to be normalized first so that the sample data range is between
[0, 1], and then the normalized influence factor data are substituted into the network for
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training and testing to produce the results. One of the formulas for sample normalization
is shown below.

x =
(x− xmin)

xmax − xmin
(18)

where x ∈ [xmin, xmax], xmin is the minimum value of the data sample attribute and xmax is
the maximum value of the data sample attribute.
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2. Selection of sample set and attribute approximation

The selection of the sample set used for training should be complete and comprehen-
sive and should be closely related to the oil layer assessment. In addition, the degree of
determination of Oil layer prediction varies for each condition attribute of the oil layer.
Usually, there are dozens of logging condition attributes in logging data, but not all of them
play a decisive role, so attribute approximation must be performed. In this paper, we use an
inflection point-based discretization algorithm followed by an attribute dependency-based
reduction method to reduce the logging attributes.

3. MPA-GWO-RVFL modeling

Firstly, the MPA-GWO-RVFL model is established, the function activated, the number
of hidden layer nodes and the population size are determined, the population dimension
dim = (n+ 1)× L, n and L are set to represent the number of input layer nodes and hidden
layer nodes, respectively, and the maximum number of iterations of the algorithm is T. The
position of the population is updated according to the MPA-improved GWO, and each
search agent is rearranged into matrix form, and the error rate of the test set prediction
results in the training sample is used as the fitness function during the iterative solution
process as follows.

f =

M
∑

i=1
Ti

N
100% (19)
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where f is the prediction error rate, M is the number of sample categories, Ti is the number
of samples with prediction errors in each category and N is the number of samples in the
test set in the training sample.

4. Derive the output weights

When the algorithm reaches the termination condition, the optimal search agent
position is saved at this point and rearranged into matrix form as the optimal solution,
i.e., the optimal input weights W and biases are obtained B, and the output weights are
computed β.

5. Bring the output weights β into the RVFL model

The MPA-GWO optimized RVFL process is shown in Figure 4.
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6. Predict

The trained MPA-GWO-RVFL model is used for reservoir prediction, and the results
are output and compared with the actual data.

4.3. Data Processing

In order to verify the application effect of the improved algorithm optimization,
logging data were selected from the database for training and testing.

Table 2 gives the conditional attributes, including redundant attributes and important
attributes, as well as the value range of important attributes, GR represents natural gamma,
DT represents acoustic time difference, SP represents natural potential, LLD represents
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deep lateral resistivity, LLS represents shallow lateral resistivity, DEN represents compen-
sation density and K represents potassium. We classify the datasets containing important
attributes into training sets and testing machines, in which the value depth of training sets
is 3150 to 3330 and the value depth of testing sets is 3330 to 3460.

Table 2. Attribute reduction and value range.

Category Condition Attributes

Redundant
Attributes NPHI PE U TH CALI

Important
Attributes GR DT SP LLD LLS DEN K

Boundary [6, 200] [152, 462] [−167, −68] [0, 25000] [0, 3307] [1, 4] [0, 5]

4.4. MPA-GWO-RVFL Algorithm Parameter Analysis
4.4.1. Selection of RVFL Activation Function

In order to make the model achieve better prediction results, it is first necessary to
find the best activation function for the WPA-GWO-RVFL model. In this experiment,
the number of hidden layer nodes is set to 100, and the prediction accuracy under each
activation function is obtained by using a 5-fold cross-validation method. Table A2 shows
the results of 10 runs under various activation functions. According to the results, it is seen
that when the activation function is set to sigmoid, the average prediction accuracy is the
highest, and the standard deviation is also smaller. Therefore, sigmoid is determined as the
activation function in the next experiments.

4.4.2. Selection of the Number of RVFL Hidden Layer Nodes

Another metric that affects the prediction accuracy of RVFL is the number of hidden
layer neurons, too many or too few neurons will affect the accuracy or processing speed; this
experiment analyzes the prediction accuracy of multiple sets of algorithms with different
hidden layer nodes. The number of nodes is increased from 10 to 150, the activation
function of each improved model algorithm is set to sigmoid, the dataset is divided into
five folds for cross-validation, and it is run 10 times to take the average as the final result.
The experimental results are shown in Table A3 and Figure 5, which visually show the trend
of prediction accuracy of various improved RVFL algorithms with the number of nodes.
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As seen in Table A3, when the number of nodes is in the interval [10, 110], the average
prediction accuracy of each algorithm improves significantly as the number of nodes in
the hidden layer increases. As seen in Figure 6, the average prediction accuracy of each
algorithm grows slowly as the number of nodes in the hidden layer increases in the interval
[110, 150] and successively reaches a steady-state and stabilizes within a certain range.
From Table A3, a cross-sectional comparison shows that the average prediction accuracy
of the MPA-GWO-RVFL algorithm consistently outperforms the other algorithms, and
the average prediction accuracy of the MPA-GWO-RVF algorithm enters a steady-state
relatively quickly compared to the other algorithms. This indicates that this algorithm can
use a smaller network to get the optimal prediction accuracy. At the number of nodes of
110, MPA-GWO-RVFL enters a smooth state first, so 110 is chosen as the final set number
of nodes.
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4.4.3. Selection of Model Population

Another important parameter that affects the prediction accuracy is the number
of initialized populations. In this experiment, in order to get the effect of the number of
populations on the prediction accuracy, the number of populations was set to five categories
of 10, 20, 30, 40 and 50 in MPA-GWO-RVFL for 5-fold cross-validation, run 10 times to take
the average as the final result, the number of iterations was set to 60 and the prediction
accuracy is shown in Table 3.

Table 3. Effect of population size on prediction accuracy.

Number of Enhancement Nodes 10 20 30 40 50

Average Accuracy 9.278 × 10−1 9.359 × 10−1 9.418 × 10−1 9.500 × 10−1 9.500 × 10−1

As shown in the table, the prediction accuracy gradually increases as the population
size increases. At population size 40 and 50, the prediction accuracy converges, so the
algorithm population size is set at 40.

For better comparison tests, the RVFL model, MPA-RVFL model, GWO-RVFL model,
PSO-RVFL, WOA-RVFL and GWFOA-RVFL were built and compared with the MPA-GWO-
RVFL model, and then these optimality-seeking prediction models were used for the test
set of Oil layer prediction.
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4.5. Model Comparison
4.5.1. Accuracy Analysis of Algorithm

After the above analysis of the algorithm parameters, the activation function used
to conduct the final prediction result comparison experiment is Sigmoid, the number of
nodes is 110, the population size is 40, in addition, the learning rate is set to 0.1 and the
rest of the parameters are taken as the default values of the Matlab toolbox. The dataset
was divided into five folds in the experiment, and each algorithm was used to obtain the
prediction accuracy of the test set using 5-fold cross-validation and run 10 times to ensure
convincing results. Table 4 shows the maximum, minimum, mean and standard deviation
obtained for each algorithm run 10 times.

Table 4. Model comparison experimental results.

Measure MPA-GWO-RVFL MPA-RVFL GWO-RVFL PSO-RVFL WOA-RVFL GWFOA-RVFL RVFL

Max 0.9561 × 10−1 0.938 × 10−1 0.9397 × 10−1 0.9395 × 10−1 0.8912 × 10−1 0.9494 × 10−1 0.8593 × 10−1

Min 0.9292 × 10−1 0.8946 × 10−1 0.9033 × 10−1 0.9079 × 10−1 0.8326 × 10−1 0.9119 × 10−1 0.8196 × 10−1

Avg 0.9464 × 10−1 0.9174 × 10−1 0.916 × 10−1 0.9237 × 10−1 0.859 × 10−1 0.9317 × 10−1 0.8423 × 10−1

Stdv 0.0104 0.0130 0.0150 0.0201 0.0110 0.0109 0.0210

4.5.2. Stability and Analysis of the Algorithm

Figure 6 shows the prediction accuracy box plots for each algorithm separately, each
algorithm is validated using a 5-fold crossover, and both are run 10 times. The top and
bottom of the figure are the maximum and minimum values, respectively, the top and
bottom edges of the box represent the upper and lower quartiles of prediction accuracy,
respectively, and the red line in the middle of the box represents the median.

The compactness of the boxplot in Figure 6 shows that MPA-GWO-RVFL is more
stable than MPA-RVFL, GWO-RVFL, PSO-RVFL, WOA-RVFL, GWFOA-RVFL and RVFL.

4.5.3. Convergence Analysis of the Algorithm

Figure 7 shows the relationship between fitness and the number of iterations for MPA-
GWO-RVFL and the comparison test, and fitness represents the prediction error rate. From
Figure 7, it can be seen that as the iterations proceed, the minimum fitness achieved by the
MPA-GWO-RVFL algorithm is smaller than the minimum fitness of the other algorithms,
and it is not difficult to find that the MPA-GWO-RVFL algorithm converges the fastest
among all the algorithms, and the MPA-GWO-RVFL algorithm obtains the minimum
fitness with fewer iterations. This shows the excellent prediction performance of the
MPA-GWO-RVFL algorithm.
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4.5.4. Discussion

By comprehensively comparing the experimental results, algorithm stability and
convergence of the proposed algorithm, it can be seen that the proposed MPA-GWO
algorithm has the overall characteristics of high prediction accuracy, good stability and
convergence compared with the same type of algorithms. It has broad application prospects
for general optimization problems encountered in other fields for practical application,
especially in the hyperparametric optimization of neural networks.

5. Conclusions

In this study, an RVFL to Oil layer prediction model optimized by the GWO algo-
rithm based on the MPA improvement is proposed. The experimental results show the
following conclusions.

(1) In this paper, an improved grey wolf optimizer is presented. The algorithm is applied
to chaos theory to initialize the population and MPA is used to enhance its global
exploration capabilities. Six popular population intelligence algorithms (MPA-GWO,
WOA, MPA, GWO, PSO and GWFOA) are used to conduct 30 independent exper-
iments on 15 benchmarks and are compared. From the results of the experiments,
it was concluded that the MPA-GWO algorithm showed a significant improvement
in convergence speed and convergence accuracy compared to the other intelligent
optimization algorithms.

(2) MPA-GWO is used for RVFL input weighting and hidden layer bias finding, and the
MPA-GWO-RVFL model is developed. The validity of MPA-GWO-RVFL was verified.
The improved model has a higher prediction accuracy compared to the MPA-RVFL,
GWO-RVFL, PSO-RVFL, WOA-RVFL, GWFOA-RVFL and RVFL models. The highest
accuracy reached 95.61%, and the average accuracy was 94.64%.

(3) The convergence curves and box plots reflect that the convergence speed of the algo-
rithm proposed in this paper is somewhat faster relative to the comparison algorithms.
Moreover, its stability has some advantages over most of the comparison algorithms.

MPA-GWO-RVFL model and its application in reservoir prediction has been inves-
tigated in this paper. In the future, it is interesting to develop a hybrid neural network
model for reservoir prediction. Additionally, it is another significant subject of further
investigation to design a more efficient meta-heuristic algorithm and deep-learning-based
non-linear combined mechanism to further improve forecasting performance.
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Appendix A

The experimental results in Section 2 are presented below, including statistics for each
algorithm, convergence curves and box line plots.
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Table A1. Optimization results and comparison for functions.

Function MPA-GWO GWO MPA WOA PSO GWFOA

U
ni

m
od

al
Be

nc
hm

ar
k

Fu
nc

ti
on

s

F1
Ave 0.00 × 10+00 2.45 × 10−85 3.27 × 10−21 1.41 × 10−30 0.32 × 10+00 0.55 × 10+00

Std 0.00 × 10+00 9.08 × 10−85 4.61 × 10−21 4.91 × 10−30 0.21 × 10+00 1.23 × 10+00

F2
Ave 0.00 × 10+00 2.91 × 10−48 0.07 × 10+00 1.06 × 10−21 1.04 × 10+00 0.01 × 10+00

Std 0.00 × 10+00 2.92 × 10−48 0.11 × 10+00 2.39 × 10−21 0.46 × 10+00 0.01 × 10+00

F3
Ave 0.00 × 10+00 1.77 × 10−21 2.78 × 10+02 5.39 × 10−07 8.14 × 10+01 8.46 × 10+02

Std 0.00 × 10+00 8.45 × 10−21 4.00 × 10+02 2.93 × 10−06 2.13 × 10+01 1.62 × 10+02

F4
Ave 0.00 × 10+00 2.84 × 10−21 6.78 × 10+00 0.73 × 10−01 1.51 × 10+00 4.56 × 10+00

Std 0.00 × 10+00 9.26 × 10−21 2.94 × 10+00 0.40 × 10+00 0.22 × 10+00 0.59 × 10+00

F5
Ave 6.70 × 10−05 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.07 × 10+00 0.11 × 10+00

Std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.01 × 10+00 0.04 × 10+00
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Table A1. Cont.

Function MPA-GWO GWO MPA WOA PSO GWFOA

M
ul

ti
m

od
al

Be
nc

hm
ar

k
Fu

nc
ti

on
s

F6
Ave 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 4.84 × 10+01 0.00 × 10+00

Std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 3.44 × 10+00 3.97 × 10+00

F7
Ave 8.84 × 10−16 5.15 × 10−15 9.69 × 10−12 7.40 × 10+00 1.20 × 10+00 0.18 × 10+00

Std 0.00 × 10+00 1.45 × 10−15 6.13 × 10−12 9.90 × 10+00 0.73 × 10+00 0.15 × 10+00

F8
Ave 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.01 × 10+00 0.66 × 10+00

Std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.01 × 10+00 0.19 × 10+00

Fi
xe

d-
D

im
en

si
on

M
ul

ti
m

od
al

Be
nc

hm
ar

k
Fu

nc
ti

on
s

F9
Ave 1.00 × 10+00 1.00 × 10+00 1.00 × 10+00 2.11 × 10+00 2.18 × 10+00 1.00 × 10+00

Std 2.12 × 10−17 1.11 × 10−16 2.47 × 10−16 2.50 × 10+00 2.01 × 10+00 8.84 × 10−12

F10
Ave 3.58 × 10−04 3.69 × 10−49 3.07 × 10−04 0.00 × 10+00 5.61 × 10−04 2.69 × 10−03

Std 1.54 × 10−04 2.36 × 10−04 4.09 × 10−15 0.00 × 10+00 4.38 × 10−04 4.84 × 10−03

F11
Ave −1.03× 10+00 −1.03× 10+00 −1.03× 10+00 −1.03× 10+00 −1.03× 10+00 −1.03× 10+00

Std 5.63 × 10−06 2.04 × 10−06 4.46 × 10−01 4.2 × 10−07 6.64 × 10−06 2.39 × 10−08

F12
Ave 3.00 × 10+00 3.00 × 10+00 3.00 × 10+00 3.00 × 10+00 3.00 × 10+00 3.00 × 10+00

Std 5.95 × 10−17 4.96 × 10−16 1.95 × 10−15 4.22 × 10−15 1.38 × 10−15 2.45 × 10−07

F13
Ave −3.86× 10+00 −3.86× 10+00 −3.86× 10+00 −3.85× 10+00 −3.86× 10+00 −3.86× 10+00

Std 3.17 × 10−16 2.15 × 10−15 2.42 × 10−15 0.00 × 10+00 2.68 × 10−15 2.85 × 10−8

F14
Ave −3.32× 10+00 −3.28× 10+00 −3.32× 10+00 −2.98× 10+00 −3.26× 10+00 −3.34× 10+00

Std 1.59 × 10−15 0.06 × 10+00 1.14 × 10−11 0.38 × 10+00 6.05 × 10−2 5.99 × 10−2

F15
Ave −1.05 × 10+1 −1.03× 10+01 −1.05 × 10+1 −9.34× 10+00 −7.25× 10+00 −7.77× 10+00

Std 1.92 × 10−07 1.48 × 10+00 3.89 × 10−11 2.41 × 10+00 3.66 × 10+00 3.73 × 10+00

Table A2. Influence of activation function on prediction accuracy.

Activation Function
Times Sig Sin Hardlim Tribas Radbas ReLU

1 8.68 × 10−1 7.90 × 10−1 8.18 × 10−1 8.04 × 10−1 8.31 × 10−1 8.77 × 10−1

2 8.52 × 10−1 8.52 × 10−1 8.32 × 10−1 7.46 × 10−1 8.22 × 10−1 8.19 × 10−1

3 8.69 × 10−1 8.54 × 10−1 8.26 × 10−1 7.65 × 10−1 8.66 × 10−1 8.37 × 10−1

4 8.61 × 10−1 8.11 × 10−1 7.99 × 10−1 7.92 × 10−1 8.28 × 10−1 8.64 × 10−1

5 8.53 × 10−1 8.23 × 10−1 8.11 × 10−1 7.88 × 10−1 8.21 × 10−1 8.61 × 10−1

6 8.94 × 10−1 8.15 × 10−1 8.04 × 10−1 7.59 × 10−1 8.51 × 10−1 8.31 × 10−1

7 8.45 × 10−1 8.18 × 10−1 8.25 × 10−1 7.62 × 10−1 8.44 × 10−1 8.34 × 10−1

8 8.69 × 10−1 8.50 × 10−1 8.33 × 10−1 7.85 × 10−1 8.08 × 10−1 8.57 × 10−1

9 8.87 × 10−1 7.93 × 10−1 8.67 × 10−1 8.21 × 10−1 8.64 × 10−1 8.94 × 10−1

10 8.78 × 10−1 7.70 × 10−1 7.92 × 10−1 7.78 × 10−1 8.31 × 10−1 8.51 × 10−1

Average 8.68 × 10−1 8.18 × 10−1 8.21 × 10−1 8.31 × 10−1 8.37 × 10−1 8.53 × 10−1

Std 1.3 × 10−1 2.5 × 10−1 1.9 × 10−1 2.4 × 10−1 1.7 × 10−1 2.0 × 10−1

Table A3. Influence of node number on prediction accuracy.

Number of
Enhancement

Nodes

MPA-GWO-
RVFL MPA-RVFL GWO-RVFL PSO-RVFL WOA-RVFL GWFOA-

RVFL RVFL

10 8.87 × 10−1 8.79 × 10−1 8.81 × 10−1 8.69 × 10−1 8.77 × 10−1 8.86 × 10−1 7.97 × 10−1

20 8.97 × 10−1 8.88 × 10−1 8.86 × 10−1 8.80 × 10−1 8.84 × 10−1 8.94 × 10−1 8.02 × 10−1

30 9.04 × 10−1 8.93 × 10−1 8.93 × 10−1 8.86 × 10−1 8.93 × 10−1 8.98 × 10−1 8.06 × 10−1

40 9.18 × 10−1 8.97 × 10−1 8.99 × 10−1 8.91 × 10−1 8.96 × 10−1 9.05 × 10−1 8.14 × 10−1

50 9.28 × 10−1 9.00 × 10−1 9.05 × 10−1 8.90 × 10−1 8.99 × 10−1 9.19 × 10−1 8.19 × 10−1

60 9.31 × 10−1 8.98 × 10−1 9.06 × 10−1 8.95 × 10−1 9.00 × 10−1 9.20 × 10−1 8.21 × 10−1

70 9.32 × 10−1 9.02 × 10−1 9.11 × 10−1 9.00 × 10−1 9.04 × 10−1 9.23 × 10−1 8.32 × 10−1

80 9.40 × 10−1 9.07 × 10−1 9.14 × 10−1 8.99 × 10−1 9.10 × 10−1 9.26 × 10−1 8.34 × 10−1

90 9.45 × 10−1 9.10 × 10−1 9.18 × 10−1 9.05 × 10−1 9.15× 10−1 9.29 × 10−1 8.45 × 10−1

100 9.48 × 10−1 9.17 × 10−1 9.20 × 10−1 9.09 × 10−1 9.22 × 10−1 9.30 × 10−1 8.50 × 10−1

110 9.51 × 10−1 9.24 × 10−1 9.22 × 10−1 9.13 × 10−1 9.26 × 10−1 9.32 × 10−1 8.56 × 10−1

120 9.50 × 10−1 9.28 × 10−1 9.21 × 10−1 9.18 × 10−1 9.30 × 10−1 9.36 × 10−1 8.60 × 10−1

130 9.50 × 10−1 9.27 × 10−1 9.21 × 10−1 9.19 × 10−1 9.30 × 10−1 9.35 × 10−1 8.62 × 10−1

140 9.50 × 10−1 9.26 × 10−1 9.18 × 10−1 9.18 × 10−1 9.30 × 10−1 9.35 × 10−1 8.65 × 10−1

150 9.50 × 10−1 9.27 × 10−1 9.19 × 10−1 9.18 × 10−1 9.30 × 10−1 9.35 × 10−1 8.65 × 10−1
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