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Abstract: Real medical datasets usually consist of missing data with different patterns which decrease
the performance of classifiers used in intelligent healthcare and disease diagnosis systems. Many
methods have been proposed to impute missing data, however, they do not fulfill the need for data
quality especially in real datasets with different missing data patterns. In this paper, a four-layer
model is introduced, and then a hybrid imputation (HIMP) method using this model is proposed to
impute multi-pattern missing data including non-random, random, and completely random patterns.
In HIMP, first, non-random missing data patterns are imputed, and then the obtained dataset is
decomposed into two datasets containing random and completely random missing data patterns.
Then, concerning the missing data patterns in each dataset, different single or multiple imputation
methods are used. Finally, the best-imputed datasets gained from random and completely random
patterns are merged to form the final dataset. The experimental evaluation was conducted by a
real dataset named IRDia including all three missing data patterns. The proposed method and
comparative methods were compared using different classifiers in terms of accuracy, precision, recall,
and F1-score. The classifiers’ performances show that the HIMP can impute multi-pattern missing
values more effectively than other comparative methods.

Keywords: medical data mining; missing data pattern; single imputation; multiple imputations;
hybrid imputation; diabetes diagnosis

1. Introduction

Along with the reduced physical activity and the spread of sedentary life as well as
consumption of unhealthy foods, not only the diabetes affliction age has been reduced, but
also its incidence rate has been increased [1–3]. According to the international diabetes
federation reports, the number of diabetic patients in 2015 amounted to 415 million people,
46.5% of which, equivalent to 192.8 million people, were not aware of their disease [4].
It has been estimated that by 2040, the number of patients with diabetes all around the
world will reach nearly 642 million individuals, which is more than twice the population
with diabetes in 2008. Moreover, diabetes is a leading cause of mortality and an expensive
medical problem [5,6]. Early and accurate diabetes diagnosis is very critical to timely
treatment which can suspend the disease progression, decrease the mortality rate and
control the economic burden [7–10]. Diabetes can cause serious complications on the
body’s organs and tissues such as cardiovascular, nephropathy, neuropathy, retinopathy,
heart attacks, amputation, cancer and lead to death [11–14]. The related studies have been
performed on diabetes complications as a potential negative predictor factor on other
oncological diseases [15] and functional conditions such as erectile dysfunction [16]. The
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most common type of diabetes is are type II in which body cells can’t properly use the
produced insulin [17,18].

Unfortunately, the high prevalence of diabetic patients and the lack of effective and
intelligent methods, which cause delay and inaccuracy in diagnosis [19–21]. Medical
data mining is recognized as a powerful method that can extract hidden patterns from
a huge amount of data [22–25] and provide early and accurate medical decisions [26,27].
Accordingly, many intelligent and data mining methods are developed to improve the
early and accurate diagnosis from diabetes datasets [28–31]. However, the direct analysis
of diabetes datasets without preprocessing results in inaccurate learning models, and
erroneous medical decisions [32–34]. The diabetes data quality affects the performance
of intelligent medical methods especially by their irrelevant features [35,36] and missing
data which is a common problem faced with real-world diabetes datasets [37]. Efficient
metaheuristic-based algorithms are introduced to select relevant and effective features and
they are getting better and better with the advent of recent metaheuristic algorithms [38–41].
Missing data handling is an essential step of the medical data mining process [42–45] which
is the main concern of this study.

The personal mistakes in the data collection process, nature of the features, and
biological effects of features of the blood test on each other lead to the occurrence of
different missing data patterns in a dataset. Recognizing the pattern of missing values
is an important process in missing data imputation [46]. Little et al. [47] defined three
categories of missing data, missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR). The problem of missing value can be solved
by using simple methods as well as value imputation methods [48–50]. Complete case
analysis (CCA) or listwise deletion, pairwise deletion, manual filling of missing values,
and use of constant global label value are among the simple methods. Imputation is a
powerful method for dealing with missing data problems [51–54] which are including
single imputation (SI) and multiple imputations (MI). The SI and MI methods provide
desirable results on MCAR and MAR patterns, respectively; besides, the constant global
label is suitable for the MNAR missing data pattern [37,55–58]. Accordingly, imputation
of missing values via these methods might be introduced extra noises, biases, and poor
data quality that provide less accuracy for the data model [59–64]. The presence of multi-
pattern missing values can critically influence the performance of classifiers. Identifying
the type of missing pattern and selecting/proposing the proper imputation method are
two related issues concerning the imputation problem. Recently, a new generation of
imputation methods are proposed that utilized the advantages of SI and MI methods using
the hybridization schema.

In this paper, a four-layer model is introduced to hybridize imputation methods for
different missing data patterns. The introduced model consists of analyzing, decompos-
ing, imputing, and merging layers. Based on the introduced model, a hybrid imputation
method named HIMP is proposed. Accordingly, first, the proposed method analyses the
features and categorizes them accurately according to a variety of missing data patterns by
finding the correlation between features with missing values and also specified definitions.
The proposed HIMP imputes missing data with MNAR patterns and stores the results, and
then it decomposes the results into two datasets DMCAR and DMAR including missing data
with MCAR and MAR patterns, respectively. Next, DMCAR is imputed using single impu-
tation methods K-nearest neighbor (KNN) [65] and hot-deck [66] while DMAR is imputed
using three multiple imputation methods Markov chain Monte Carlo (MCMC) [67–69],
multivariate imputation by chained equations (MICE) [70,71] and expectation maximiza-
tion (Em) [72]. In this step, the imputed values estimated by each method are assessed
using different classifiers to determine winner imputed methods and their DMCAR and
DMAR datasets. Finally, HIMP merges the winner datasets to form the imputed dataset. The
proposed HIMP was evaluated and compared with some other imputation methods using
different classifiers in terms of accuracy, precision, recall, and F1-score. The HIMP and com-
parative methods competed to impute missing values of a real-world dataset named IRDia
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including different patterns MAR, MNAR, and MCAR. The classifiers’ performances show
that the HIMP is more effective than other comparative methods. The main contributions
of this study can be summarized as follows:

- Introducing a four-layer model to develop hybrid imputation methods for multi-
pattern missing data;

- Proposing a hybrid imputation method (HIMP) using the introduced model;
- Collecting a real dataset named Iran diabetes (IRDia) from private medical clinics,

and identifying and categorizing its missing data patterns including MCAR, MAR,
and MNAR patterns;

- Evaluating the proposed HIMP by comparing its results with other imputation meth-
ods for imputing all missing data patterns of the IRDia dataset.

The rest of this paper is organized as follows: In Section 2, the background and related
works are presented. In Section 3 the proposed HIMP is introduced. The experimental
evaluations are provided in Section 4. Finally, Section 5 discusses and concludes the
obtained finding of this study.

2. Background and Related Works

In this section, first, the missing patterns concepts are described, and then related
works are briefly reviewed.

The missing pattern analysis provides descriptive measures of the relationship and
connection between missing values and present values [56,73,74]. Knowing the missing
patterns is useful as an exploratory step before imputation for selecting the proper data
imputation methods [75–82]. The missing patterns can be classified into three categories
missing completely at random (MCAR), missing at random (MAR), and missing not at
random (MNAR). The real-world datasets may consist of all patterns MCAR, MAR, and
MAR which are categorized in multi-pattern missing values.

Missing completely at random (MCAR) pattern: The MCAR pattern occurs completely
randomly throughout the dataset. In this type of missingness, a random subset of the missing
observations has distributions similar to the observed values [37,56]. If feature Y has missing
values, the MCAR pattern will occur when the missing values on feature Y are independent
of all the observed features and values of Y. The missing and observed distributions of Y are
the same, which can be expressed as Equation (1) [83]. The MCAR pattern can be corrected
using methods such as complete case analysis (CCA), pairwise deletion, initialization with a
central tendency global constant, and single imputation [37,55,57,83].

P (Y | y missing) = P (Y | y observed) (1)

Missing at random (MAR) pattern: The MAR pattern occurs randomly throughout
the dataset. In MAR, the probability that a record with missing values belongs to a feature
does not depend on the value of the missing value but can be dependent on the observed
data [37]. In this case, the observed and missing distributions on feature Y are equal
depending on some of the X observed values. In fact, according to Equation (2), the
probability of missingness of observations on feature Y depends on other observations of
feature X, but not on values of Y. Furthermore, the observed values are not necessarily a
random sample of the assumed complete dataset [83].

P (Y | y missing, y observed, X) = P (Y | y observed, X) (2)

The correction method of this type of missing data pattern is multiple imputations [33,
37,55,56,83]. In the MAR pattern, all the simple techniques for managing the missing values,
including CCA, pairwise deletion, and use of mean representative for missing values, can
lead to reduced statistical power, increased standard error, and bias of the results [37,55,84].
If the missing data pattern is of MAR type, pairwise deletion can seriously cause bias in
the obtained results [83]; however, if the data do not have MAR pattern, implementing the
multiple imputations can lead to errors as well biased results [56,85]. Since in the single
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imputation methods the overall correlation between the features is less taken into account,
applying these methods in the MAR pattern might lead to inaccurate estimations [37].

Missing not at random (MNAR) pattern: This missing data pattern occurs non-
randomly and due to entirely intentional reasons throughout the dataset. In one of the cases
of the MNAR pattern, the feature with missingness can be logically initialized, but there is
no other feature in the dataset that is conceptually associated with it. Moreover, there is
another case, in which the feature cannot be initialized logically and conceptually. Further-
more, the cause of missingness can be specified using one or multiple features found in the
dataset [37,49,56]. Under such conditions, the constant global label value is used to fill the
blanks of the missing values [37,55,86]. According to Equation (3), in the MNAR pattern,
the missing and observed values of feature Y are not equal under any condition [83]. The
missing values can be corrected by using simple and imputation methods.

P (Y | y missing) 6= P (Y | y observed) (3)

Real-world problems are mostly faced with different types of missing patterns which
are affected in the performance of the classifier and predictor models by achieving erro-
neous results. Selecting the proper missing data handling is essential in preprocessing step.
Many imputation methods have been developed over the years for different datasets such
as real datasets of the national health and nutrition examination survey (NHANES) [87–89].
The complete-case analysis (CCA) and imputation methods are common approaches to
handle missing data and achieve completeness. The CCA [48] is a simple method to handle
missing data values. The CCA method is often performed when the class label is missed.
In this method, all the samples containing missing values are deleted from the investigated
dataset [48,50]. In pairwise deletion, those records are removed from the dataset, in which
the variable or feature with missingness is used in calculations [50]. The use of a constant
global label such as “unknown” value instead of the missing value in each feature can
be considered as another simple missingness correction method. Another sophisticated
approach to handling missing data is the imputation method that is substituting the esti-
mated values for the missing values. The estimated values are obtained through internal
and central relations of features of the dataset [55]. Missing data imputation methods are
commonly divided into two groups single imputation (SI) and multiple imputations (MI).

Single imputation (SI) method: In the SI method, a value is considered instead of any
missing value and, in the final analysis [37]. Among the single imputation methods, a
central tendency unit such as the average or mean of records of a class is known as the
concept most common (Cmc) method can be mentioned [4,48,50]. Regression imputation,
mean substitution, hot-deck imputation [66], K-nearest neighbor (KNN) imputation [65],
and maximum likelihood method are well-known single imputation methods [50,90,91].

Multiple imputations (MI) method: To consider the uncertainty of the value obtained
for imputation relative to the unmeasured real data this method collects multiple values for
each missingness in the imputation value production process [92]. To perform the multiple
imputations, the missing data pattern should be of MAR type [33,37,56,83,85,86]. Some
of the multiple imputation methods include Markov chain Monte Carlo (MCMC), multi-
variate imputation by chained equations (MICE) [70,71], and expectation-maximization
(Em) [72]. The MCMC method specifies a multivariate distribution for the missing values
and flows the imputation from conditional distributions by Markov chain Monte Carlo
techniques. The MICE method has emerged as a systematic method for handling the
missing values in the statistical literature [71,85]. The Em method performs an effective
repetitive procedure to calculate the maximum likelihood estimation in the presence of
the missing value [84]. The above-mentioned missing values imputation methods have no
sensitivity to discreteness or continuousness of the data [92].
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Many imputation methods have been developed to complete the missing data and
overcome the shortcomings that occurred during the data preprocessing step. In the
following, the related works proposed for imputing missing values are reviewed and
discussed in three groups SI, MI, and hybrid imputation.

The CCA omits the missing values from the analysis which may lose a significant
amount of useful information from the analysis [93,94]. To cover the CCA weaknesses,
SI methods are developed which require less computational cost to generate a proposer
value for a missing value in a dataset. Giardina et al. [95], applied the single imputation
methods of K-nearest neighbors imputation, mean, and the multiple imputation method
of Em in Ulster Diabetes datasets. This data has 49% maximum missingness. Randomly
simulated missingness from 5% to 35% was created in the features of the Ulster dataset, but
the type of the missing data pattern was not mentioned. In addition, they reported KNN
and Mean as the best methods. Purwar [61] implemented single imputation and CCA
methods on three datasets of Pima, WDBC, and Hepatitis with 699, 768, and 155 records,
respectively, and WDBC dataset with artificially induced missing values for the correction
of the missing values. The missingness rate of 25–75% was reported in the features, but
the missing data pattern was not mentioned. In this study, 11 data missingness correction
methods, including CCA, Cmc, and KNN, were used. Then, through clustering by the
K-means algorithm and evaluating the clusters, the Cmc method was selected as the best
method. Afterward, evaluation of the efficiency of the final model was obtained by the
MLP classifier with the highest accuracy rate of 99.82%, 99.08%, and 99.39% for datasets
of Hepatitis, Pima, and WDBC, respectively. Aljuaid [96] applied the Em, KNN, mean,
and hot-deck imputation methods on five different datasets from the UCI repository with
varying rates of missingness (maximum of 25%), which were used artificially and randomly.
These imputation methods were applied separately on different datasets, and the result
obtained by the c5.0 decision tree classifier was compared with the datasets without missing
values. In this study, no exact recognition of the missing data patterns created in the dataset
was expressed. According to the obtained results, the Em method yielded better results on
numerical datasets; furthermore, the hot-deck method had better results in larger datasets.
Moreover, the KNN method had a longer execution time in more massive datasets.

The MI methods are developed to alleviate the shortcomings of the single imputation
method in handling missing values [56]. Lin [83] investigated the efficiency of the Em
multiple imputation algorithm and MCMC method. In this study, these two imputation
methods had no significant difference in terms of the final accuracy. The NHIS dataset
with 13,017 records, 26 features, and a maximum missingness rate of 25% was used for
the quality-of-life criteria, including physical, mental, and social health. The records with
the missingness above 20% were deleted from the dataset. The missingness in this dataset
was created artificially, and the missing data pattern was not mentioned. Mirkes [97]
analyzed the TARN physical injury dataset in terms of missing values. A system of
Markov non-stationary models was developed; next, these models were evaluated on
15,437 records with more than 200 features. In this study, it was noted that five repetitions
could be appropriate for multiple imputations. In this study, the missingness percentage
was not mentioned, and the Markov model-based multiple imputations demonstrated
excellent results. Eisemann [33] used MICE multiple imputation method and regression
on the breast cancer dataset of SH Research Center in Germany with 21,500 records and
13 features. Nearly 20% of the records had missingness, which was deleted from the
dataset. Then, artificial missingness was created on the rest of the data. The assumed
missing data pattern in this study was MAR, and the MICE method yielded desirable
results. Sovilj et al. [98] developed a new method based on the gaussian mixture model and
Extreme Learning Machine. The missing values are handled using the Gaussian Mixture
Model and then extreme learning machine is applied for final estimation. Faisal et al. [99]
proposed multiple imputations methods using the weighted nearest neighbor approach to
impute missing data in which the distances are computed using the correlation among the
target and candidate predictors. Blazek et al. [100] introduced a practical guide to effective
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multiple imputations of missing data in the context of nephrology research nephrology.
Moreover, the efficient multiple imputation methods, GAMIN [101], MIRDDs [102], and
MI-MOTE [103] are recently proposed.

Hybrid imputation methods for estimation of the missing values used the advantages
of both single imputation and multiple imputations methods. Many algorithms are devel-
oped to combine these methods effectively. Aydilek et al. [59] presented a fuzzy c-means
clustering hybrid imputation approach that utilizes the support vector regression and a
genetic algorithm for estimation the missing values. Tian et al. [63] proposed a hybrid
missing data completion method called multiple imputation using gray-system-theory
and entropy-based on clustering (MIGEC). The MIGEC divided the non-missing data
patterns into several clusters and applied the information entropy for incomplete instances
in terms of the similarity metric based on gray system theory (GST) to estimate the imputed
values. Gautam et al. [104] proposed hybrid imputation methods including PSO–ECM
and (PSO–ECM) + MAAELM that involve particle swarm optimization (PSO), evolving
clustering method (ECM), and auto-associative extreme learning machine (AAELM) for
data imputation. Vazifehdan et al. [64] proposed a hybrid imputation method using a
bayesian network and tensor factorization for imputing the discrete and numerical missing
values, respectively, to boost the performance of the breast cancer recurrence predictor.
Aleryani et al. [105] proposed the multiple imputation ensembles (MIE) for dealing with
the data incompleteness. Rani et al. [62] proposed a hybrid imputation method to com-
bine multivariate imputation by chained equations (MICE), K-nearest neighbor (KNN),
mean and mode imputation methods for predicting missing values in medical datasets.
Li et al. [60] proposed hybrid missing value imputation algorithms JFCM-VQNNI and
JFCM-FVQNNI that are utilized the combination of the fuzzy c-means and the vaguely
quantified nearest neighbor.

Xu et al. [106] proposed the MIAEC algorithm which is a missing value imputation
algorithm based on the evidence chain. The MIAEC algorithm mines all relevant evidence
of missing data in the dataset and then combines this evidence to produce the evidence
chain for estimating the missing values. Tsai et al. [107] designed a class center-based
missing value imputation (CCMVI) approach for producing effective imputation. The
CCMVI is based on two modules. In the first module, the imputation threshold is de-
termined based on the distances between the class centers and their corresponding data
samples. In the second module, the threshold for missing value imputation is identified.
González-Vidal et al. [108] proposed a missing data imputation framework with Bayesian
maximum entropy (BME) to estimate the missing data from the internet of things appli-
cations. Mostafa et al. [109] introduced two algorithms the cumulative bayesian ridge
with less NaN (CBRL) and cumulative bayesian ridge with high correlation (CBRC) for
improving the accuracy of missing value imputation.

Li et al. [110] proposed a novel hybrid method coupling empirical mode decomposi-
tion and a long short-term memory deep learning network to predict missing measured
signal data of structural health monitoring (SHM) systems. The generative adversarial
network is the next frontier of machine learning [111] which is applied in the machine
learning data imputation approach and has the potential to handle missing data accurately
and efficiently. Zhang et al. [112] proposed a model of end-to-end generative adversar-
ial network with real-data forcing to impute the missing values in a multivariate time
series. The proposed model consists of an encoder network, a generator network, and
a discriminator network. Faisal et.al [113] proposed a weighted imputation method for
high-dimensional mixed-type datasets by nearest neighbors which use the information on
similarities among samples and association among covariates. Wan et al. [114] proposed a
novel collaborative clustering-based imputation method (COLI), which uses imputation
quality as a key metric for the exchange of information between different clustering results.

Shahjaman et al. [115] introduced the rMisbeta algorithm as a robust iterative ap-
proach that uses robust estimators based on the minimum beta divergence method to
simultaneously impute missing values and outliers. Hu et al. [116] proposed an informa-
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tion granule-based classifier for incomplete data and a way of representing missing entities
and information granules in a unified framework. The information granule-based classifier
abstracts and refines the prototypes in multi-class subspaces to capture the key structural
relationship of the classes. The relocated prototypes and classification information are
exploited to represent the missing values as interval information granules. Then, the
incomplete data are classified and imputed as hybrid numeric and granular data. Nugroho
et al. [117] proposed a class center-based firefly algorithm for retrieving missing data by
considering the attribute correlation in the imputation process.

3. Proposed Hybrid Imputation (HIMP) Method for the Multi-Pattern Missing Data

In this paper, a four-layer model is introduced to develop efficient methods for imput-
ing different missing data patterns by hybridizing some suitable imputation techniques.
AS shown in Figure 1, the introduced model consists of analyzing, decomposing, imputing,
and merging layers. The first layer is to analyze the original dataset and determine its dif-
ferent missing data patterns, and it decomposes the original dataset into different datasets
in the second layer. Then, in the third layer, each decomposed dataset can be imputed
using a combination of different relevant techniques to find the best possible estimation for
their missing values. Finally, in the fourth layer, the best estimations gained from the third
layer are merged to form the imputed dataset.
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Based on the introduced model, a hybrid imputation method named HIMP is pro-
posed. The pseudocode of the HIMP method is presented in Algorithm 1.
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Algorithm 1. The proposed hybrid imputation (HIMP) method

Input: The original dataset (IRDia) includes different missing data patterns.
Output: Imputed dataset.
1. Begin
2. Analyzing missing data patterns.
3. Imputing missing data with MNAR pattern using the appropriate constant global label.
4. D← Original dataset with imputed MNAR pattern.
5. Decomposing D to two databases DMCAR and DMAR including MCAR and MAR patterns.
6. Single imputing DMCAR using candidate single imputation methods.
7. Assessing the results gained by candidate single imputation methods and selecting the winner.
8. WinnerDMCAR ← The imputed DMCAR gained from the winner single imputation method.
9. Multiple imputing DMAR using candidate multiple imputation methods
10.Assessing the results gained by candidate multiple methods and selecting the winner.
11.WinnerDMAR ← The imputed DMAR gained from the winner multiple imputation method.
12. Imputed dataset←Merging WinnerDMCAR and WinnerDMAR.
13.End

As shown in Figure 2, the proposed HIMP method consists of the following six steps.
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Step 1. Analyzing missing data patterns: In this step, the original dataset with high
missing data is analyzed and the missing patterns are detected.

Step 2. Imputing missing data with MNAR pattern: The features with the MNAR
pattern were identified, then their missing values were imputed with appropriate constant
global label values.
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Step 3. Decomposing: The imputed dataset obtained from Step 2 is decomposed
into two datasets DMCAR and DMAR with MCAR and MAR patterns by identifying the
internal relationships of the variables, cause of missingness, and concerning definitions of
the missing pattern and consulting with an endocrinologist.

Step 4. Single imputing: Single imputation methods including K-nearest neighbor
(KNN) and hot-desk impute the MCAR patterns in the DMCAR dataset. Then, the results
obtained by each imputation method are assessed using different classifiers and the best
results are selected as the WinnerDMCAR.

Step 5. Multiple imputing: The multiple imputation methods including Markov
chain Monte Carlo (MCMC), multivariate imputation by chained equations (MICE), and
expectation-maximization (Em) were applied to the DMAR datasets with the MAR pat-
tern. Each multiple imputation method in this study generated five separate datasets.
The datasets imputed by each multiple imputation method were assessed by compar-
ing the performance of different classifiers. Then, the best results are determined as the
WinnerDMAR.

Step 6. Hybrid imputation: In the final step, the WinnerDMCAR and WinnerDMAR
datasets selected from steps 4 and 5 are merged, the repetitive features are deleted, and the
final dataset is formed.

4. Experimental Evaluation

In this section, first, the experimental environment and setting are described. Then,
the process of clinical data collecting, features of Iran’s diabetes (IRDia) dataset collected in
our case study, and identifying the missing data patterns of the IRDia dataset are described.
Finally, the proposed imputation method and other comparative methods are applied for
imputing IRDia dataset, and then their results are assessed in terms of accuracy, precision,
recall, and F1-Score gained by different classifiers.

4.1. Experimental Environment and Setting

The proposed method was implemented using MATLAB version R 2016b and R-
studio version 3.4.1 programming languages. All experiments were run using the same
configuration on a personal computer, including an Intel (®) Core (™) i7 CPU with 3.4 GHz
and 8 GB memory on Windows 10 operating system. The performance of the proposed
method was evaluated using three classifiers multi-layer perceptron (MLP), classification
and regression trees (CART), and K-nearest neighbors (KNN). In addition, k-fold cross-
validation with k = 5 was considered to alleviate the bias caused by the random selection
of the dataset.

4.2. Clinical Data Collecting and Description of IRDia Dataset

In our case study, the Iran diabetes (IRDia) dataset was collected in a 10-month process
in private medical clinics. The IRDia dataset is partially considered including 2074 cases
with 56 features in which 42.8% of the participants were male, and 57.2% were female.
Furthermore, 26.6% of people were labeled as patients with diabetes, and 73.4% of them
were labeled as patients without diabetes by the endocrinologist. The description of IRDia’s
features and their missing data patterns are reported in Table 1, where MP, LI, CARR, LCTV,
CRM, and CMC are, respectively, standing for missing by purpose, logically imputable,
logically can take a value, cause, and reason relationship, completely random missing and
cause of missingness is manifest. The last column shows the type of missing data pattern
for each feature by investigating relationships between the biological characteristics of the
features and their conditions.
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Table 1. Description of the IRDia’s features and their missing data patterns (MDPs).

No. Feature Name MP LI CARR LCTV CRM CMC MDPs

F1 Body fat X - - X X X MNAR
F2 Pregnancy X - X - - X MNAR
F3 The total number of pregnancies X - X - - X MNAR
F4 Pregnancy diabetes X - X - - X MNAR
F5 Background of miscarriage X - X - - X MNAR
F6 Background of birthing dead baby X - X - - X MNAR
F7 Background of a premature baby X - X - - X MNAR
F8 Macrosomia (babies weighing > 4kg) X - X - - X MNAR
F9 Forearm measurement X - - X X X MNAR
F10 Muscle X - - X X X MNAR
F11 Visceral fat level X - - X X X MNAR
F12 Mid upper arm circumference (MUAC) X - - X X X MNAR
F13 Polycystic ovary syndrome (PCOS) X - X - - X MNAR
F14 Leg width measurement X - - X X X MNAR
F15 Basal metabolic rate (BMR) X - - X X X MNAR
F16 Blood types X - - X X X MNAR
F17 Prostate-specific antigen (PSA) X - X - - X MNAR-MCAR
F18 Calcium (Ca) - X - X X - MCAR
F19 Vitamin d 25-hydroxy test - X - X X - MCAR
F20 Iron - X - X X - MCAR
F21 Phosphorus (PO4) - X - X X - MCAR
F22 Sodium (NA) - X - X X - MCAR
F23 Folic acid - X - X X - MCAR
F24 Total iron-binding capacity (TIBC) - X - X X - MCAR
F25 Fasting blood sugar (FBS) X X X X - X MAR
F26 2-h post-prandial blood glucose (2hPG) test X X X X - X MAR
F27 Glucose 5pm (G 5pm) X X X X - X MAR
F28 Blood urea nitrogen (BUN) X X X X - X MAR
F29 Creatinine blood test (Cr) X X X X - X MAR
F30 Uric acid blood test X X X X - X MAR
F31 Triglycerides blood test X X X X - X MAR
F32 Cholesterol X X X X - X MAR
F33 High-density lipoprotein (HDL) cholesterol X X X X - X MAR
F34 Low-density lipoprotein (LDL) cholesterol X X X X - X MAR
F35 Serum glutamic oxaloacetic transaminase (SGOT) X X X X - X MAR
F36 Serum glutamic pyruvic transaminase (SGPT) X X X X - X MAR
F37 Hemoglobin A1c (HbA1c) X X X X - X MAR
F38 Potassium blood test - X - X X - MCAR
F39 Thyroid stimulating hormone (TSH) X X X X - X MAR
F40 Triiodothyronine (T3) X X X X - X MAR
F41 T3 uptake (T3RU) X X X X - X MAR
F42 Total thyroxine (T4) test X X X X - X MAR
F43 Erythrocyte sedimentation rate (ESR 1hr) - X - X X - MCAR
F44 C-reactive protein (CRP) - X - X X - MCAR
F45 Alkaline phosphatase (ALP) - X - X X - MCAR
F46 Ferritin - X - X X - MCAR
F47 Urine culture X X X X - X MAR
F48 Urine color X X X X - X MAR
F49 Urine appearance X X X X - X MAR
F50 Urine specific gravity X X X X - X MAR
F51 Urine pH test X X X X - X MAR
F52 Urine nitrate test (NT) X X X X - X MAR
F53 Urine glucose test X X X X - X MAR
F54 Urine ketones test X X X X - X MAR
F55 Urine protein test X X X X - X MAR
F56 Hemoglobin in the urine (hemoglobinuria) X X X X - X MAR

4.3. Missing Data Pattern Analysis

The IRDia dataset consists of three different missing data patterns MNAR, MCAR,
and MAR which their descriptive analyses are as follows.

-MNAR pattern analysis: In the IRDia dataset, 17 features follow the MNAR pattern,
among which the four features of body fat, basal metabolic rate (BMR), visceral fat, and
muscle had, respectively, 1.9%, 4.5%, 2%, and 1.9% incorrect numerical values that were
deleted. In this case, not only the cause of missingness was completely clear, but the missing
values can also be logically initiated, and the missingness cannot be documented from other
features in the dataset because these values were obtained by the signal sent and received
within the individual’s body. The blood group feature had 41.9% missingness. This feature
can be logically measured, but missingness in this feature cannot be documented from
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other features. The cause of this missingness was completely clear, which was due to the
participant’s unawareness or non-registration of the values in the blood test. This feature
was never influenced by clinical and biological factors; thus, it did not seem reasonable
to impute it. These missing values were placed with a “non-determined” constant global
label value.

Eight other features are related to the pregnancy features, all of which had missingness
of 42.8% for male participants. Logically, there was no possible appropriate value for
imputation in these values numerically. This missingness was not random, and the cause of
missingness was completely clear. Furthermore, the prostate-specific antigen (PSA) feature,
which was related to the prostatic enzyme measurement in men, had 57.2% missingness for
females. The missingness in these nine features was initiated with the “non-determined”
global constant. The MNAR pattern analysis of the IRDia is shown in Figure 3.
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-MCAR pattern analysis: There are 13 laboratory features with missing values and
there is no intermediate relationship associated with any of them on the condition of
another, according to the physician. Therefore, the reasons for missingness occurrence in
these features are not related to other data observations. The missingness in these features
can result from completely random reasons such as operator’s mistake in importing the
data, lack of the patient’s request for the test factor, unnecessary measurement of that
factor for the participant in physician’s viewpoint, or measurement of that value in near
past. Therefore, the missing values in these features are categorized in the MCAR pattern.
These features contributed to the diagnosis of diabetes and, thus, the imputation of the
missingness in these values was necessary. The other missing values of the PSA feature were
considered in this missing data pattern after initializing by the MNAR hypothesis. Figure 4
presents the percentage of the MCAR pattern of the related features in the IRDia dataset.

-MAR pattern analysis: Figure 5 shows the percentage of the MAR pattern for 27 fea-
tures categorized by the endocrinologist consultation. These features can interchangeably
affect each other in terms of value and lack of value. These features are interrelated and
can be initiated biologically for all participants. The missingness in these features can be
estimated through other features and is related to the observed values. Once missingness
occurs in these features, the cause of missingness is not completely random because the
missingness can be affected by the numerical range or the absence of value in another fea-
ture. The occurrence of missingness in features depends on their cause-effect relationships
with each other. According to the definition of random missingness, these features include
this type of missing data pattern.
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Figure 4. The MCAR pattern analysis of the IRDia dataset.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 4. The MCAR pattern analysis of the IRDia dataset. 

-MAR pattern analysis: Figure 5 shows the percentage of the MAR pattern for 27 fea-
tures categorized by the endocrinologist consultation. These features can interchangeably 
affect each other in terms of value and lack of value. These features are interrelated and 
can be initiated biologically for all participants. The missingness in these features can be 
estimated through other features and is related to the observed values. Once missingness 
occurs in these features, the cause of missingness is not completely random because the 
missingness can be affected by the numerical range or the absence of value in another 
feature. The occurrence of missingness in features depends on their cause-effect relation-
ships with each other. According to the definition of random missingness, these features 
include this type of missing data pattern. 

 
Figure 5. The MAR pattern analysis of the IRDia dataset. 

4.4. Experiments and Results  
In this section, the performance of the proposed HIMP method in the IRDia dataset 

is evaluated by the following three experiment sets. In all experiment sets, the results of 
the HIMP and other comparative methods are assessed using different classifiers in terms 
of the accuracy, precision, recall, and F1-score using Equations (4)–(7), respectively. The 
true classifications are denoted by the number of true positives (TP) and the number of 
true negatives (TN), while misclassifications are denoted by the number of false positives 
(FP) and the number of false negatives (FN). In the following three experiment sets, first, 
the single imputation methods are performed to create the WinnerDMCAR dataset. Then, 
the multiple imputations methods are conducted to determine the WinnerDMAR dataset. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F2
5

F2
6

F2
7

F2
8

F2
9

F3
0

F3
1

F3
2

F3
3

F3
4

F3
5

F3
6

F3
7

F3
9

F4
0

F4
1

F4
2

F4
7

F4
8

F4
9

F5
0

F5
1

F5
2

F5
3

F5
4

F5
5

F5
6

85%
91.90%

69.30%

M
iss

in
g 

(%
)

Figure 5. The MAR pattern analysis of the IRDia dataset.

4.4. Experiments and Results

In this section, the performance of the proposed HIMP method in the IRDia dataset
is evaluated by the following three experiment sets. In all experiment sets, the results of
the HIMP and other comparative methods are assessed using different classifiers in terms
of the accuracy, precision, recall, and F1-score using Equations (4)–(7), respectively. The
true classifications are denoted by the number of true positives (TP) and the number of
true negatives (TN), while misclassifications are denoted by the number of false positives
(FP) and the number of false negatives (FN). In the following three experiment sets, first,
the single imputation methods are performed to create the WinnerDMCAR dataset. Then,
the multiple imputations methods are conducted to determine the WinnerDMAR dataset.
Finally, the winner datasets selected from the single and multiple imputation methods are
merged to evaluate the HIMP.

Accuracy (%) =
TN + TP

TN + TP + FN + FP
(4)

Precision (%) =
TP

TP + FP
(5)

Recall (%) =
TP

TP + FN
(6)
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F1 − score (%) =
TP

TP + 1
2 (FP + FN)

(7)

- Single imputation experiment
In this experiment set, the single imputation methods KNN and hot-deck compete
for imputing missing values with MCAR patterns to determine the WinnerDMCAR
dataset. The results reported in Table 2 show that the KNN imputation method has
better performance. One of the causes of low accuracy of classification in multiple
imputations could be the lack of important biological factors in the diagnosis of
diabetes, such as fasting blood sugar as well as the high percentage of missingness in
the imputed dataset.

Table 2. Single imputation comparison on the MCAR dataset.

Assessing Metrics (%) Classifiers
Hot-Deck KNN

Imputation Method Imputation Method

Accuracy
MLP 75.01% 78.56%
KNN 70.40% 74.05%
CART 71.26% 79.05%

Precision
MLP 76.21% 77.01%
KNN 69.34% 70.91%
CART 68.71% 71.55%

Recall
MLP 75.28% 77.21%
KNN 67.63% 69.18%
CART 70.92% 72.45%

F1-score
MLP 75.74% 77.11%
KNN 68.47% 70.03%
CART 69.80% 71.80%

- Multiple imputation experiment
In this experiment, the Em, MICE, and MCMC multiple imputation methods are
considered to impute missing values with MAR patterns in the IRDia dataset and
determine the WinnerDMAR dataset by comparing the performance of different clas-
sifiers. The multiple imputation method compensates for the imputed uncertainty
relative to the unmeasured data, which results in the occurrence of missingness, by
generating several datasets. The classification accuracy rate of all the imputed datasets
is measured by the CART decision tree classifier. Then, the dataset with the maximum
accuracy rate is selected. The selected dataset is the best-imputed dataset and con-
tains imputed data with minimum uncertainty relative to the unmeasured data. The
obtained results from this experimental evaluation are reported in Table 3. The MICE
method exhibited better performance than the two other methods in the IRDia dataset.

Table 3. Multiple imputation comparison on the MAR dataset.

Assessing Metrics (%) Classifiers Em Imputation MCMC
Imputation

MICE
Imputation

Accuracy
MLP 86.34% 85.01% 91.04%
KNN 82.66% 79.61% 83.23%
CART 83.77% 82.95% 84.67%

Precision
MLP 82.47% 87.16% 90.50%
KNN 81.42% 78.80% 82.23%
CART 80.66% 79.57% 83.26%

Recall
MLP 81.09% 80.65% 86.97%
KNN 79.65% 71.27% 85.53%
CART 80.79% 79.15% 81.23%

F1-score
MLP 81.77% 83.78% 88.70%
KNN 80.53% 74.85% 83.85%
CART 80.73% 79.36% 82.23%
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- Evaluation of the HIMP imputation method
Once the best single and multiple imputation methods were obtained, imputed
datasets WinnerDMCAR and WinnerDMAR with the best results were used to merge the
final dataset. Then, the KNN and MICE methods, which yielded the best results, were
implemented separately on the entire dataset with missing values. In this experimen-
tal evaluation, the hybrid imputation method is compared with MICE [71], KNN [65],
fuzzy c-means SvrGa imputation (SvrFcmGa) [59], and without the applying of impu-
tation (along with the missing values) on the IRDia dataset. The obtained results are
reported in Table 4. The experimental results demonstrated that the proposed HIMP
method yields more sufficient than other imputation methods.

Table 4. Comparing the HIMP method with other imputation methods.

Assessing Metrics Classifiers Without-
Imputation

MICE
Imputation

KNN
Imputation

SvrFcmGa
Imputation HIMP Method

Accuracy
MLP 75.43% 91.56% 78.56% 90.21% 94.23%
KNN 72.31% 83.20% 74.95% 83.91% 85.91%
CART 74.82% 84.67% 79.52% 82.49% 86.38%

Precision
MLP 73.45% 90.50% 77.01% 89.54% 91.68%
KNN 71.59% 82.23% 70.91% 80.25% 86.47%
CART 72.87% 83.26% 71.55% 81.12% 85.27%

Recall
MLP 71.95% 86.97% 77.21% 88.94% 96.36%
KNN 69.53% 85.53% 69.18% 79.48% 83.94%
CART 68.28% 81.23% 72.45% 80.67% 84.57%

F1-score
MLP 72.69% 88.70% 77.11% 89.24% 93.97%
KNN 70.55% 83.85% 70.03% 79.86% 85.19%
CART 70.50% 82.23% 71.80% 80.89% 84.92%

Moreover, the receiver operating characteristic (ROC) curve of the best performance
of the proposed HIMP method gained by using the MLP classifier is shown in Figure 6.
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5. Conclusions

In real-world medical datasets, the missing data usually occur with different patterns.
Failure in identifying the type of missing data pattern and applying imputation methods
regardless of the missingness type can reduce the performance of classifiers. Many im-
putation methods are developed to impute the missing data, however, most of them still
do not fulfill different missing data patterns. Therefore, in this paper, first, a four-layer
model consisting of analyzing, decomposing, imputing, and merging layers is presented.
Then, based on the introduced model a hybrid imputation method (HIMP) is developed
to cope with different missing data patterns in the real IRDia dataset collected in our case
study. The HIMP consists of six steps: analyzing missing data patterns, imputing missing
data with MNAR patterns, decomposing, single imputing, multiple imputing, and hybrid
imputation. Since HIMP decomposes dataset imputed by its second steps into two datasets
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DMCAR and DMAR, it can provide the best estimations by different single and multiple
imputations for random and completely random missing data patterns. In fact, the HIMP
personalizes the imputation of each type of missing data pattern to find the best estimations
and in the end merge them to form the final imputed dataset.

In the experimental evaluation, HIMP and comparative methods were compared
using different classifiers in terms of accuracy, precision, recall, and F1-score. The single
and multiple imputation experiments were tabulated in Tables 2 and 3. The obtained
results of comparing the HIMP method with imputation methods reported in Table 4
demonstrated that the proposed method yields more sufficient than other imputation
methods. The experimental results showed that the HIMP method can make use of the
similarity between the same missing data patterns when the original dataset consisted of
different missing data patterns such as the real IRDia. The classifiers’ performance over
IRDia dataset imputed by the HIMP method proved that the introduced model can be
effectively applied to develop hybrid imputation methods for multi-pattern missing data.

In further studies, the introduced model can be applied to develop more effective
hybrid imputation methods using a variety of techniques. The HIMP method can also be
adapted for other complex datasets with multi-pattern missing data such as microarray
gene expression data. Moreover, the HIMP can be improved using other single and multiple
imputation methods.
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